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Introduction

The model theory of intuitionistic higher order logic, as e.g. described in
[1], makes it possible to interpret intuitionistic mathematics in categories
of sheaves. This has proved to be particularly useful in algebra (see [6]).
Here "internal" mathematical objects correspond to structures which are
familiar from the theory of sectional representations. For example, a ring
(= commutative ring with l)-object in the category Sh(X) of Set-valued
sheaves on a topological space X is the same as a sheaf of rings on X, or a
sheaf of sets on X with a continuous ring structure on the stalks. In order
words, doing ring theory internally in the category Sh(X) coincides with
studying ringed spaces with base space X.

In this paper, we will discuss what happens when one replaces "ring"
by "topological space" in the above: we will deal with the question of
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what topological space-objects in categories of sheaves look like, and we
will consider the relation between such topological space-objects and
sheaves with values in the category of topological spaces and continuous
functions.

Our approach will be rather category-theoretic: we will concentrate on
equivalence of categories-theorems (representation theorems), and on
adjunctions between categories. By doing this, we hope to provide some
general background to the models for intuitionistic topology of the kind
discussed by Grayson [4], for example. In intuitionistic topology (or,
topology in sheaves) one finds a lot of pathological situations which are
due to a lack of points. Many of the pathologies disappear when one does
intuitionistic topology without points, that is, locale theory. In this sense,
locale theory seems to be the proper way of doing topology when one’s
underlying logic is intuitionistic logic. Still, in this paper we will not
consider locales, but study models for intuitionistic topology in the more
traditional sense of [9], [4], where a space is a set of points with some
additional structure.

Let us briefly outline how this paper is organized. We assume the
reader to be acquainted with the basis facts of general topology and
category theory, and to have a thorough understanding of the model
theory of intuitionistic (higher order) logic as described in [1]. This paper
[1] will be the starting point for the first part, where we consider external
representations of topological space objects in categories of sheaves. We
prove Stout’s representation theorem, and derive Fourman’s representa-
tion theorem for sober spaces as an easy corollary. In the second part, we
will consider the relation between the category TOP(Sh(X)) of topologi-
cal space objects in Sh(X), and the category Sh(X, TOP ) of sheaves on
X with values in the category of topological spaces and continuous
functions. We prove a general adjunction theorem, and we show that in
the case of a locally compact zero-dimensional base-space X,
TOP(Sh(X)) is (equivalent to) a reflective subcategory of Sh ( X, TOP ).
In the third part, we consider change of base space, and investigate some
of the structure of the category of *’spaced spaces", which is defined as
an analogon of the category of ringed spaces, or the category of geomet-
ric spaces, familiar from algebraic geometry.

This paper has quite a long history. A first version was written in the
fall of 1980 as [5]. The main reason for the delay in producing the present
version was that the central representation theorem (Theorem 5, Part 1,
Section 1 below) turned out to have been proved independently, but
much earlier, by Stout (cf. [7]). 1 would like to thank L.N. Stout for

bringing the existence of [7] to my attention. Also, 1 would like to thank
professors van Dalen and Troelstra for helpful comments on the earlier
version just mentioned, and for encouraging me to write the present
version.
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PART 1. TOPOLOGICAL SPACES IN SHEAVES

1. Representation of topological spaces

Throughout this paper, we will use the well-known representation theo-
rem for sheaves saying that a sheaf A over a topological space T is
representable as the sheaf of continuous sections of a local homeomor-

phism EA  T. This correspondence is an equivalence of categories.
T

Natural transformations A - B from one sheaf A over T to another are

f
represented by continuous maps EA  E. over T ; i.e. T acts on sections

by just composing with f. (For more details, see e.g. [1], [2].) Given this
representation, we may either think of sheaves as Set-valued functors, or
as local homeomorphisms. Since in the definition of a sheaf over a space
T we need only refer to the lattice fP(T) of open subsets of T, we will
assume that the base-space T is sober, whenever this is convenient.

If E 1 T is a local homeomorphism, an open neighbourhood (nbd) Ue
of a point e E E will be called small if p Ue : Ue ~ p ( Ue ) c T is a

homeomorphism. By definition, the small neighbourhoods form a basis
for E.

Let us now turn to topological spaces in sheaves. Using the interpreta-
tion of higher-order logic in sheaves as presented in [1], we can define a
topology on a sheaf A over T as a subobject O(A) of (A) such that

as in the classical case. Our aim in this section is to give an external
representation of topological space-objects in Sh(T).

1.1. LEMMA: Let A be a sheaf on T. Then global elements of f1lJ(A) in

Sh(T) correspond to open subsets of EA, with equality given by

for open subsets O, O’ of EA .

PROOF: A global element of 9lJ(A) is a (strict and extensional) predicate
A - O(T) ([1]). An open 0 C EA defines such a predicate Po by PO(a) =
a-1(O). (Here we identify elements of A with sections of the representing
local homeomorphism EA  T). Conversely, a predicate P: A ~ O(T)
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defines an open set

To prove the correspondence, we show that

ad 1. (~) Take a ~ A . We have to show that P(a)~~{a-1(U)|U is
small and P((p~U)-1)=p(U)}. Take t~P(a), and let U be a small
nbd of a(t) such that p(U)~P(a) ( p is continuous). Since p U:
U ~ p(U) is a homeomorphism, we derive that ap(U) = (p U)-1,
and hence P(( p U)-1) = P(a r p(U)) = P(a) n p (U) = p(U). ( ç ) Take
a E A and U a small open subset of EA . We have to show that if

P((p U)-1)=p(U), then a-1(U)~P(a). So suppose P((p U)-1) =
p(U). Since a-1(U)=[a=(pU)-1], we obtain P(a)~a-1(U) =
P(a[a=(p U)-1])=P((p U)-1[a=(p U)-1])=p(U)~a-1
(U) = a-1(U). Hence a-1(U) c P(a).
ad 2. We have to show that for an open 0 c EA,

But (pU)(O) = p(U) iff p(O~ U) = p(U), iff U c O, so this is im-

mediate from the fact that the small open sets form a basis. 0

The following lemma is an analog of 8.12(i) of [1].

1.2. LEMMA: Let T be an internal topology on a sheaf A over T ( i. e. T is a
subsheaf of 9(A) satisfying the definition (*) given above). Then every
element of T is the restriction of a global element of T.

PROOF: As usual, T may also be regarded as a predicate on 8P(A), and for
O~O(EA) we write (O) = [O~]. Now let (0, U ) be a section of T
over U E O(T), i.e. O E O(EA) is a global element of 9(A) (cf. Lemma
1) with O(a) := a-1(O) ~ U for all a ~ A, and U ~ O(T) is such that
U c (O). Consider the predicate u : (A) ~ O(T) defined by
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(the last inclusion by extensionality of T ). Hence since by definition

1.3. REMARK: Let us write r for the global sections functor. Then the
proof just given shows that for any internal topology T on A,

P
1.4. DEFINITION: Let E - T be a local homeomorphism. A p-topology on
E is a topology r on E which is coarser then the original topology on E
(i.e. r c O(E)), and makes p continuous (in the sense that p-1(U) ~ r
for every U~O(T)).

1.5. THEOREM: Let A be a sheaf over T, represented by the local homeomor-

phism EA  T. Then internal topologies on A correspond to (external)
p-topologies on EA.

