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To a nondegenerate pencil ~ of quadrics in a (2 g + 1 )-dimensional
projective space one can associate a hyperelliptic curve X of genus g. It
has been known for over a decade that the Jacobian of X is isomorphic to
the space of (g - 1)-dimensional linear spaces contained in the intersec-
tion of quadrics of 0 (see [7,5]). This kind of relationship between the
moduli spaces of bundles on X and space of linear subspaces of P2g+1
related to a family of quadrics parametrised by pl has further been
studied in [5], Theorem 4, [4] and [2] for vector bundles and in [6] for
stable orthogonal and spin bundles. In this paper 1 study the semistable
orthogonal bundles on X generalizing Theorem 3 of [2] (see Theorem 4).
The main result is the following:

THEOREM: Let M be the space of equivalence classes of semistable orthogo-
nal bundles F of rank n with i-action (compatible with the orthogonal
structure on it) of a fixed allowable local type T over a hyperelliptic curve X
of genus  2. Let W be the set of Weierstrass points of X. Let QI =

03A3w~ WQw, Q2 = LWE WkwQw be quadrics on an even dimensional vector
space LWE WCw, where Cw is a vector space of dimension rw carrying a
nondegenerate quadratic form Qw, kw are mutually distinct scalars corre-
sponding to the Weierstrass points of X and rw = dimension of Fw . Let R’
denote the space of subspaces of Y-Cw of dimension 1 203A3rw which are maximal
isotropic for QI, and have rank  n with respect to Q2. Then the quotient of
R’, in the sense of geometric invariant theory, by 03A0wO(Qw) is isomorphic to
M.

This theorem is proved in §2. In §4, 1 prove similar results for Clifford
bundles. The idea of the proofs is similar to that in [2]. However, in [2]
one uses explicitly the special properties of the i-invariant orthogonal
bundles of forms E ~ i*E and E 0 i*E. Such special forms are possible
only for orthogonal bundles of very low ranks. To overcome this diffi-
culty the definition of "irreducible bundles" is introduced (Definition
1.1). The theorem is in fact proved first for irreducible bundles and then
generalised by induction.

In §3, properties of some spaces of linear subspaces related to a pencil
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of quadrics (including those involved in the above theorems) are studied.
This study can be hoped to have good applications in future. For

example, Corollary 3.5 applied to results of Professor Ramanan [6] shows
that the moduli space of stable spin bundles F with Z/2-action on a
hyperelliptic curve is nonsingular if the dimension of the (-1)-eigenspace
of Fw for Z/2-action is one for all Weierstrass points w.

§1. Notations and preliminaries

We will assume that characteristic of the base field is zero.

Let X be an irreducible nonsingular hyperelliptic curve. Let i denote
the hyperelliptic involution on X. We denote by W the set of Weierstrass
points of X as well as its image on P1. We use h to denote both the line
bundle Op 1 (1) on P1 as well as its pull back to X.

DEFINITION 1.1: An i-action on a bundle E over X is a map j : E ~ i*E
such that i* j 0 j = Id.

If E is a vector bundle with i-action, then for w in W, the i-action
induces an involution on the fibre Ew of E at w. We denote by E+w (resp.
Ew ) the eigenspace corresponding to eigenvalue +1(resp. -1) for this
involution. The i-action induces one on the cohomology groups Hk(X, E )
too. Let Hk(X, E)+ and Hk(X, E ) - denote the eigenspaces correspond-
ing to eigenvalues + 1 and -1 respectively. We use similar notations for
Hk(X, E ) replaced by the Euler characteristic ~(E) of E.

Henceforth, in this section, E will denote an 0( n )-or SO(n)-bundle
with i-action.

DEFINITION 1.2: Let T be a fixed topological 0(n) (or SO( n ))-bundle with
i-action. Then E is said to be of local type T if E is topologically
i-isomorphic to T.

DEFINITION 1.3: An i-invariant subbundle of E is a subbundle of E
invariant under the given i-action on E.

DEFINITION 1.4: A bundle E is semistable (resp. stable) if every isotropic
i-invariant (resp. proper) subbundle F of E has degree less than or equal
to (resp. less than) zero.

