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Introduction

The model theory of intuitionistic higher order logic, as e.g. described in
[1], makes it possible to interpret intuitionistic mathematics in categories
of sheaves. This has proved to be particularly useful in algebra (see [6]).
Here "internal" mathematical objects correspond to structures which are
familiar from the theory of sectional representations. For example, a ring
(= commutative ring with l)-object in the category Sh(X) of Set-valued
sheaves on a topological space X is the same as a sheaf of rings on X, or a
sheaf of sets on X with a continuous ring structure on the stalks. In order
words, doing ring theory internally in the category Sh(X) coincides with
studying ringed spaces with base space X.

In this paper, we will discuss what happens when one replaces "ring"
by "topological space" in the above: we will deal with the question of
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what topological space-objects in categories of sheaves look like, and we
will consider the relation between such topological space-objects and
sheaves with values in the category of topological spaces and continuous
functions.

Our approach will be rather category-theoretic: we will concentrate on
equivalence of categories-theorems (representation theorems), and on
adjunctions between categories. By doing this, we hope to provide some
general background to the models for intuitionistic topology of the kind
discussed by Grayson [4], for example. In intuitionistic topology (or,
topology in sheaves) one finds a lot of pathological situations which are
due to a lack of points. Many of the pathologies disappear when one does
intuitionistic topology without points, that is, locale theory. In this sense,
locale theory seems to be the proper way of doing topology when one’s
underlying logic is intuitionistic logic. Still, in this paper we will not
consider locales, but study models for intuitionistic topology in the more
traditional sense of [9], [4], where a space is a set of points with some
additional structure.

Let us briefly outline how this paper is organized. We assume the
reader to be acquainted with the basis facts of general topology and
category theory, and to have a thorough understanding of the model
theory of intuitionistic (higher order) logic as described in [1]. This paper
[1] will be the starting point for the first part, where we consider external
representations of topological space objects in categories of sheaves. We
prove Stout’s representation theorem, and derive Fourman’s representa-
tion theorem for sober spaces as an easy corollary. In the second part, we
will consider the relation between the category TOP(Sh(X)) of topologi-
cal space objects in Sh(X), and the category Sh(X, TOP ) of sheaves on
X with values in the category of topological spaces and continuous
functions. We prove a general adjunction theorem, and we show that in
the case of a locally compact zero-dimensional base-space X,
TOP(Sh(X)) is (equivalent to) a reflective subcategory of Sh ( X, TOP ).
In the third part, we consider change of base space, and investigate some
of the structure of the category of *’spaced spaces", which is defined as
an analogon of the category of ringed spaces, or the category of geomet-
ric spaces, familiar from algebraic geometry.

This paper has quite a long history. A first version was written in the
fall of 1980 as [5]. The main reason for the delay in producing the present
version was that the central representation theorem (Theorem 5, Part 1,
Section 1 below) turned out to have been proved independently, but
much earlier, by Stout (cf. [7]). 1 would like to thank L.N. Stout for

bringing the existence of [7] to my attention. Also, 1 would like to thank
professors van Dalen and Troelstra for helpful comments on the earlier
version just mentioned, and for encouraging me to write the present
version.
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PART 1. TOPOLOGICAL SPACES IN SHEAVES

1. Representation of topological spaces

Throughout this paper, we will use the well-known representation theo-
rem for sheaves saying that a sheaf A over a topological space T is
representable as the sheaf of continuous sections of a local homeomor-

phism EA  T. This correspondence is an equivalence of categories.
T

Natural transformations A - B from one sheaf A over T to another are

f
represented by continuous maps EA  E. over T ; i.e. T acts on sections

by just composing with f. (For more details, see e.g. [1], [2].) Given this
representation, we may either think of sheaves as Set-valued functors, or
as local homeomorphisms. Since in the definition of a sheaf over a space
T we need only refer to the lattice fP(T) of open subsets of T, we will
assume that the base-space T is sober, whenever this is convenient.

If E 1 T is a local homeomorphism, an open neighbourhood (nbd) Ue
of a point e E E will be called small if p Ue : Ue ~ p ( Ue ) c T is a

homeomorphism. By definition, the small neighbourhoods form a basis
for E.

Let us now turn to topological spaces in sheaves. Using the interpreta-
tion of higher-order logic in sheaves as presented in [1], we can define a
topology on a sheaf A over T as a subobject O(A) of (A) such that

as in the classical case. Our aim in this section is to give an external
representation of topological space-objects in Sh(T).