PROOF: An internal topology is a predicate T on 9(A) satisfying the
definition ( * ) given above. T is determined by its restriction T: O(EA) ~
f2(T), which must be an extensional function. Let rT be the set of global
elements of T. We claim that:

(1) rT is a topology on EA which makes p continuous. The latter part
of (1) follows from Remark 1.3. As for the first part, clearly  E rT and
EA ~ 0393. Also, if O,O’ ~ 0393, then because (O) ~ (O’) ~ (O~O’),
O n O’ E rT. Finally, if  ~ rT, consider the (global) predicate u: O(EA)
~ O(T) defined by

By definition,  ~O(u(O)~(O))~(~uj). But Uu corresponds to the
open subset U4Y of EA (since [a~~u]=~{u(O"0~[a~O’[|O’ ~
O(EA)} = a-1~)), and for all 0 E C9(EA), u(O) ç (O) (since u(O) =
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~{U~O(T)|O~p-1(U)~}~~{U~O(T)|O~p-1(U)~0393}; using
Remark 3, O~p-1(U) ~ 0393 implies U ~ (O), so u(O) ~ (O )). Com-
bining these, we get (~u) = T, so U E rT.

Conversely, let r c (9(E,) be a topology on EA making p continuous.
Define a predicate Tr : (a) ~ O(T) by setting, for 0 e O(EA),

(by Remark 3, we are forced to do so). Then
(2) Tr is an internal topology on A. To show (2), first note that clearly

lL0 E Tpj = [EA E Tr] = T, and for all globals O, O’ ~ O(EA), [O ~ 0393] n
[O’ ~ 0393] ~ [O ~ 0’ E 0393]. It is slightly less trivial that Tr is internally
closed under unions. Take a global predicate u: O(EA) ~ O(T) on (A);
we have to show that

For sections a of EAT, [a~~u]=[~O~u·a~ 0]) =~{a-1(O)~
u(O)|O ~ O(EA)} = a-1(~{O ~ p-1u(O)|O ~ O(EA)}). Now suppose

W~[u(O)~0393(O)] for all O~O(EA). We claim that W~0393(~u).
W~[u(O)~0393(O)] means that W~u(O)~~{U|O~p-1(U)~0393}.
Hence for all O ~ O(EA), O ~ p-1(W~u(O))~0393 (since r makes p
continuous). So

But this says that

by definition of Tr. This shows that Tr is an internal topology.
To prove the correspondence, we show that
(1) for any internal topology T, Tr = T
(2) for any p-topology r on EA, Fïp = r.

(2) is trivial: O ~ 03930393~0393(O) = T ~ O~p-1(T)~0393~O~. For (1)
note that because r is an internal topology, it suffices by Lemma 1.2 to
show that rTrT =.Fr. But this follows from (1). This completes the proof
of the theorem. 0

In the next section, we will reformulate this correspondence as an
equivalence of categories. Let us first look at two kinds of internal spaces.
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g
1.6. EXAMPLES: (a) Let Y - T be a continuous function from a topologi-
cal space Y to the base space T. The sheaf of sections of g carries a

natural internal topology T induced by the topology of Y: global elements
a

of r are the predicates Po, 0 e C9(Y), where for a section U - Y of g,

PO(a):=a-1(O). It is readily checked that this indeed defines a topology.
g

This internal space is called the space of sections of Y ~ T, and is

denoted by gT.
(b) As a special case of (a), let X be a topological space, and consider

the internal space of sections of the projection X X T  T. This space is
denoted by XT, and is called the constant space associated with X.

Below, we shall return to the constructions of internal spaces from
external ones, and investigate their categorical properties.

2. The category of internal topological spaces

We mentioned above that a sheaf A over T can be represented as a sheaf
of sections of a local homeomorphism EA  T, and that sheaf-maps
(natural transformations) A - B correspond to continuous functions

EA  EB over T. Now suppose we have two sheaves A and B over T,
equipped with internal topologies T and a respectively. An (internal)

f
continuous function f:(A,)(B,03C3) is a sheaf-map A - B such that

1= VO E (B)(O~ 03C3~f-1(O)~), as usual. Let EA  EB be the repre-
sentation of f. Then (identifying elements of A and B with sections of

EA  T, EB  T, etc) we find the following correspondence.

2.1. LEMMA: A sheaf-map f : ( A, ) ~ (B, a) is internally continuous in
S’h ( T ) iff its representation f is continuous w. r. t. rT on EA and fa on EB.

PROOF: f and f are related through f(a)=oa for all sections a of p.
Further, for a global element 0 of (B),[a ~f-1(O)] = [f(a)~ 01 =

a-1(-1(O)). Therefore (using Remark 3 of Section 1), if f is continuous
(w.r.t. ra, f7), then if 0 is a global element of .9(B),

so f is internally continuous.



178

Conversely, if f is internally continuous, then (using [a~f-1(O)] =
a-1(-1(O)) as above) 0 E ra implies -1(O) ~ Fr. D

Putting Theorem 5 of the preceding section and this lemma together,
we obtain an equivalence of categories. Let TOP(Sh(T)) denote the
category of internal topological spaces and (global) continuous functions
in Sh ( T ), and let SPSP( T ) (" spaced spaces, with base space T ") denote
the category whose objects are of the form (E, 0393)  T, where E is a

topological space, p: E ~ T is a local homeomorphism, and r is a

p-topology on E, and whose arrows from an object (E, 0393)  T to an
object (F, 0394)  T are functions f : E - F over T which are continuous
w.r.t. both topologies on E, F.

2.2. THEOREM: The categories TOP(Sh(T)) and SPSP(T) are equivalent.
a

Let us return to spaces of sections (1.6.) for a moment. If we apply the
representation to constant spaces XT we get that these are represented by

TT

structures (XT, O(XT)) ~ T, where XT is an external topological space
(note that we use XT to denote two different things, an internal space and
an external one!), XT ~ T a local homeomorphism, and O(XT) a 03C0-topol-
ogy on XT. The external space XT is calculated in the standard way (cf.
[2]). Let us quickly recall some details. XT has as its set of points

(here [f]t denotes the equivalence-class of f with respect to local equality
of functions at t). The mapping 03C0: XT ~ X is defined by setting
03C0[f]t, t&#x3E; = t. The topology on XT making v a local homeomorphism has

f
as basic opens the sets [ f , U ], for U open c T and U - X continuous,
where

The ir-topology O(XT) on XT has as opens the sets

for U on open subset of the product X X T. It is readily checked that this
is indeed a ’1T- topology.
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p

Now internal continuous functions from a space (E, 0393) ~ T to a

constant space XT are commutative diagrams

with ~ being a continuous function w.r.t. both topologies. With such a ~
’P’

we can associate a function E - X which is continuous w.r.t. the topol-
E

ogy r on E by composing ~ with the evaluation-function XT ~ X defined

by ~([f]t, t&#x3E;) = f(t). It is not difficult to see that this correspondence

is bijective.
If we let U be the forgetful functor from SPSP(T) to the category

TOP (of (external) topological spaces and continuous functions), which
p

associates to an internal space (E, 0393) ~ T the external space (E, 0393)
which has E as its set of points and r as its topology, and if we let C:
TOP - SPSP(T) be the constant-space embedding X ~ XT, then the
correspondence cp H ~’ amounts to part (a) of the following theorem. Part
(b) is proved similarly. Here S: (TOP 1 T) - SPSP(T) is the space of
sections-functor ( Y - T) ~ gT.

2.3. THEOREM: (a) TOP is equivalent to a reflective subcategory of
SPSP(T), and we have an adjunction U-|C.

(b) we have an adjunction U’-|S, where U’ is the obvious forgetful
p p p

functor (( E, 0393) ~ T ) H ( U(( E, 0393) ~ T) ~ T ).

In fact, connections between TOP and SPSP(T) as expressed in this
theorem can be formulated somewhat more generally, by taking yet
another look at internal spaces. In order to make things work, we will for
the remainder of this section assume that the base space T is always sober.