We remark that an 0(n) (or SO( n ))-bundle with i-action is semistable
if and only if it is semistable as an orthogonal (or special orthogonal)bun-
dle (Proposition 4.6, [6]). However, there do exist orthogonal bundles
with i-action which are stable as orthogonal bundles with i-action but not
stable as orthogonal -bundles (Example 1.35, [1], Lemma 1.8).

If E is semistable but not stable (as a bundle with i-action), then by



17

induction we can find a flag

such that N are isotropic i-invariant subbundles of E of degree zero,
Nj+1/Nj and N~J/N~J+1 are stable vector bundles with i-action for j =
0,..., r - 1 and N,’ INr is a stable orthogonal (or SO( n ))-bundle with
i-action. Then grE, the associated graded of E, is defined as the bundle
N1 ~...~ Nr/Nr-1 ~ N~r/Nr ~ N~r-1 /N~r ~ ... ~ E/N~1. The bundle

grE gets an orthogonal structure as follows: N~J/N~j+1 and Nj+1/Nj are
dual to each other and hence their direct sum carries a non-degenerate
quadratic form with both these direct summands as isotropic subbundles.
On Nr’ INr there is a nondegenerate quadratic form induced from that on
E. On grE we put the quadratic form which is a direct sum of these
forms. The bundle grE is unique upto quadratic i-isomorphisms.

DEFINITION 1.5: Two semistable orthogonal bundles with i-action are
equivalent if their associated gradeds are isomorphic (as orthogonal
bundles with i-action).

REMARK: The local type of an O(n) (or SO( n ))-bundle with i-action is
completely determined by its topological type as an O(n) (or SO(n))-
bundle (without i-action) and the integers (rw = dim E-w), w in W, E
being the associated vector bundle (see Proposition 1.48, pp. 76-87 [1]).

DEFINITION 1.6: An orthogonal bundle (or special orthogonal bundle)
with i-action is irreducible if it has no trivial sub-bundle with induced
trivial i-action.

LEMMA 1.7: Let F be a semistable orthogonal ( special orthogonal) bundle of
rank n with i-action. Then

( i ) F is irreducible if and only if H0(F)+ = 0,
( ü ) if F is not irreducible, then F is equivalent to ln - m ~ Fm’ Fm being an

irreducible orthogonal bundle with an i-action and In - m a trivial bundle of
rank n - m with trivial i-action, m  n.

PROOF: (i) Suppose F is reducible, i.e. F contains a trivial bundle N with
trivial i-action; then H0(F)+~H0(N)+~0. Conversely, suppose that
H0(F)+~ 0. We shall show that F is reducible. Let N be the subbundle
of F generated by H0(F)+. Then N is i-invariant being generated by
invariant sections. We claim that N is trivial. Since F is a semistable

bundle of degree zero, degree N  0. On the other hand, as N is generated
by sections, degree N  0. It follows that degree N = 0 and hence N is
generated by nowhere vanishing sections. Therefore N is trivial. The

i-action on N is trivial as it is generated by i-invariant sections. Thus F is
reducible.
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(ii) Let F be a reducible semistable orthogonal bundle with an i-ac-
tion. By part (i), H0(F)+~ 0 and H0(F)+ generates a trivial subbundle
N of F with trivial i-action. If N is non-isotropic in the sense that the
subbundle N’ generated by N~N~ is zero, then F=N~N~ (see the
proof of Proposition 4.2, [6]). If N’ -=1= 0, N’ being isotropic i-invariant we
get the flag 0 c N’ c N’ 1 c F showing that F is equivalent to

N’~N’* ~ N’~/N’ as an orthogonal bundle with i-action. We claim
that N’ is trivial. We first show that N’ has degree zero. Consider the
exact sequence 0 ~ N’ ~ N ~ N~ ~ M ~ 0 where M is the subbundle

generated by N + N~. In view of the semistability of F, degree N’  0,
degree M  0. But, from the exact sequence, degree N’ + degree M = deg
- N + deg - N~ = 2(deg N) as F/N~ ~ N*, so that degree N’ = degree
M = 0. We will now show that N’ is generated by sections so that N’ will
be trivial being of degree zero. Notice that the evaluation map X X
H0(N’) ~ N’ is injective as H0(N’) c H0(N) and X X H0(N) ~ N is an
injection (in fact an isomorphism). Thus dim H0(N’)  rank N’. We only
have to show that this is an equality. Consider 0 ~ N’ ~ N ~ L ~ 0.
Note that L is semistable as N is so and 03BC(N’) = 03BC(N) = 03BC(L). The map
X X H0(L) ~ L is an injection, for if a section of L vanishes at a point, it
will generate a line subbundle of L of positive degree contradicting the
semistability of L. Thus dim H(L)  rank L. Thus,