1.1. LEMMA: Let A be a sheaf on T. Then global elements of f1lJ(A) in

Sh(T) correspond to open subsets of EA, with equality given by

for open subsets O, O’ of EA .

PROOF: A global element of 9lJ(A) is a (strict and extensional) predicate
A - O(T) ([1]). An open 0 C EA defines such a predicate Po by PO(a) =
a-1(O). (Here we identify elements of A with sections of the representing
local homeomorphism EA  T). Conversely, a predicate P: A ~ O(T)
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defines an open set

To prove the correspondence, we show that

ad 1. (~) Take a ~ A . We have to show that P(a)~~{a-1(U)|U is
small and P((p~U)-1)=p(U)}. Take t~P(a), and let U be a small
nbd of a(t) such that p(U)~P(a) ( p is continuous). Since p U:
U ~ p(U) is a homeomorphism, we derive that ap(U) = (p U)-1,
and hence P(( p U)-1) = P(a r p(U)) = P(a) n p (U) = p(U). ( ç ) Take
a E A and U a small open subset of EA . We have to show that if

P((p U)-1)=p(U), then a-1(U)~P(a). So suppose P((p U)-1) =
p(U). Since a-1(U)=[a=(pU)-1], we obtain P(a)~a-1(U) =
P(a[a=(p U)-1])=P((p U)-1[a=(p U)-1])=p(U)~a-1
(U) = a-1(U). Hence a-1(U) c P(a).
ad 2. We have to show that for an open 0 c EA,

But (pU)(O) = p(U) iff p(O~ U) = p(U), iff U c O, so this is im-

mediate from the fact that the small open sets form a basis. 0

The following lemma is an analog of 8.12(i) of [1].

1.2. LEMMA: Let T be an internal topology on a sheaf A over T ( i. e. T is a
subsheaf of 9(A) satisfying the definition (*) given above). Then every
element of T is the restriction of a global element of T.

PROOF: As usual, T may also be regarded as a predicate on 8P(A), and for
O~O(EA) we write (O) = [O~]. Now let (0, U ) be a section of T
over U E O(T), i.e. O E O(EA) is a global element of 9(A) (cf. Lemma
1) with O(a) := a-1(O) ~ U for all a ~ A, and U ~ O(T) is such that
U c (O). Consider the predicate u : (A) ~ O(T) defined by
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(the last inclusion by extensionality of T ). Hence since by definition

1.3. REMARK: Let us write r for the global sections functor. Then the
proof just given shows that for any internal topology T on A,

P
1.4. DEFINITION: Let E - T be a local homeomorphism. A p-topology on
E is a topology r on E which is coarser then the original topology on E
(i.e. r c O(E)), and makes p continuous (in the sense that p-1(U) ~ r
for every U~O(T)).

1.5. THEOREM: Let A be a sheaf over T, represented by the local homeomor-

phism EA  T. Then internal topologies on A correspond to (external)
p-topologies on EA.

PROOF: An internal topology is a predicate T on 9(A) satisfying the
definition ( * ) given above. T is determined by its restriction T: O(EA) ~
f2(T), which must be an extensional function. Let rT be the set of global
elements of T. We claim that:

(1) rT is a topology on EA which makes p continuous. The latter part
of (1) follows from Remark 1.3. As for the first part, clearly  E rT and
EA ~ 0393. Also, if O,O’ ~ 0393, then because (O) ~ (O’) ~ (O~O’),
O n O’ E rT. Finally, if  ~ rT, consider the (global) predicate u: O(EA)
~ O(T) defined by

By definition,  ~O(u(O)~(O))~(~uj). But Uu corresponds to the
open subset U4Y of EA (since [a~~u]=~{u(O"0~[a~O’[|O’ ~
O(EA)} = a-1~)), and for all 0 E C9(EA), u(O) ç (O) (since u(O) =
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~{U~O(T)|O~p-1(U)~}~~{U~O(T)|O~p-1(U)~0393}; using
Remark 3, O~p-1(U) ~ 0393 implies U ~ (O), so u(O) ~ (O )). Com-
bining these, we get (~u) = T, so U E rT.