Recall (cf. [1]) that if 03A9 is a locale (cHa, frame), a point or superfilter
of 9 is a subset F c 9 with ~ ~ F, T E F, U A V E F - U E F and V E F
(i.e. F is a filter) and moreover, for any d c 9, VA c- F a 3 U E dUE F.
By pt( Q ) we denote the space of points of 2 with the canonical topology.
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If E = ((E, 0393)  T) is an internal space in Sh(T), we get a continu-
j

ous function E pte r) from the embedding r - (9(E).

2.4. LEMMA: Let p and j be as above. In the diagram

there exists a unique factorization r of p through j.

PROOF: Since j-1: r - O(E) is injective, i.e. a monomorphism of locales,
j is an epimorphism of sober spaces, so uniqueness of r is evident. As for
its existence, define for a superfilter x E pte f),

It is easy to see that r*(x) is a superfilter in O(T), and consequently,
there is a unique point r(x) ~ T such that r*(x)={W~O(T)|r(x)~

r 

W}. This defines a function pt(0393) ~ T, which is continuous, since

r-1(W)={x~pt(0393)|r(x)~W}={x~pt(0393)|p-1(W)~x}=p-1(W)
~ 0393. Finally, r o j = p, for r( j(e)) = r({0 ~0393|e~0}={W|p-1(W)~
e} = p(e) (identifying real points of sober spaces and superfilters). D

p
2.5. LEMMA: If f is an internal continuous function from ( E, 0393) ~ T to

( F, 0394)  T, then there exists a unique continuous function g making the

diagram below commute.
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PROOF: The proof is similar to that of 2.4. 0

Let SOB denote the category of sober spaces and continuous func-
tions. The preceding two lemmas then tell us that TOP(Sh(T)) is

equivalent to a subcategory of (SOB 1 T) - . (Note that when E - T is a
local homeomorphism, and T is sober, so is E.)

2.6. COROLLARY: TOP(Sh(T)) is equivalent to the full subcategory of
(SOB! T)- consisting of commuting triangles

with p a local homeomorphism, and j a function which separates opens ( i. e.
if U,’ V are open subsets of X, then U = V ~ j(E) ~ U = j(E) ~ V). D

Conversely, every object of (SOB 1 T) ~ defines an internal space, as
in the proof of the following theorem.

2.7. THEOREM: TOP(Sh(T)) is equivalent to a coreflective subcategory of
(SOB~T)~.

PROOF: The coreflector C maps a triangle

on the internal space (E, r ) 1 T, where E 1 T is the local homeomor-
phism representing the sheaf of sections of p, and 0393 ~ O(E) is the

topology determined byf-1(O(Y))={f-1(U)U~O(Y)}. The counit
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EA
CA ~ A of the adjunction is the isomorphisme of sections

which is easily seen to factor through pt(0393) ~ Y. D

3. Internal sober spaces

Recall (cf. for example [1]) that a topological space X is called sober
if every superfilter on O(X) is principal (i.e., is of the form

(O ~ O(X)|x ~ O} for some x ~ X). In this section we will prove
Fourman’s representation theorem for internal sober spaces (cf. [1], §8).
This is straightforward, using the representations of internal spaces
discussed above. Again, we will throughout this section assume that the
base space T is sober.

Let us first look at what superfilters of opens are in an internal space
(E, 0393) ~ T. Let f be a predicate on opens, or equivalently, an exten-

sional function r à (9(T) (extensional here means that if 0,0’e r and
p-1(W) ~ O = p-1(W) ~ O’, then W ~ f(O) = W nf( 0’), for each W E
O(T)). Trivially, we can calculate that (1) and (2) are equivalent, for
U E O(T).

(1) U ~ [f is a superfilter]
(2) f satisfies the following three conditions (in addition to being

extensional)
(i) U ~ f(E )
(ii) U~f(G)~f(H)= U~f(G~H), for G, H ~ 0393
(iii) for each predicate u on r, i.e. extensional u : r - (9(T),

U ~ f (~O~0393(O~ p-1u(O)))~~O~0393(u(O)~f(O)).

(Note that from (ii) it follows that in (iii) we may equivalently require
that U~f(UO~0393(O~p-1(O))) = U~UO~0393(u(O)~f(O)).)

f -nu
3.1. LEMMA: Let fU: 0393 ~ O(U) be the composite 0393 ~ O(T) ~ O(U).
Then condition (2) above is equivalent to fu being an ^V-map such that
fUo p-1 = idO(U).
PROOF: (~) Assume the properties in (2). Since f is extensional, we get
that W ~ fU p-1(W) for every W ~ U. And conversely, applying (iii) to
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the predicate u : 0393 ~ O(T), u(O)=p(O)~ W, it is clear that fUp-1(W)
c W. Thus fUp-1 = idO(U). From (i) and (ii) it is clear that fU preserves T
and A. Also, if  ~ r, we can show that fU(U) = U{fU(G)|G ~ } as
follows. (Of course, ~ is clear). By applying (iii) to the predicate
u: 0393 ~ (9 (U) defined by

we derive that

By extensionality of f, the left hand side of this equality is equal to
fU(U), and the ri ht hand side is equal to U{fU1(G)|G}. (~)
Suppose fuis an A -map such that fu o p-1 = id. Evidently, f is exten-
sional, and satisfies conditions (i) and (ii) of (2). For (iii), U n

fU(~O~0393(O~p-1u(O)))= U~UO~0393(fU(O)~fU(p-1u(O)))= U~
u(O)), for any predicate u : r - O(T). D

3.2. COROLLARY: An internal space (cf. Corollary 2.6)

is internally sober iff j induces an isomorphism from sections of p to sections
of q (by a ~ j o a).

PROOF: If ( E, 0393)  T is internally sober, sections of p over U E (9(T)
correspond to ~V-maps f * : r - O(U) such that f* 0 p -’ = idO(U), by
Lemma 3.1 (s: U - E corresponds to s-1: r - (9 (U) of course). But

f*
A V-maps r - 0 (U) with f * ° p-1 = id correspond by duality to con-
tinuous sections f : U ~ pt(0393) satisfying ~W~O(T)(p-1(W)~f(t)~
t E W), which precisely says that f is a section of q (by the definition of q
as in 2.4). 0
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3.3. COROLLARY: (cf. [1], §8). Every internal sober space in Sh(T) is a
g

space of sections gT for some map Y 9 T of sober spaces. ~

4. Pseudometric and metric spaces in sheaves

Topological space-objects in sheaves are not as nicely behaved as alge-
braic objects, like commutative rings. In the algebraic case one may
regard an internal ring-object, for example, equivalently as a sheaf of
rings, or as a sheaf of sets with a continuous ring-structure on the stalks
(cf. the Introduction). What remains of the first correspondence will be
discussed in Part 2. The second correspondence has no topological
analog: in fact it is quite easy to construct examples which show that
(contrary to the algebraic situation) the topology r of an internal space

P

(E, 0393) ~ T is not determined by the subspace topologies it induces on
the stalks p-1(t), t ~ T. In this section, which is meant to provide some
more examples of internal topological spaces, it will be seen that " being
determined by the structure on the stalks" is regained if one considers a
not-strictly topological structure like that of a pseudometric space.