This finishes the proof of the claim that NI is trivial. Thus F is equivalent
to (N’ ~ N’*) fl3 F’, where ( N’ ~ (N’)*) is a trivial bundle with trivial

i-action, F’ ~ N’~/N’ is an orthogonal bundle with an i-action, ~ being
an orthogonal direct sum. If F’ is irreducible, we are through; otherwise
by inducation on rank applied to F’ we get the result.

LEMMA 1.8: For every integer n, there exists a stable special orthogonal
bundle with i-action, of rank n.

PROOF: The case n = 1 is trivial. For n = 2, though there does not exist a
stable special orthogonal bundle, there do exist stable special orthogonal
bundles with i-action. For example, take E = L ED L* with L * i*L,
deg L = 0. Since deg L = 0, L* ~ i*L so that there is an i-action on E
obtained by switching the direct summands. E is clearly semistable. E is
stable since any i-invariant subbundle of E of degree zero has to be L or
L* and the latter are not i-invariant. Thus we may assume that n  3.

Let X be the universal covering of X. Let r be the group for the
composite covering ~X~P1. It is known that r is generated by
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(2 g + 2) elements xl, ... , lx2g+2, say, with the only relations x 2 = 1 for all
i and x1x2,....,x2g+2 = 1. The fundamental group ’7T of X is a normal

subgroup of r with quotient ~ Z/2, generated by Xi, Y, i = 1,...,g
where Xi= x1x2i, Yi = x2i+1x1 with the only relations X1Y1X2Y2...XgXg
= Xg Xg... Yl Xl. The induced involution on ’7T is given by Xi ~ X-1i,
Yi ~ Y-1i for all i = 1,..., g. The bundles associated to irreducible unitary
representations of r in SO( n ) are stable special orthogonal bundles of
rank n with i-action, hence it suffices to construct irreducible unitary
representations p of r in SO( n ) for n  3. Let V be a vector space of
dimension n and B a symmetric bilinear form on V.

Case (i) : n = 2m, m even. Let (el’.’" em, f1,..., fm) be a basis of V
(taken in this order) such that B(e¡,fj) = 8¡j for all i, j. Let M, N E End V
be defined by M(ei)=fi, M(fi)=ei, N(ei)=03BB-1ifi, N(fi)=03BBiei, i =

1,..., m where À ; are non zero real numbers such that À i =A Àj for i ~ j and
03BBl03BBj ~ 1 for all i, j. Since m is even, M, N E SO(n). Define 03C1(x1) = M,
p(x2) = M, p(x3) = N, p(x4) = N and p (xi) = Id for i &#x3E; 4. Then p gives
a unitary representation of r in SO( n ). We have to check that p is
irreducible i.e. {M, N} is an irreducible subset i.e. no nonzero element in
the Lie algebra of SO( n ) commutes with both M and N. Let S be the Lie
algebra of SO( n ). Then A ~ S iff AM + MtA = 0 i.e. iff

with 03B2 and y skew symmetric matrices. Take

where p = (03BC1,..., 03BCm) is a diagonal matrix. Then A commutes with D iff
03B203BC-1=03BC03B3 and 03B103BC=-03BCt03B1. Taking 03BC=Id, i.e. D = M, we get 13 = y,
03B1 = -t03B1 i.e. a is skew symmetric. Taking D = N, we get ÀiÀjf3’j = 03B2ij,
03BB-1l03BBj03B1ij=03B1ij so that 03B1ij=0~i~j and 03B2ij=0~i, j. Since a is skew

symmetric, we have a = 0 = 13. Thus A = 0.
Case (ii): n = 2m + 1, m even. Take an ordered basis of V,

(e0, e1,...,em,f1,..., fm), with B(e0,e0) = 1, B(ei,fj) = 03B4ij i, j = 1,...,m.
The Lie algebra consists of matrices of type

with 13, y skew symmetric m X m matrices. Let
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As in the case i), one can check that {M1, N1} is an irreducible set.