Conversely, let r c (9(E,) be a topology on EA making p continuous.
Define a predicate Tr : (a) ~ O(T) by setting, for 0 e O(EA),

(by Remark 3, we are forced to do so). Then
(2) Tr is an internal topology on A. To show (2), first note that clearly

lL0 E Tpj = [EA E Tr] = T, and for all globals O, O’ ~ O(EA), [O ~ 0393] n
[O’ ~ 0393] ~ [O ~ 0’ E 0393]. It is slightly less trivial that Tr is internally
closed under unions. Take a global predicate u: O(EA) ~ O(T) on (A);
we have to show that

For sections a of EAT, [a~~u]=[~O~u·a~ 0]) =~{a-1(O)~
u(O)|O ~ O(EA)} = a-1(~{O ~ p-1u(O)|O ~ O(EA)}). Now suppose

W~[u(O)~0393(O)] for all O~O(EA). We claim that W~0393(~u).
W~[u(O)~0393(O)] means that W~u(O)~~{U|O~p-1(U)~0393}.
Hence for all O ~ O(EA), O ~ p-1(W~u(O))~0393 (since r makes p
continuous). So

But this says that

by definition of Tr. This shows that Tr is an internal topology.
To prove the correspondence, we show that
(1) for any internal topology T, Tr = T
(2) for any p-topology r on EA, Fïp = r.

(2) is trivial: O ~ 03930393~0393(O) = T ~ O~p-1(T)~0393~O~. For (1)
note that because r is an internal topology, it suffices by Lemma 1.2 to
show that rTrT =.Fr. But this follows from (1). This completes the proof
of the theorem. 0

In the next section, we will reformulate this correspondence as an
equivalence of categories. Let us first look at two kinds of internal spaces.



177

g
1.6. EXAMPLES: (a) Let Y - T be a continuous function from a topologi-
cal space Y to the base space T. The sheaf of sections of g carries a

natural internal topology T induced by the topology of Y: global elements
a

of r are the predicates Po, 0 e C9(Y), where for a section U - Y of g,

PO(a):=a-1(O). It is readily checked that this indeed defines a topology.
g

This internal space is called the space of sections of Y ~ T, and is

denoted by gT.
(b) As a special case of (a), let X be a topological space, and consider

the internal space of sections of the projection X X T  T. This space is
denoted by XT, and is called the constant space associated with X.

Below, we shall return to the constructions of internal spaces from
external ones, and investigate their categorical properties.

2. The category of internal topological spaces

We mentioned above that a sheaf A over T can be represented as a sheaf
of sections of a local homeomorphism EA  T, and that sheaf-maps
(natural transformations) A - B correspond to continuous functions

EA  EB over T. Now suppose we have two sheaves A and B over T,
equipped with internal topologies T and a respectively. An (internal)

f
continuous function f:(A,)(B,03C3) is a sheaf-map A - B such that

1= VO E (B)(O~ 03C3~f-1(O)~), as usual. Let EA  EB be the repre-
sentation of f. Then (identifying elements of A and B with sections of

EA  T, EB  T, etc) we find the following correspondence.

2.1. LEMMA: A sheaf-map f : ( A, ) ~ (B, a) is internally continuous in
S’h ( T ) iff its representation f is continuous w. r. t. rT on EA and fa on EB.

PROOF: f and f are related through f(a)=oa for all sections a of p.
Further, for a global element 0 of (B),[a ~f-1(O)] = [f(a)~ 01 =

a-1(-1(O)). Therefore (using Remark 3 of Section 1), if f is continuous
(w.r.t. ra, f7), then if 0 is a global element of .9(B),

so f is internally continuous.
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Conversely, if f is internally continuous, then (using [a~f-1(O)] =
a-1(-1(O)) as above) 0 E ra implies -1(O) ~ Fr. D

Putting Theorem 5 of the preceding section and this lemma together,
we obtain an equivalence of categories. Let TOP(Sh(T)) denote the
category of internal topological spaces and (global) continuous functions
in Sh ( T ), and let SPSP( T ) (" spaced spaces, with base space T ") denote
the category whose objects are of the form (E, 0393)  T, where E is a

topological space, p: E ~ T is a local homeomorphism, and r is a

p-topology on E, and whose arrows from an object (E, 0393)  T to an
object (F, 0394)  T are functions f : E - F over T which are continuous
w.r.t. both topologies on E, F.