Recall that the real numbers-object in Sh ( T ) is the constant space R T
(cf. [1], for example). Hence, by the previous results, sheaf-maps f from a
sheaf A over T to OB T correspond to continuous functions f : EA - R,
where EA  T is the étale-space representing A. Henceforth, the real

numbers-object in a sheaf will always be denoted by "811", while "R"
refers to the external reals. Using the interpretation of higher order logic
[1], it makes sense to define a (pseudo-)metric as in the classical case:

4.1. DEFINITION: Let A be a sheaf over T. A sheaf-map d: A X A ~  is a
pseudometric on A if

are all valid (quantification is over "elements" of A, i.e. sections of the

representing local homeomorphism EA  T). d is called a metric if in
addition

The following proposition says what pseudometrics are from an exter-
nal point of view.
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4.2. PROPOSITION: A sheaf map d: A X A ~  is a pseudometric iff the
corresponding function d: EA  EA - R is externally a continuous pseudo-
metric on fibers.

(Explanation. Recall that the correspondence of continuous functions

EB  X and sheaf-maps f : B ~ XT, for a sheaf B and a space X, is given
through

where U, is a small nbd of e e Es, and a is a section of E, p T.
If Y - T is a continuous function, a function d: Y X TY ~ R is called

a continuous pseudometric on fibers if d is continuous, and for all t ~ T,
the restriction of d to p-1(t) p-1(t) is a pseudometric on p-1(t).)

PROOF: d corresponds to d, i.e. for sections a, b: U ~ EA of p, and t E 0//,
d(a, b)(t) = d(a(t), b(t)). Clearly, if d is a pseudometric on fibers, d is
an internal pseudometric. Conversely, if d is an internal pseudometric, we
find that d is a pseudometric on fibers by considering, for points e,

e’ E EA with p(e)=p(e’), the sections (p Ue)-1, (p Ue’)-1, where Ue,
Ue. are small nbds of e and e’ such that p(Ue) = p(Ue’). 0

Being a metric is not a "fiberwise" property:

4.3. PROPOSITION: A sheaf map d : A X A ~  is a metric (internally) iff
the corresponding function d: EA X TEA - R is a continuous pseudometric
on fibers with the additional property Int d-1({0}) ~ 0394 (d = 0394E is the

diagonal {e, e&#x3E;|e~E}~E ETE).

PROOF: By 5.2 it suffices to show that

( ~) If (e, e’) E E X TE is in Int d-1({0}), then there are small nbds Ue
of e and Ue, of e’ such that p ( Ue ) = p(Ue’) and Ue X T Ue. ç d-1(0). Thus
for all t ~ p(Ue) = p(Ue’), d((pP Ue) -1, (p rUe, ) -1 1)(t) = d((pUe) 1(t),
(p  Ue’)-1(t))=0, so p(Ue)~[p Ue)-1 = (p  Ue)-1].
( ~ ) Take sections a and b over U E f9(T), and take an open W c
[d(a, b) = 0] = Int({t ~ U 1 d(a (t), b(t)=0}). Then for all t E W,
(a(t), b(t)&#x3E; E Int d-l(O), so a(t) = b(t). Hence W ç [a = bl. 1:1
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If A is a sheaf on T, and d: A X A ~  is a pseudometric, the internal
topology rd on d is defined by setting for global predicates 0 E (9(EA) on
T,

as in the classical case. Since the usual proof that this defines a topology
is contructively valid, we get that Td is indeed an internal topology. What
is its external representation? Let U be a small open subset of EA, and let
E: p(U)~R+=(0,~) be a continuous function. The continuous bail
around U of radius E, B ( U, e), is the set of points e ~ p-1 p(U) such that
3e’ E p-’p(e) ~ Ud(e, e’)  ~(p(e)).

P
4.4. PROPOSITION: Let a be a sheaf on T, EA ~ T its representation. Let d
be an internal pseudometric on A represented by d: EA X TEA - R. Then
the internal topology induced by d corresponds to (in the sense of 1.5) the
topology on EA having the set of continuous balls B( U, ~), with U small and

p (U) 1 R+ continuous, as a basis.

PROOF: We have to show that the global internal opens are exactly those
generated by the basis defined in the proposition. Let O ~ O(EA). By
definition, 0 E Frd iff

(1) for all sections U EA of p and for all t e U ~ a-1(O) there exist
a nbd W ç U and a continuous E: Wt~R+ such that for all

sections b: Wt ~ W ~ EA, {t ~ W|d(a(t), b(t))  ~(t)} ~ b-1(O).

We will show that (1) is equivalent to

(2) Ve G O 3 small nbd Ue of e ~~: Ue ~ R+: B(U, E) c 0.

(1) - (2). Take e E O. Using (1) we find a nbd Wp(e) and a continuous
E &#x3E; 0 satisfying the condition in (1). Now let U, be a small nbd of e with

p(Ue) ~ Wp(e), and let ~’ = ~p(Ue ). Then B(Ue,~’) ~ O. For if e’ e

p-1p(Ue) with e’ ~ B(Ue, ~’), take a small nbd Ue. of e’ such that

p(Ue’)~(Ue), and consider the section (p Ue. ) -1. Since e’ E B ( Ue, ~’),
d(e’,e")~(p(e’)) for some e" ~ p-1p(e’) ~ Ue, so p (e’) t 1 d( p 
Ue’)-1(t), ( P P Ue)-1(t))  ~(t)} ~ (p  Ue’)(O), so e’ E O.
(2) ~ (1). Take a section U  EA of p, and choose to E Un a-1(O). Let

Ua(t0) be a small nbd of a(t0), and let E : p(Ua(t0))~R+ be such that
B(U, E) ç 0 (by (2)). Then if b: W ~ EA is another section of p, with
W ~ p(Ue), d(a(t), b(t))  ~(t) implies b(t) ~ 0 (for t ~ W), by defini-
tion of B (U, ~). D
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PART 2. SPACES IN SHEAVES AND SHEAVES OF SPACES

In this part, we will point out some connections between internal

topological spaces (E, 0393)  T and TOP-valued sheaves which have as
their underlying sheaf of sets the sheaf of sections of E 1 T. As has been
remarked before, these connections are not as nice as in the case of
internal algebraic objects. The main reason for this is, of course, that the
theory of topology is not a geometric theory, it is not even a first-order
theory. The fact that the structure of internal spaces is not determined by
the stalks is related to this. Another fact that makes things look not very
hopeful is that TOP-valued sheaves are rather awkward objects. For if F
is a TOP-valued sheaf on T, the space FU, U E O(T), must be toplogi-
cally embedded

FU - 03A0iFUi

in the product Il i FU, for every cover ( U, 1, of U, as follows immediately
from the definition as given, for example, in [3].

In the first section of this part, we will prove a general adjunction
theorem relating the category TOP( Sh ( T )) of internal topological spaces
in Sh(T) and the category Sh ( T, TOP) of sheaves on T with values in
the category TOP of topological spaces. In the second section, we will
consider the special case of a locally compact zero-dimensional base-space.
Such spaces are precisely the Stone-spaces of Boolean rings (not neces-
sarily having a unit).

1. A general adjunction theorem

Let T denote the base space. We consider assignments

B : U ~ BU

of a set of subsets Bu of U to each open U c T, such that

(i) (monotone) For U and V open subsets of T, and K an arbitrary
subset of T, if K c V ~ U then K ~ BV iff K E BU.