Define the representation p by p(xl) = Ml, P(X2) = Ml, P(X3) = NI,
03C1(x4)=N1, 03C1(xi)=Id~i&#x3E;4.

Case (iii): n = 2m, m odd. Let (e1,...,em-1,f1,...,fm-1, em, fm) be an
ordered basis of V s.t. B(ei,fj) = 03B4ij, i, j = 1,..., m. Let

Then the Lie algebra J1 consists of matrices of the form

with AM + MtA = 0, BJ2 + MtC=0, CM + Jt2B = 0 and

b being a scalar. Let I, denote identity matrix of rank q. Let

and let P2 be defined by P2(e1)=f1, P2 (fl) = el, P2(em) =fm, P2(fm) =
em, P2 (e,) = el, P2(fi) = f for i ~ 1, m. Then an element in J1 commutes
with M2 and N2 iff it is of the form

An element of this form commutes with P2 iff J2 D = DJ2 i.e. iff D = 0.
Thus f M2, N2, P2} is an irreducible set for J1. Hence the representation
p defined by p(xi) = M2, P(x2) - M2, 03C1(x3) = (N2), P(X4) = N2, p(xs) =
P2’ 03C1(x6) = P2 and 03C1(xi) = Id for i&#x3E; 6 gives an irreducible representa-
tion.

Case (iv) (a): n = 3. Let ( eo, el, fl ) be an ordered basis of V such that
the matrix of the quadratic form with respect to this basis is

The Lie algebra J 2 consists of matrices of the form
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Let

It is easy to check that Mo, No form an irreducible set for J2. Define a
representation p by p(xl) = p(x2) = Mo, 03C1(x3)=03C1(x4)=N0, p(x1) =
Id~i&#x3E;4.

Case (iv) (b): n = 2 m + 1, m odd  3. Let

( eo, e1,...,em-1, f1,..., fm-1, em, fm ) be an ordered basis of V such that
B(e0, el)=03B4l,0, B(e0,fi)=0, B(el, ej) = 0 = B(fl,fj) = 0, B(el,fj) = 03B4ij,
i, j = 1,..., m. The Lie algebra J2 consists of matrices of the form

where

where P2(ei) = fi, i = 1, 2, m; P2(fi) = ei, i = 1, 2, m and P2(ei) = ei,
P2(fi) = fi for i ~ 1, 2, m. As before, it can be checked that M3, N3, P3
form an irreducible set for J2. Define a representation p by 03C1(x1) =
P(X2) = M3, P(X3) = P(X4) = N3, P(X5) = P(X6) = P3, p(x1) = Id for i &#x3E; 6.

LEMMA 1.9: For every integer n, there exists an irreducible stable special
orthogonal bundle of rank n with i-action.

PROOF: We shall show that the stable SO(n)-bundles F associated to the
irreducible unitary representations of r in SO( n ) constructed in Lemma
1.8 (with a minor change in case ii) are irreducible. By Lemma 1.7, F is
irreducible iff H0(F)+ = 0 i.e. iff V0393, the subspace of V on which r acts
trivially, is zero. Hence it suffices to show that the representation p
obtained by composing p with the inclusion SO( n ) - GL( n ) contains no
trivial representation.

Case (i): n = 2m, m even. Since N and M both keep the subspaces
(ei) ~ (f,), i = 1,...,m, invariant and each of these subspaces is irreduci-
ble for their action as 03BBi ~ ± 1, it follows that p has irreducible compo-
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nents (ei)~(fi), i=1,...,m. Moreover M, N act notrivially on any
component, showing that p has no trivial subrepresentation.

Case (ii) : n = 2 m + 1, m even. Define Pl by Pl ( eo ) = - eo, P1(e1) = f1,
P1(f1)=e1 and Pl(ei, P(/;) =fi for i =1= 1. Define p by P(Xl) = P(X2) =
Ml, 03C1(x3)=03C1(x4)=N1, 03C1(x5)=03C1(x6)=P1 and 03C1(x1) = Id for i &#x3E; 6.