2.2. THEOREM: The categories TOP(Sh(T)) and SPSP(T) are equivalent.
a

Let us return to spaces of sections (1.6.) for a moment. If we apply the
representation to constant spaces XT we get that these are represented by

TT

structures (XT, O(XT)) ~ T, where XT is an external topological space
(note that we use XT to denote two different things, an internal space and
an external one!), XT ~ T a local homeomorphism, and O(XT) a 03C0-topol-
ogy on XT. The external space XT is calculated in the standard way (cf.
[2]). Let us quickly recall some details. XT has as its set of points

(here [f]t denotes the equivalence-class of f with respect to local equality
of functions at t). The mapping 03C0: XT ~ X is defined by setting
03C0[f]t, t&#x3E; = t. The topology on XT making v a local homeomorphism has

f
as basic opens the sets [ f , U ], for U open c T and U - X continuous,
where

The ir-topology O(XT) on XT has as opens the sets

for U on open subset of the product X X T. It is readily checked that this
is indeed a ’1T- topology.
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p

Now internal continuous functions from a space (E, 0393) ~ T to a

constant space XT are commutative diagrams

with ~ being a continuous function w.r.t. both topologies. With such a ~
’P’

we can associate a function E - X which is continuous w.r.t. the topol-
E

ogy r on E by composing ~ with the evaluation-function XT ~ X defined

by ~([f]t, t&#x3E;) = f(t). It is not difficult to see that this correspondence

is bijective.
If we let U be the forgetful functor from SPSP(T) to the category

TOP (of (external) topological spaces and continuous functions), which
p

associates to an internal space (E, 0393) ~ T the external space (E, 0393)
which has E as its set of points and r as its topology, and if we let C:
TOP - SPSP(T) be the constant-space embedding X ~ XT, then the
correspondence cp H ~’ amounts to part (a) of the following theorem. Part
(b) is proved similarly. Here S: (TOP 1 T) - SPSP(T) is the space of
sections-functor ( Y - T) ~ gT.

2.3. THEOREM: (a) TOP is equivalent to a reflective subcategory of
SPSP(T), and we have an adjunction U-|C.

(b) we have an adjunction U’-|S, where U’ is the obvious forgetful
p p p

functor (( E, 0393) ~ T ) H ( U(( E, 0393) ~ T) ~ T ).

In fact, connections between TOP and SPSP(T) as expressed in this
theorem can be formulated somewhat more generally, by taking yet
another look at internal spaces. In order to make things work, we will for
the remainder of this section assume that the base space T is always sober.

Recall (cf. [1]) that if 03A9 is a locale (cHa, frame), a point or superfilter
of 9 is a subset F c 9 with ~ ~ F, T E F, U A V E F - U E F and V E F
(i.e. F is a filter) and moreover, for any d c 9, VA c- F a 3 U E dUE F.
By pt( Q ) we denote the space of points of 2 with the canonical topology.
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If E = ((E, 0393)  T) is an internal space in Sh(T), we get a continu-
j

ous function E pte r) from the embedding r - (9(E).

2.4. LEMMA: Let p and j be as above. In the diagram

there exists a unique factorization r of p through j.

PROOF: Since j-1: r - O(E) is injective, i.e. a monomorphism of locales,
j is an epimorphism of sober spaces, so uniqueness of r is evident. As for
its existence, define for a superfilter x E pte f),

It is easy to see that r*(x) is a superfilter in O(T), and consequently,
there is a unique point r(x) ~ T such that r*(x)={W~O(T)|r(x)~

r 

W}. This defines a function pt(0393) ~ T, which is continuous, since

r-1(W)={x~pt(0393)|r(x)~W}={x~pt(0393)|p-1(W)~x}=p-1(W)
~ 0393. Finally, r o j = p, for r( j(e)) = r({0 ~0393|e~0}={W|p-1(W)~
e} = p(e) (identifying real points of sober spaces and superfilters). D

p
2.5. LEMMA: If f is an internal continuous function from ( E, 0393) ~ T to

( F, 0394)  T, then there exists a unique continuous function g making the

diagram below commute.
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PROOF: The proof is similar to that of 2.4. 0

Let SOB denote the category of sober spaces and continuous func-
tions. The preceding two lemmas then tell us that TOP(Sh(T)) is

equivalent to a subcategory of (SOB 1 T) - . (Note that when E - T is a
local homeomorphism, and T is sober, so is E.)