(ii) (compact) If K ~ Bu and ( Ui 1, is an open cover of U, then there
are finitely many Ui1, ... , Uin and sets

n

From now on, we will arbitrarily fix such a monotone and compact
assignment B. Relative to this assignment B, we may then define a
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functor

P
as follows. For an internal space A = ((EA, 0393) ~ T ) we define a sheaf

F(B)(A) with the same underlying set-valued sheaf as A (that is, sections
of p): on each A(U) = {sections of p over U}, U E O(T), we define a
topology by taking as subbasic opens the sets

for K E BU and 0 e r. Let us verify that this is well-defined:

PROOF: (a) The monotonicity condition (i) above makes restrictions

03C1=03C1UV: A(U) ~ A(V), for U ~ V, continuous. Also, if U = UiUi, the
canonical inclusion

is a topological embedding: we only have to show that the image of a
sub-basic open [K, O] in A(U) is open in g(A(U)). But by the compact-
ness property (ii) above, if (bi)i=g(a)~g([K, O]). then there are UiJ,
and KiJ ~ BUiJ,j=1,...,n, such that K=Kl1 U ... ~Kin, so bij ~[Kij, O]
for j = 1, ... , n, and 

showing that g([K, 0]) is open in g( A ( U )).

(b) If ((EA, 0393)  T)  ((EB, 0394)  T ) is an ( internal global) continu-
ous map, i.e. qf = p, and f is continuous w.r.t. both topologies, then each
component of f as a natural transformation f : FA  FB is continuous:
this is obvious, because f-1U ([K, O]) = [ K, f-l( 0)]. 0

Going in the other direction, suppose we are given a TOP-valued sheaf
A with underlying étale-space EA  T, and define a collection rA of open
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subsets of EA by setting for O E O(EA),

We then have

p
1.2. LEMMA: (a) rA is a p-topology on EA - T

( b ) The assignment A - ((EA, 0393A)  T) defines a functor
L(B): Sh(T, TOP) - TOP(Sh(T)).

PROOF: (a) If rA is a topology, it obviously makes p continuous. So let’s
show it is a topology. Clearly, 0 and EA are in 0393A. Also, if 0,0’ E rA,
then O ~ O’ ~ 0393A, since [K, O ~ O’] = [ K, O] ~ [ K, O’ ]. For unions,
suppose O; E FA for each i E l, and take U E O(T), K E Bu. If a(K) ç
U,O;, then K ~~ia-1(Oi), so there are K1 ~ Ba-1(Ot1),...,Kn ~ Ba-1(Otn)
such that Ki U ... ~ Kn = K, and thus a ~ ~nj=1[Kj, Oij] ç [ K, UiOi ). This
shows that UiOi ~ rA whenever each of the Oi e rA.

(b) L(B) is a functor, for if f : A  B and all components fu are
continuous, then f is continuous as a map Lq(B) (A) ~ L(B)(B) : write

L(B)(A) = (EA, 0393A)  T, L(B)(B) = (EB, 0393B)  T, and take O ~ fB, i.e.
~U~O(T)~K~BU]K, O] is open in B ( U ). Then f-1(O) also has this
property, since for such U and K,

{a~A(U)|a(K)~f-1(O)}=f-1U({b~B(U)|b(K)~O}).
1.3. THEOREM: L(B) is left-adjoint to F(B). D

PROOF: Let TJA: A  F(B)L(B)(A) be the identity, for each TOP-valued
sheaf A. The components (~A)U are all continuous, as is easily verified.
To prove the adjunction, take a TOP-valued sheaf A, an internal space
X = (E, 0394)  T, and a natural transformation f : A  L(B)(X), such that
each component fU is continuous.

It suffices to show that f is continuous as a morphism L(B) (A) ~ X. So
take O E à - we have to show that f-1(O) is open in L(B)(A). To this
end, pick U E O(T) and K E Bu. Then [K,f-1(O)] = f-1U([K, O ]), which
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is open in A ( U ) by continuity off. D

1.4. EXAMPLES: Given (E, r) à T we may equip the sections of p over an

open subset of T with the familiar pointwise-convergence topology (with
respect to r), or with the compact-open topology (with respect to 0393).
These are two extreme cases of the definition of F(,): let BV = finite
subsets of V, BV = compact subsets of V, respectively.

2. Internal spaces over a locally compact zero-dimensional base space

Suppose that the base space T has a basis of compact open-and-closed
sets. We may then define a monotone and compact assignment B by
setting

Bu = {K c U 1 K is compact and open) ) ,

for each U E O(T). We keep this B fixed throughout this section, and we
write L for L(B), F for F (B)

2.1. LEMMA: For T and B as above, for any internal topological space
A = ( EA, 0393) ~ T, the counit fA: LFA - A is a ( global internal ) homeo-

morphism.

PROOF: Let r’ be the p-topology of LFA. Thus

O’ ~ r’ « for each open U, each compact clopen K c U, each a E A ( U )
with a(K) ~ O’ we can find compact clopens K1, ... , Kn, and
opens O1, ... , On ~ 0393 such that a ~ ~ni=1[Kl, Ol] ~ [K, O’].

of course, r c r’ (i.e. E is continuous). Also r’ c I, for if y E O’ E 1",
then (since r’ is a p-topology) we may find a compact clopen nbd G of
p(y) and a section a over G running through y, with a(G) ~ O’. By
definition of r’, we find K,, and 0; E r as above, such that

and we may assume that the K, are mutually disjoint. It then follows

easily from properties of the base space that y ~ Ol ~ p-1(Kl) ~ 0’ (if
p(y)~Kl), or that y~p-1(BB~nl=1Kl)~ 0’, showing that O’is open in
r. o

This lemma tells us that if T is locally compact and zero-dimensional,
TOP( Sh ( T )) is equivalent to a full reflective subcategory of Sh ( T, TOP ).
To describe this subcategory, let us try to characterize the image of the
functor F.
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If A is a TOP-valued sheaf, and U is an open subset of T, we call a
subset W~A(U) extensional if sections which are locally an element of
W are already an element of W. More precisely, W~A(U) is extensional
iff

Va ~A(U), if 3 cover {Bl}l lof U such that for all i there exists a
b E W with 03C1UBl(b)=03C1UBl(a), then a E W.,

Note that the extensional subsets are closed under finite intersections.
Call a TOP-valued sheaf A over T extensional if for each open subset U
of T, A ( U ) has an open basis consisting of extensional sets. (Clearly, this
is equivalent to saying that each A(G), G a compact clopen subset of T,
has a basis consisting of extensional sets, since if {Gl}l is a disjoint cover
of U by clopen compact sets, the canonical map A(U) ~ Hi A (Gi) is a
homeomorphism.)

Also note that the sets [K, 0] ] occurring in the definition of the
functor F(B) are extensional, hence each TOP-valued sheaf of the from
F(B)(X), X an internal space, is extensional. In fact, the converse holds
also:

2.2. LEMMA: For an extensional TOP-valued sheaf A on T, the unit

~A: A ~ FLA is an isomorphism, i. e. each component (~A)U is a homeo-
morphism.

PROOF: It suffices to show this for each compact clopen U, since these
form a basis for the topology on T. Now first note that if U is covered by
disjoint compact clopen sets Ul, i ~ I, then g: A(U) ~ IIlA(Ui), g =
03C1UUl&#x3E;i, is a homeomorphism (provided A (U) =1= j)), and in particular, if

V ~ U are both compact clopen, pu: A U - A V is an open surjection.
We show that (~A)U is an open mapping, if U is compact clopen.

Recall that the subbase of FLA(U) consists of the sets [K,O], K
compact clopen c U, and O E O(EA) such that for each compact clopen
K’, and each open U’;;2 K’, [ K’, O is open in A U. Now take a E A ( U ),
and let Wa be an extensional nbd of a in A(U). We have to find

K1, ... , Kn (compact clopen) and Ol, ... , On such that a ~ ~nl=1[Kl, O, ] ~
Wa, and each open in LA. In fact one 0 suffices: let

Then 0 is open in EA, and a E [U, O C Wa since Wa is extensional. So
the proof is complete if we show that 0 is open in LA, i.e. that for

V ~ O(T) and K ~ V compact clopen, [ K, 0] is open in A(V). But we
may assume that K c U, since p(O) = U, so it follows by extensionality
that [K, O] = (03C1VK)-103C1UK(Wa). 0

Putting these facts together, we have the following theorem.