Then p has irreducible components ( eo ) and (ei) ~ (fi), i = 1,..., m . Pl
acts nontrivially on (e0). It follows that p contains no trivial subrepresen-
tation.

Case (iii): n = 2m, m odd. In this case p has irreducible components
(ei) ~ ( f ), i = 1, ... , m - 1, ( en + fn ), (en - fn). Since M2 acts nontrivially
on these components, it follows that p contains no trivial subrepresenta-
tion.

Case (iv) : n = 2 m + 1, m odd. (a) Mo acts trivially on an element
v = aoeo + aiel + bl fl iff al = b103BB, ao = 0; and No acts trivially on ale, +
bl fl iff a, + b, = 0. Since À - 1, the result follows.

(b) In this case p has irreducible components (e0), (el)~(fi), i =
1,...,m - 1, (em + fm)’ (em - fm). It is easy to see that p contains no
trivial subrepresentation.

Note that the SO(2)-bundle given in the proof of Lemma 1.8 is an
irreducible stable SO(2)-bundle with i-action.

DEFINITION 1.10: A local type T of an orthogonal (or SO( n ))-bundle with
i-action is allowable if there exists an irreducible stable orthogonal (or
SO( n )) bundle with i-action of local type T.

The above lemma gives an example of an orthogonal bundle with
i-action of an allowable local type for every n. 1 do not know a complete
classification of allowable local types. It is easy to see that in case rw = 0
for at least 2g of the Weierstrass points, there exist no irreducible unitary
representations. In case n = 2, using the matrices

with 03BB2 ~ 1, it is easy to see that provided Lrw is even and the i-action is
not ± Id for at least four Weierstrass points, there exist irreducible stable
orthogonal bundles with given rw’s.

It is not difficult to construct examples of allowable local types in low
ranks.

§2. The main theorem

This section is devoted to the proof of the following theorem.

THEOREM 1: Let M be the space of equivalence classes of semistable
orthogonal bundles F of rank n with an i-action and of an allowable fixed
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local type T on a hyperelliptic curve X of genus g  2. For each Weierstrass
point w, let Cw be a vector space of dimension rw equal to the dimension of
Fw , carrying a nondegenerate quadratic form Qw. We construct a quadratic
form on PI X 03A3Cw with values in mpl(2g + 1) (see the proof ). This can be
regarded as a family of quadratic forms on 03A3Cw parametrised by pl. Fix
two distinct non- Weierstrass points a and x. Let p(a) and p(x) be their
projections on PI 

1 and let QI = EQw and Q2 = EkwQw be the quadratic
forms in the family corresponding to points p(a) and p(x) respectively. Let
R’ denote the space of subspaces of Y-Cw of dimension 1 203A3rw which are
maximum isotropic for QI and have rank less than or equal to n for Q2.
Then the quotient R of R ss ( the set of semistable points of R’), in the sense
of geometric invariant theory, by rIO(Qw) is isomorphic to the moduli space
M.

Let I be the set of isomorphism classes of semistable orthogonal
bundles F of rank n with i-action and quadratic isomorphisms
n w : ( F 0 hg) Cw for all w in W. We first give a map f from I to R’.
Write E = F 0 hg. We claim that the evaluation map e : H0(E)- ~ EE:;
is an injection. From the cohomology exact sequence associated to the
exact sequence 0 - E( - W) - E - E 0 OW ~ 0, it follows that the
kernel of the evaluation map is H0(E(- W))-. The latter is zero as

E(- W) is semistable of negative degree. Composing e with the isomor-
phisms (nw), we get an injective map from H0(E)- into 03A3Cw. We define
f(F, (nw)) to be the image of H0(E)- in Y-Cw under this composite. We
check below that f ( F, (nw)) E R’ (see Proposition 2.1 below).