2.6. COROLLARY: TOP(Sh(T)) is equivalent to the full subcategory of
(SOB! T)- consisting of commuting triangles

with p a local homeomorphism, and j a function which separates opens ( i. e.
if U,’ V are open subsets of X, then U = V ~ j(E) ~ U = j(E) ~ V). D

Conversely, every object of (SOB 1 T) ~ defines an internal space, as
in the proof of the following theorem.

2.7. THEOREM: TOP(Sh(T)) is equivalent to a coreflective subcategory of
(SOB~T)~.

PROOF: The coreflector C maps a triangle

on the internal space (E, r ) 1 T, where E 1 T is the local homeomor-
phism representing the sheaf of sections of p, and 0393 ~ O(E) is the

topology determined byf-1(O(Y))={f-1(U)U~O(Y)}. The counit



182

EA
CA ~ A of the adjunction is the isomorphisme of sections

which is easily seen to factor through pt(0393) ~ Y. D

3. Internal sober spaces

Recall (cf. for example [1]) that a topological space X is called sober
if every superfilter on O(X) is principal (i.e., is of the form

(O ~ O(X)|x ~ O} for some x ~ X). In this section we will prove
Fourman’s representation theorem for internal sober spaces (cf. [1], §8).
This is straightforward, using the representations of internal spaces
discussed above. Again, we will throughout this section assume that the
base space T is sober.

Let us first look at what superfilters of opens are in an internal space
(E, 0393) ~ T. Let f be a predicate on opens, or equivalently, an exten-

sional function r à (9(T) (extensional here means that if 0,0’e r and
p-1(W) ~ O = p-1(W) ~ O’, then W ~ f(O) = W nf( 0’), for each W E
O(T)). Trivially, we can calculate that (1) and (2) are equivalent, for
U E O(T).

(1) U ~ [f is a superfilter]
(2) f satisfies the following three conditions (in addition to being

extensional)
(i) U ~ f(E )
(ii) U~f(G)~f(H)= U~f(G~H), for G, H ~ 0393
(iii) for each predicate u on r, i.e. extensional u : r - (9(T),

U ~ f (~O~0393(O~ p-1u(O)))~~O~0393(u(O)~f(O)).

(Note that from (ii) it follows that in (iii) we may equivalently require
that U~f(UO~0393(O~p-1(O))) = U~UO~0393(u(O)~f(O)).)

f -nu
3.1. LEMMA: Let fU: 0393 ~ O(U) be the composite 0393 ~ O(T) ~ O(U).
Then condition (2) above is equivalent to fu being an ^V-map such that
fUo p-1 = idO(U).
PROOF: (~) Assume the properties in (2). Since f is extensional, we get
that W ~ fU p-1(W) for every W ~ U. And conversely, applying (iii) to
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the predicate u : 0393 ~ O(T), u(O)=p(O)~ W, it is clear that fUp-1(W)
c W. Thus fUp-1 = idO(U). From (i) and (ii) it is clear that fU preserves T
and A. Also, if  ~ r, we can show that fU(U) = U{fU(G)|G ~ } as
follows. (Of course, ~ is clear). By applying (iii) to the predicate
u: 0393 ~ (9 (U) defined by

we derive that

By extensionality of f, the left hand side of this equality is equal to
fU(U), and the ri ht hand side is equal to U{fU1(G)|G}. (~)
Suppose fuis an A -map such that fu o p-1 = id. Evidently, f is exten-
sional, and satisfies conditions (i) and (ii) of (2). For (iii), U n

fU(~O~0393(O~p-1u(O)))= U~UO~0393(fU(O)~fU(p-1u(O)))= U~
u(O)), for any predicate u : r - O(T). D

3.2. COROLLARY: An internal space (cf. Corollary 2.6)

is internally sober iff j induces an isomorphism from sections of p to sections
of q (by a ~ j o a).