192

2.3. THEOREM: Let T be a compact zero-dimensional space. Then the

category TOP(Sh(T)) is equivalent to the category of extensional TOP-val-
ued sheaves of T, and this category is a full reflective subcategory of
Sh ( T, TOP). 0

PART 3. CHANGE OF BASE SPACE

In this part, we will no longer consider topological spaces over a fixed
base space T, but we will jump from one base space to another. This is
possible on the basis of an extension of the change-of-base adjunction for
categories of sheaves to categories of topological spaces in sheaves, which
is presented in Section 1. In a next section we then define the category
SPSP of spaced spaces, analogous to the definition of the category of
ringed spaces in algebraic geometry. This category is shown to be a

topological category in the sense of Wyler [10]. The other two sections of
this chapter are concerned with some structural properties of this cate-
gory. Factorization properties are considered in Section 3, while in the
final section limits and colimits are discussed.

1. Direct and inverse images
p

1.1. INVERSE IMAGES: Let E = ((E, 0393) ~ T) be a topological space in
f

Sh ( T ), and let S ~ T be a continuous map. We define the inverse image

f*(E) of E to be the internal space ((f*(E), f*(0393))  S ) in Sh(S),

where f*(E)  S, the " underlying set" of the space, is defined in the
standard way (cf. [1], [2]), that is, the following diagram is a pullback in
TOP (hence f *( p ) is a local homeomorphism)

and f*(0393) is the product topology on f*(E) having as a basis for the
open sets the set {O X TU|O E r, U E O(S)}. CI

1.2. DIRECT IMAGES: Let E = ((E, 0393)  S) be a topological space in
Sh(S), and again let S  T be a continuous function. Write E(U) for
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a

the set of sections U ~ E of p over U, for U E O(S). We define an

internal space (f*(E), f*(0393)  T, , the direct image of E, as follows.
The " underlying set" is again defined as usual, i.e. the stalks f *(p)-1(t)
of f *(E) are given by

while the topology on f*(E) is defined by taking as basic open sets
aU={[a]t,t&#x3E;|t~ U}, for U~O(T) and a~E(f-1(U)). ([a]t’ denotes
the equivalence class of a in lim1E vE(f-1(V)).) This makes f*(E) ~ T
into a local homeomorphism. The topology f*(0393) on f*(E) is defined by
taking as an open basis the set {G*|G~0393}, where for a ~ E(f-1(U))
and t E U, we define

It is easy to see that {G*|G~ 0393} is indeed a base for a topology (since
G * ~ H* = (G rl H)* for G, H E r ) and that is a f*(p )-toplogy. D

Our next aim is to show that the adjunction f * -1 f * ([1], [2]) remains
valid, if we regard f * and f * as functors SPSP(S) ~ SPSP(T) instead
of functors Sh(S) ~ Sh ( T ) on the underlying sheaves.

f
1.3. LEMMA: Let S à T be a continuous function. Then f * and f* preserve

f*
internal continuity. Hence we have a pair of functors SPSP(S) ~ SPSP(T).

f*

PROOF: (a) f * is a functor: Suppose (p is an internal continuous function

((E, r) à T) - (( E’, r’) 1 T), that is, E - E" is a function over T,
continuous w.r.t. both topologies. f*(T) is the unique function making
the diagram below commute.
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Now take a basic open subset 0’ *TU in E’ X TS. Then f*(~)-1(O’ X
TU) = {(e,s)|p(e)=f(s) and cp( e) E O’, s ~ U}=~-1(O’)  TU. Hence
f*(~) is internally continuous.
(b) f * is a functor: Again take an internally continuous function ~,

f*(~) is defined on sections by the components f*(~)U: f*(E)(U) ~
f*(E’)(U) by composing with W. That is, f*(~)U is the function a H
cp 0 a: E(f-1(U)) ~ E’(f-1(U)). Now take a basic open set G’ * in

f *(E’, f’). Then for a point [a]t, t) E f *(E), with a E E(f-1(U)) and
t ~ U,

f
1.4. LEMMA: Let S f T be continuous, and let E ~ SPSP(T ), F ~
SPSP(S). Then the unit 11£ and the co-unit fF of the adjoint pair f *,f*:
Sh(S) ~ Sh(T) are internally continuous.

PROOF: Let E = ((E, 0393)  T). Then the unit l1E = ~(E T) is defined by

associating with a section a of p over U the section s ~ a(f(s)), s) of
f*(p) over f-1(U). In other words, if e E E and Ue is a small nbd of e,

To see that 11£ is continuous, choose a basic open set G* in f*f*(E),
and write G = Ul~I(Ol TUl), with Ol~0393 and Ui~O(S). It then is
almost immediate from the definition of 11£ above that if e ~ E and U, is
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a small nbd of e, we find for all e’ e U,,

or equivalently,

Hence, 11£ is continuous. 
q

(b) Take F to be (( F, 0394) ~ S ). Recall that a point of f*f*(G) is a pair

(x, s) with x=[ax]f(s),f(s)&#x3E;~f*(E), and s~S. Say ax:f-1(U)~E is
a section of p over f-1(U), and f(s)~ U c T. Such a point x, s&#x3E; is

mapped by E F on ax(s). Hence if G E r is a nbd of ~F(x, s&#x3E;) and Uax(s)
is a small nbd of ax(s) with p(Uax(s)) ~ f-1(U), we get that 

SO E F is continuous. ~

1.5. THEOREM: The functor SPSP(S)  SPSP(T) is right-adjoint to the
f* f

functor SPSP(T) - SPSP(S), for every continuous function S - T.

PROOF: This is immediate from the preceding two lemmas. The adjunc-
f.

tion Sh(T) ~ Sh(S) has as bijection of morphisms
f*

with inverse

From Lemmas 1.3 and 1.4 we get that this bijection restricts to a

bijection of continuous functions between internal spaces. c
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2. The category of spaced spaces

In this section we define the category SPSP of spaced spaces, or, of
topological spaces in sheaves. The definition is based on the adjunction
of the preceding section. We will show that this category SPSP is a

topological category on the category Sh of sheaves in the sense of [10],
and also in the sense of [8].

2.1. DEFINITION OF SPSP: The category SPSP has as its objects topo-
logical spaces in sheaves; these will be identified with structures of the
form

where E and T are topological spaces, p is a local homeomorphism, and r
is a p-topology on E. An arrow in the category from a space E =

E, F) P S to a space F = (F, 0394)  T is a pair f=(f,f+), with S  T a
continuous function, and f+ an internal continuous function (in Sh(T))
from F to f*(E); that is, f+ is a function ( F, 0394) ~ (f*(E),f*(0393)) over T
which is continuous w.r. t. both topologies. The composition of (f,f+):
« E, 0393)  R) ~ ((F, A) q S) and (g, g+): ((F, 0394)  S) ~ «G, 1) - r T)
is defined to be the pair (g - f, g*(f+) o g+),

(Note that, trivially, (by the pullback lemma) inverse images commute
with composition, i.e. (gf)* ~ f*g*; hence also, by the adjunction of
Theorem 1.5, g*f* ~ (gf)*.) 0

2.2. EXAMPLE: For a fixed topological space X, we have a functor X :
f

TOP - SPSP, associating with a continuous function S - T the map

XS  XT with underlying function f: S ~ T, and with sheaf-map

XT  f*(XS) having components (f+)U: (U, X) ~ (f-1(U), X) de-
fined by a - a o f.