For the sake of convenience, we interpret the quadratic form Qw on Cw
as having values in the one dimensional vector spaces h 2g for all w in W.
Let p : X ~ P1 be the canonical projection. Fix a in X - W. Using p(a)
we get an isomorphism

Now there is an isomorphism 03A3wh2g+1w ~ H0(P1, h2g+1) induced by the
evaluation map, since both the spaces are of dimension 2 g + 2 and the
kernel of the evaluation map is H0(P1, h-1)=0. Define q to be the
composite

where e is the evaluation map. Then q is a quadratic form on Y-C,,,
parametrised by pl and with values in h2g+l. For x in pl the quadratic
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form qx corresponding to x is obtained simply by replacing e above by
ex, the evaluation at x. The pullback of q to X is again denoted by q.

PROPOSITION 2.1: (a) f(F, ( n w )) is isotropic with respect to the quadratic
forms qq, qia at a and ia respectively.

( b ) The space H0(X, E o h-1)- embedded in f ( F, (nw)) via the divisor
(x U ix ) is orthogonal to f ( F, (nw)) with respect to qx for x in X - ( W U a
U ia ).

If F is irreducible, then H0(X, E~ h -1 ) - embedded in f ( F, (nw)) via
x U ix is the orthogonal complement of f ( F, (nw)) in f ( F, (nw)) for qx,
forx in X-(WUaUia).

(c) (i) dim f(F, (nw)) = 1£w dim Cw,
(ii) rank qxlf(F, (n w» n, VF in I,

(iii) rank qx/f(F, (nw)) = n if and only if F is irreducible.

PROOF: (a) Follows from the definition of qa and the following commuta-
tive diagram

The composite ep(a) 0 p(a) : H0(P1, h2g)~h2g+1p(a) is zero in view of
the cohomology exact sequence associated to the exact sequence 0 ~ h2g
~ h2g+1 ~ h2g+1 ~ Op(a) ~ 0.

(b) Consider the commutative diagram
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The lower composite is zero in view of the exact sequence

Thus qx(H0(E)-, H0(E ~ L-1x+ix) = 0~x ~ X, which shows that

H0(E ~ L-1x+ix)-~ orthogonal complement of H0(X, E)- in H0(X, E)-
with respect to the quadric qx at x E X - (Wu a U ia).

For the second part, let s E H0(X, E)- be orthogonal to H0(X, E)-
for qx . This means q’x(s(x), t(x)) = 0 for all t in H0(X, E)- where qx is
the quadratic form on Ex given by the orthogonal structure of E. We
claim that it suffices to show that the evaluation map ex : H0(X, E)- ~ Ex
is onto. For, then we shall have q’x(s(x), Ex) = 0, which implies s(x) = 0
as q’x is nondegenerate on Ex . Since s is i-antiinvariant, we have also
s(ix) = 0. Thus s~H0(X, E ~ L-1x ~ L-1ix) = H0(X, E ~ h-1)-. It re-

mains to show that the evaluation map ex is onto. Consider the exact

sequence

The associated cohomology exact sequence gives

By Serre’ duality H0(X, F)+ ~ H1(X, F* ~ K)+)* ~
(H1(X, F~hg-1)-)* as F~F* and K~hg-1, the latter isomorphism
being noncompatible with i-actions as i-acts by ( -1) on Kw, while it acts
trivially on h w for all w in W. Since F is irreducible, H0(X, F)+ = 0 so
that H1(X, E~h-1)-=0 as E = F~hg. Thus H0(X, E)- ~ (Ex ~ Eix)-
is onto. Now

under the map y~(y, -iy) and the following diagram commutes,
showing that ex is onto.

(c) The assertion (i) follows from Proposition 2.2 [2]. We similarly
have
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The assertions (ii) and (iii) now follow from this and the part (b).
We recall that a subspace V of Y-C,, is semistable (respectively properly

stable) for the action of nO(Qw) on 03A3Cw if and only if for every proper
family ( Nw ) w where Nw is an isotropic subspace of Cw, we have

 (resp. ) dim V (see Proposition 5.3 [6]).

PROPOSITION 2.2: Let F be an orthogonal bundle with i-action, E = F ~ h g
and H1(E)- = 0. If the space H0(E)- embedded in 03A3Cw via quadratic
isomorphisms (nw)w is semistable, then F is a semistable orthogonal bundle.

PROOF: Follows similarly as Proposition 5.6 [6] by taking a = hg.