PROOF: If ( E, 0393)  T is internally sober, sections of p over U E (9(T)
correspond to ~V-maps f * : r - O(U) such that f* 0 p -’ = idO(U), by
Lemma 3.1 (s: U - E corresponds to s-1: r - (9 (U) of course). But

f*
A V-maps r - 0 (U) with f * ° p-1 = id correspond by duality to con-
tinuous sections f : U ~ pt(0393) satisfying ~W~O(T)(p-1(W)~f(t)~
t E W), which precisely says that f is a section of q (by the definition of q
as in 2.4). 0
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3.3. COROLLARY: (cf. [1], §8). Every internal sober space in Sh(T) is a
g

space of sections gT for some map Y 9 T of sober spaces. ~

4. Pseudometric and metric spaces in sheaves

Topological space-objects in sheaves are not as nicely behaved as alge-
braic objects, like commutative rings. In the algebraic case one may
regard an internal ring-object, for example, equivalently as a sheaf of
rings, or as a sheaf of sets with a continuous ring-structure on the stalks
(cf. the Introduction). What remains of the first correspondence will be
discussed in Part 2. The second correspondence has no topological
analog: in fact it is quite easy to construct examples which show that
(contrary to the algebraic situation) the topology r of an internal space

P

(E, 0393) ~ T is not determined by the subspace topologies it induces on
the stalks p-1(t), t ~ T. In this section, which is meant to provide some
more examples of internal topological spaces, it will be seen that " being
determined by the structure on the stalks" is regained if one considers a
not-strictly topological structure like that of a pseudometric space.

Recall that the real numbers-object in Sh ( T ) is the constant space R T
(cf. [1], for example). Hence, by the previous results, sheaf-maps f from a
sheaf A over T to OB T correspond to continuous functions f : EA - R,
where EA  T is the étale-space representing A. Henceforth, the real

numbers-object in a sheaf will always be denoted by "811", while "R"
refers to the external reals. Using the interpretation of higher order logic
[1], it makes sense to define a (pseudo-)metric as in the classical case:

4.1. DEFINITION: Let A be a sheaf over T. A sheaf-map d: A X A ~  is a
pseudometric on A if

are all valid (quantification is over "elements" of A, i.e. sections of the

representing local homeomorphism EA  T). d is called a metric if in
addition

The following proposition says what pseudometrics are from an exter-
nal point of view.
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4.2. PROPOSITION: A sheaf map d: A X A ~  is a pseudometric iff the
corresponding function d: EA  EA - R is externally a continuous pseudo-
metric on fibers.

(Explanation. Recall that the correspondence of continuous functions

EB  X and sheaf-maps f : B ~ XT, for a sheaf B and a space X, is given
through

where U, is a small nbd of e e Es, and a is a section of E, p T.
If Y - T is a continuous function, a function d: Y X TY ~ R is called

a continuous pseudometric on fibers if d is continuous, and for all t ~ T,
the restriction of d to p-1(t) p-1(t) is a pseudometric on p-1(t).)

PROOF: d corresponds to d, i.e. for sections a, b: U ~ EA of p, and t E 0//,
d(a, b)(t) = d(a(t), b(t)). Clearly, if d is a pseudometric on fibers, d is
an internal pseudometric. Conversely, if d is an internal pseudometric, we
find that d is a pseudometric on fibers by considering, for points e,

e’ E EA with p(e)=p(e’), the sections (p Ue)-1, (p Ue’)-1, where Ue,
Ue. are small nbds of e and e’ such that p(Ue) = p(Ue’). 0

Being a metric is not a "fiberwise" property:

4.3. PROPOSITION: A sheaf map d : A X A ~  is a metric (internally) iff
the corresponding function d: EA X TEA - R is a continuous pseudometric
on fibers with the additional property Int d-1({0}) ~ 0394 (d = 0394E is the

diagonal {e, e&#x3E;|e~E}~E ETE).

PROOF: By 5.2 it suffices to show that

( ~) If (e, e’) E E X TE is in Int d-1({0}), then there are small nbds Ue
of e and Ue, of e’ such that p ( Ue ) = p(Ue’) and Ue X T Ue. ç d-1(0). Thus
for all t ~ p(Ue) = p(Ue’), d((pP Ue) -1, (p rUe, ) -1 1)(t) = d((pUe) 1(t),
(p  Ue’)-1(t))=0, so p(Ue)~[p Ue)-1 = (p  Ue)-1].
( ~ ) Take sections a and b over U E f9(T), and take an open W c
[d(a, b) = 0] = Int({t ~ U 1 d(a (t), b(t)=0}). Then for all t E W,
(a(t), b(t)&#x3E; E Int d-l(O), so a(t) = b(t). Hence W ç [a = bl. 1:1