This definition is also functorial in X, as follows easily from the results
in Part 1 (cf. Part 1, Theorem 2.3), and the adjunctions of Part 1, Section
2, can be lifted to adjoints for the functors X_ : TOP - SPSP and ( - ) _ :
TOP X TOP - SPSP. D

Let us now turn to Wyler’s notion of top-category ([10], §2). We first
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have to define the category Sh of sheaves. Objects of Sh are local

homeomorphisms E p S, and an arrow in Sh from A = (E  S) to

B = (F  T) is a pair (f, f+), with f: S ~ T a continuous function, and
f’ B~f*(A) a sheaf-map in Sh(T) or equivalently, f + is a continuous
function F~f*(E) over T (f* now denotes direct image of sheaves).

Obviously, we have a forgetful functor U: SPSP ~ Sh. For each local
p p

homeomorphism E - S, let (E ~ S ) be the complete lattice of p-topol-
ogies on E, ordered by inclusion. Note that (infinité) meets in this lattice

are just intersections. Now given a Sh-morphism f = (f,f+):(ES) ~
q

(F - T), we obtain a function f T from q-topologies on F to p-topologies
on E, which assigns to a q-topology on F the finest p-topology on E

which makes f*(F)E continuous (+ is the adjunct of f+); in other
words, for U ç E,

It is not hard to see that f preserves intersections. Thus we obtain

2.3. PROPOSITION: SPSP is a top-category over Sh. ~

In [8], G. Strecker has formulated a criterion for concrete categories to
be called topological. The following proposition expresses that SPSP can
be called topological over Sh.

2.4. PROPOSITION: Let {Fl}l~I = {((Fl, 0394l)  Tl)}l~I be a collection of
p

internal spaces, and let A = (E ~ S) be a local homeomorphism. Then any
I,

family of Sh-morphisms (A - UFl} has a U-initial lift.

Before proving the proposition, let us explain what it means. It says
that there exists a p-topology r on E making all the f continuous (i.e.
morphisms of SPSP), and which has the additional property that

whenever G = ((G,03A3) ~ R) is an internal space and h : UG - A is a

Sh-morphisms such that each fi o h : G ~ F is continuous (an SPSP-mor-

phism), then h : G ~ (A, 0393) = (( E, 0393) ~ S ) is continuous.

PROOF: Consider the adjuncts h"+: fi*(Fi) ~ E of the morphisms {fl},
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and define r by setting, for U open ç E,

r is easily seen to be the required p-topology. 0

3. Factorizations in SPSP

As a consequence of the adjunction proved in Section 1, we obtain
factorization theorems for morphisms of spaced spaces, similar to the
case of .ringed spaces.

Let E = (( E, 0393)  S ) and F = (( F, 0394)  T ) be spaced spaces, and let
f: E - F be a map in SPSP. We will first consider factorizations

f = g 0 h, where either h has as underlying map the identity on S (3.1) or
g has as underlying map the identity on T (3.2, 3.3).

3.1. PROPOSITION: Let E f F be as above. Then f has a unique factori-
zation

with i = ( i, i+) and i is the identity on S, and e = ( e, e+) with e + being the
unit 1JF: F - f*f*(F). Moreover, this factorization is universal among

factorizations E - G - F of f which have g = ids as underlying map of
g = ( g, g+). That is, for such a factorization there exists a unique SPSP-
morphism G - f*(F) making the diagram

commute.

PROOF: This is almost immediate from the adjunction of Theorem 1.5. 0

Factorizations E ~ G ~ F of E ~ F which have idT as underlying map
of G - F split into two types, related to subspaces and quotient-spaces,
respectively.
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If (E, 0393)  T is a space in Sh(T), a subspace of it in Sh(T) is a

P
subsheaf of E à T with the subspace topology inherited from I. An
internal continuous function f in Sh(T), as in

can be factored as

where f(E) has the subspace topology inherited from F, which makes
qf(E) into a local homeomorphism since f is necessarily an open map
E - F; further, 0394f(E) is the subspace topology on f(E) inherited from A.

It is clear that (f(E), 0394f(E)) ~ T is the smallest subspace of (F, 0394)  T
in TOP ( Sh ( T )) through which f factors.
An internal continuous function also has a quotient-factorization: let f

be as in (1) above, and let K(f) = {(e, e’) ~ E  E|fe = fe’} be the
kernel-relation on E induced by f. Since f is a local homeomorphism as a

function E - F, the projection E/K(f)~ T from the space E/K(f) with
the quotient-topology is again a local homeomorphism, where p is the
unique function making the diagram (3) commute (with ff the

quotient-projection).

The quotient-topology 0393/K(f) on El K(f) inherited from f,
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is a p-topology on El K(f)’ Thus we obtain a factorization

of f. (E/K(f), 0393/K(f)) ~ T is the largest quotient of ( E, 0393) through which

f factors.
Applying the adjunction Theorem 1.5 to these two factorizations, we

obtain Propositions 3.2 and 3.3.

q r

3.2. PROPOSITION : Let E = ((E, 0393) ~ S) and F = ((F, A) - T) be spaced
spaces, and let f: E - F be an SPSP-morphism. Then there exists a unique

i a

factorization E - f(F) ~ F of f such that

(i) a = ( a, a+) has as underlying function a = idT,
(Ü) i+ is a topological embedding ( in TOP(Sh(T ))), and such that the

following universality-property holds:

(iii) if E  G  F is another factorization of f with b = idT and g+ a
topological embedding in TOP(Sh(T)), then there exists a unique SPSP-
morphism G -f(F) such that the diagram below commutes.

3.3. PROPOSITION: Let f be as above. Then there exists a unique factoriza-
r p

tion E - (F)f  F of f such that
(i) p = ( p, p+) has as underlying map p = id T
(ii) p+ is an internal quotient-mapping in TOP(Sh(T)) and such that

the following universality-property holds:

(iii) if E  G - F is another factorization of f with b = idT underlying
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b and b+ an internal quotient-mapping, then there exists a unique SPSP-
morphism (F)f ~ G such that the diagram

commutes. n

Another consequence of the change of base-adjunction, including 3.1
as a special case, is the following. Suppose we have internal spaces
E=((E,0393)S) and F=((F,0394)  T), and let f = (f,f+) be a mor-
phism E - F. If

is a factorization of f, we say that this factorization can be lifted if there
exists an internal space G = ((G, 03A3) ~ R) over R, and there are g+ and
h + such that

commutes, with g = ( g, g+), h = ( h, h+) morphisms in SPSP. G is called
a lifting of the factorization h 0 g.

3.4. PROPOSITION: Let E f F be as above. Then every factorization
9 h f

S ~ R - T of S - T can be lifted. Among the liftings of this factorization,
g*(E) is initial, and h*(F) is terminal.

PROOF : The proof is a straightforward application of 1.5. D

4. Limits and colimits of spaced spaces

In the construction of equalizers in SPSP, we will need coequalizers in
TOP(Sh(T)), for a fixed base space T. These coequalizers may be
constructed as in the proof of the following lemma.

4.1. LEMMA: Let T be a fixed base space. Then TOP(Sh(T)) has coequal-
izers.
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PROOF: Let (E, 0393) ~ T and (F, 0394) ~ T be two internal spaces, and

suppose that we have two morphisms f and g which are internally
continuous,

We construct a quotient of (F, 0394) in the standard way. For x, y E F,
define

Then let

and define the equivalence relation = by

Let F/ ~ be the quotient space of F (w.r.t. the topology on F which
makes q a local homeomorphism), and let 0394/~ be the quotient-topology
on FI- w.r.t. the topology 0 on F. Write ir for the canonical projection
F ~ FI - . Clearly, = only identifies points which are in the same fiber
of q, i.e. x =y implies qx = qy. Hence we can find a map q: F/~ ~ T
such that q - qr = q.