Let (R’n)ss be the set of semistable subspaces V of 03A3Cw of dimension
1¿ dim Cw which are maximum isotropic for QI and have rank exactly n
for Q2. From Propositions 2.1 (C) and 2.2, it follows that f-1((R’n)ss) =
ln ~ f-1(R’ss) where ln is the subset of I consisting of irreducible bundles.

PROPOSITION 2.3: The map f induces a bijection from

PROOF: We shall now construct a map f’:(R’n)ss~I’n which will be
shown to be the inverse of f. Let V ~ (R’n)ss. We claim that the

composite YC,,, ~ L-1w ~ X X 03A3Cw ~ X X 03A3Cw/V is a surjection. We have
only to check that at w0 ~ W, Image(03A3Cw 0 L-1w) + V = Y-Cw i.e.

03A3w’~w0Cw’ + V = 03A3Cw. By Lemma 5.5, [6] we have V ~ Cw0 = 0. Taking
orthogonal complements for Q, and noting that V is a maximal isotropic
space for Q, so that V~ = V, we have V + 03A3w’~w0Cw’ = Y-Cw. Define V’ by

Now, the quadratic form q on X X Y-C,, induces a quadratic form on
03A3(Cw ~ L-1w) which vanishes at each w and hence factors through a
quadratic form with values in h2g+1 ~ L-2W = h-1. Its restriction to V’
vanishes completely on V’ at a and ia and hence induces an h - 2-valued
quadratic form Qa on V’. We claim that Qa has constant rank on X. The
adjoint form (§2.5 [2]) of the h -1-valued form has values in h and its
restriction to the polar Vo vanishes at a, ia and factors through a
quadratic form with values in the trivial line bundle. Since % is the trivial
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bundle, this form has constant rank on V0. Our claim now follows in the
same way as Proposition 2.6 [2]. Define f’(V) = (F ~ V’/V’~ 0 h, (nw)),
where V’~ denotes the orthogonal complement of V’ in V’ for the

quadratic form Qu and nw: Ej - Cw are isomorphisms obtained from
the fact that V’w contains Cw 0 L-1w.
We now claim that H1(F~hg)-=0. Since i acts on the canonical

bundle by -1 at each Weierstrass point, using Serre’ duality and
(V’/V’~)* ~ V’/V’~ 0 h2, we have hl(F 0 hg)-= h0(V’/V’~)+. Writ-
ing down the cohomology exact sequence associated to the exact se-

quence

and taking invariants and anti-invariants we get H0(V’)=0, h1(V’)- =
g(03A3rw/2), h1(V’)+ = L:rwI2. Since V’~ eV’, Ho( y’ 1 ) = 0. Using the Rie-
mann-Roch theorem and Proposition 2.2, [2], since (V’~w)- = 0, we get
h1(V’~)+=0. From the cohomology exact sequence associated to the
exact sequence 0 ~ V’~ ~ V’ ~ V’/V’~ ~ 0, on taking invariants, we
have H0(V’/V’~)+ = 0, i.e. H1(F 0 hg)-= 0.
LEMMA 2.4 : There is a canonical isomorphism of V onto H0(F~hg)- such
that the following diagram commutes.

The lower horizontal map here is the evaluation at w.

PROOF: See Lemma 3.6, [2]. Note that on F~hg = V’/V’~ ~ hg+1, the
i-action is the same as that on V’/V’~. Since i-acts by - 1 on L W,w for
all w, we have (F~hg)-w = (V’/V’~ oLw)’ and H0(F~hg)- =
H0(V’/V’~ ~ LW)+. As H1(F~ hg)-= 0, from Proposition 2.2, [2] and
Lemma 3.6, [2], it follows that there is a canonical isomorphism from V
onto H0(F 0 hg)- making the above diagram commutative.
Lemma 2.4 shows that the evaluation map H0(F 0 hg)- ~ 

03A3w(F~hg)-w is an injection and the space H0(F~hg)- embedded in
Y-Cw via 03A3(nw) is in fact V. Thus f o f ’ = Id. Also, since Vits semi-stable,
it follows from Proposition 2.2 that F is semistable. Finally, Proposition
2.1, (c), (iii) shows that F is irreducible.
We now proceed to show that’ 0 f = Id. Let (F, (nw))~I’n, f(F) =

H0(F~ hg)- = V, say. From the commutative diagram