The only perhaps non-trivial thing that has to be shown is that q:
F/~ ~ T is a local homemorphism. This is seen as follows. First, q is
clearly continuous. q is also an open map, for if W c F/~ is open, then
q(W) = q03C0-1(W) is an open subset of T, since q is open. To show that q
is a homeomorphism when restricted to sufficiently small open sets, first
note that ir is an open map. For if W c F is open, then

where W0 = W, and Wn+1 1 = {x|~y ~ Wnx ~ y}. Since Wn+1 1 =

gf-1(Wn) ~fg-1(Wn) is open whenever wn is ( f and g: E - F are open)
we find that 03C0-103C0(W) is open in F; hence 03C0(W) is open in F/~. It is
then easy to see that if Ux is a small nbd of x E F, q t 03C0(Wx): 03C0(Wx) ~
q03C0(Ux) = q(Ux) is 1 - 1, hence a homeomorphism. D



203

4.2. PROPOSITION: SPSP has equalizers.

PROOF: Let E = (( E, 0393)  S ) and F = (( F, 0394)  T ) be two internal
spaces, and let f = (f, f+) and g = (g, g+) be morhpisms from E to F.
The equalizer of f and g will be an internal space over the base space R,
where

is an equalizer diagram in TOP. First construct the inverse image

j*(E)=(j*(E,0393) ~ R) of E. We then have two morphisms from F to
f*j*j*(E)~g*j*j*(E) over T, namely

and

Taking transposed morphisms along the adjunction (Theorem 1.5) we
obtain two morphisms in TOP(Sh(R)):

Now let H be the coequalizer of j*(+) and j*(+) in TOP(Sh(R)); that
is, H=(j*(E, 0393)/~ ~ R ) is the quotient of j*(E) as constructed in
Lemma 4.1. And let

’ff

be the transposed of the canonical projection j*(E) ~ H.
To see that

is an equalizer diagram in SPSP, choose any internal space G =

(((G, 03A3)  Q), and let k = (k, k+) be a morphism G ~ E such that

f o k=g o k.
k

(In the diagram below, a wavy arrow (E, 0393)  (G, 03A3) over Q ~ S
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indicates a sheaf-morphism (E, 0393) ~ k*(G, 03A3). Similarly for the other
wavy arrows.)

h

Then f 0 k = g 0 k, so k factors through j by a unique Q ~ R. This
factorization can be lifted, as in the diagram

To show the existence of a (unique) morphism j*(E, 0393)/~ ~ k*(G, 03A3),
it suffices to show that the two compositions

and
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are equal, since

is a coequalizer in TOP(Sh(R)). Taking transposed morphisms of (1)
and (2), we see that (1) = (2) iff

equals

But this is immediate from the fact that f - k = g 0 k. So the equality of
(1) and (2) is established. 0

To construct the binary product, take two internal spaces E =

((E, 0393)  S) and F = ((F,0394)  T). The product E x F will be an
internal space over the base-space S X T. First we define a presheaf P on
S X Tby letting P(U X V) be the disjoint union of the set of sections of p
over U and the set of sections of q over V, i.e.

P as defined on canonical basic open subsets of S X T is separated, hence
by glueing together elements of the P( W ) ( W a basic open) we obtain its
sheafification P. The stalkspace of P is denoted by E 0 F, and the local

homeomorphism by E 0 F - S X T. The projections 7r’ and 03C0+2 are the
adjuncts of the morphisms
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tfi-t is defined on sections as follows. Note that

P
is pullback. So a section of 03C0*1(E ~ T ) over a basic open U x V

q

corresponds to a continuous function U  V ~ E such that p 0 a = 03C01.

(+1)U V(a) has to be a section of p ~ q over U x V ; that is, it must
P q

locally be either a section of E - S or a section of F ~ T. It is possible
a

to define such a section, since the function U  V ~ E locally only
depends on the first coordinate! To see this, choose a point (so, t0) ~ U
x V, and let U, ç E be a small nbd of e = a(so, to ). Choose nbds Uso and
Vt0 of so and to such that a(USO x Yo) c Ue. Then

hence a  ( Uso x Vt0) only depends on s, that is,

Therefore we can define (+1)U V(a) locally as the function U - E
whose restriction to Uso is defined by

The definition of +2 is similar. Finally, let 0393 ~ 0 be the finest p ~ q-
topology on E ~ F making both +1 and +2 continuous (cf. Proposition
2.4). This completes the construction of the product and its projections.

To see that it has the required universal property, take a space
G = ((G, 03A3)  R ), together with morphisms f = (f, f+) and g = (g, g+)
from G to E and from G to F. Then f and g define a continuous function

R - S X T, while the function ( f , g)+ : E ~ F - ( f , g)*(G) is defined
on sections by the components

or equivalently,
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by setting for a section a E E(U),

and for a section b E F(V),

This defines a morphism (f, g) = (( f , g), ( f , g)+). It is straightforward
to check that ( f, g) is internally continuous, and that it is the unique one
with ’1Tl o( f, g) = f, and ir2 -(f, g)=g.

Thus we have proved

4.3. PROPOSITION: SPSP has binary products. ~

Clearly, SPSP has a terminal object. The construction of products
over an arbitrary index set proceeds completely analogous to that of
binary products, and is omitted. Summarizing the discussion of limits, we
get

4.4. THEOREM: SPSP is a small-complete category. ~

The construction of colimits is in most respects dual to the construc-
tion of limits, but easier. We will just briefly sketch the construction of
coequalizers and (binary) coproducts in SPSP.

f p
The coequalizer of a pair of morphisms E 4 F (with E = ((E, 0393) ~ S)

and F = ((F, 0394)  T )) is constructed by first taking the coequalizer of f
I c

and g in TOP, say S Q T - R. We then construct the direct image

c*(F) = c*(F, 0394)  R over R, and let (K, 03A3) ~ R be the equalizer of
c*(F, 0394)  c*f*(E, 0393) and c*(F, 0394)  c*g*(E, 0393) in

f

TOP( Sh ( R )). (To construct the latter, you need to observe that if E Q F
g

are any two morphisms of sheaves over R, the set {e|fe = ge ) is an open
subset of E.)
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The coproduct E 0 F of E = ( E, 0393)  S) and F = (( F, 0394)  T ) is the
sheaf E 0 F over the topological sum S ~ T which has a sections over an
open W ç S 0 T the set of pairs ( a, b ) with a a section of E over W ~ S,
and b a section of F over W n T ; that is,

The injections ik = (i+k , ik) ( k = 1, 2) are defined as follows. i1: S  S ~ T
and i2: T - S ~ T are the ordinary topological embeddings, and il :
E ~ F - i1*(E, r) is defined on sections by the components

which are the ordinary projections. The p 0 q-topology on E 0 F is the
coarsest topology making both injections continuous.

r

If G=((G,03A3)~R) is another space, and we have morphisms
f : E ~ G and g: F - G, the unique morphism [ f , g = ([ f, g], [ f, g]+):
E ~ F - G such that [ f, g] O ii = f, [ f , g 0;2 = g has as base-function the
function [ f, g]: S ~ Ta T, and as sheaf-morphism

The morphism which is defined on sections by the components

which are just the product-maps f+U, g+U&#x3E;.
Arbitrary coproduct are constructed similarly. In this way we obtain

4.5. THEOREM: SPSP is a small-cocomplete category. D
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