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JACOBI-SUM HECKE CHARACTERS OF IMAGINARY

QUADRATIC FIELDS

Gudrun Brattström * and Stephen Lichtenbaum **

Compositio Mathematica 53 (1984) 277-302.
O 1984 Martinus Nijhoff Publishers, Dordrecht. Printed in The Netherlands.

In this paper we formulate a hypothesis concerning the values of the
L-series of Jacobi-sum Hecke characters of an abelian number field k,
and verify that this hypothesis is true if k is imaginary quadratic of odd
class number. Roughly, this hypothesis asserts that if 03C8 is a Jacobi-sum
Hecke character of k, such that the infinity-type of 03C8 is in the "good
range", then L(03C8, 0) is equal up to a rational number to the inverse of a
product of values of the r-function at rational numbers which is associ-
ated to 03C8, multiplied by the square-root of the discriminant of the
maximal real subfield. More precisely, we have the following:

Using the notation of paragraph 1, let 03C8 = 03A0tj=1(J(03B8j, kj) o Nk/kj) for
subfields kl, k2,..., kt contained in k. The functional equation of the
L-series of 03C8 may be written 0393(03C8) L(0, 03C8) = W03C80393(03C8-1N-1)-
L(0, 03C8-1N-1). Here W03C8 is a non-zero constant and 0393(03C8) and 0393(03C8-1N-1)
are, up to non-zero numbers, products of some values of the r-function.
If both 0393(03C8) and 0393(03C8-1N-1) are finite and non-zero, then we say that
the infinity-type I(03C8) of 03C8 is in the good range, or, following Deligne
([Del]), that 4, is "critique". As Katz points out in ([Ka], p. 203), if k is
imaginary (hence CM since we are assuming k to be abelian) this is

equivalent to saying that there exists a CM-type £ of k such that I(03C8) is
in what we may call C(£), i.e. that I(03C8) = 03A303C3~03A3 - n03C3 + d03C3(03C3 - 03C3), and
either (a) n &#x3E; 1 and all d03C3  0 or (b) n  1 and all d03C3  1 - n.

It is easy to verify that £ must be unique. Let d+ be the discriminant
of the maximal totally real subfield of k. We then state the r-hypothesis
as follows:

REMARKS: 

(1) This does not preclude L(03C8, 0) being zero, in which case the

r-hypothesis is automatically true.

* Supported by a Swedish Natural Science Research Council grant.
* * Supported in part by NSF grants.
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(2) It is by no means obvious that 039303A3(03C8, 03B8) is independent of 0 in
R /Q , as is implied by (0.1) if L(03C8, 0) ~ 0. For k imaginary quadratic,
this follows from the generalized Deligne’s theorem proved by Kubert
and one of the authors in [K-L] and quoted here as Theorem 1.9, but it is
still unknown in general.

(3) If k is real, we may make the analogous statement with £ replaced
by the set of all embeddings of k into C, and this has been proven by
Brattstrôm in [B].

(4) Using results of Shimura, it is proved in [L] that (0.1) is true for
any k if 0 is replaced by Q.

(5) G. Anderson has recently shown ([A]) that the r-hypothesis is a
consequence of Deligne’s conjecture ([Del], p. 323).

(6) All of the above should be extended to the still more general
Jacobi-sum characters defined in Kubert [Ku].

Some of the intermediate results obtained in this paper are themselves

of independent interest. In paragraph 3 we show that if k is imaginary
quadratic with class number one and is not equal to Q(-1), Q(-2),
or Q(-3), then the Jacobi-sum Hecke characters are exactly the Hecke
characters of k of type A0 which are Galois-equivariant. In paragraph 4,
we prove Damerell’s theorem for all imaginary quadratic fields of odd
class number up to an element of the imaginary quadratic field in

question (rather than up to an algebraic number as in Damerell’s original
paper [Da] or in Weil [W3]). A related version of Damerell’s theorem is
proved in [G-S].
We should like to express here our debt to André Weil, who first

suggested that there should be a relationship between the values of
L-series of Jacobi-sum Hecke characters and corresponding products of
values of the r-function. We should also like to thank Dan Kubert for his

contributions to this paper. Finally we thank the referee for suggesting
valuable simplifications of the arguments in paragraph 4.

§1. Jacobi-sum Hecke characters

This paragraph is devoted to reviewing the basic definitions and results
about Jacobi-sum Hecke characters, to be found in [W1], [W2], and
[K-L].

First, let F be a finite field, X a non-trivial additive character of F, and
03C8 a non-trivial multiplicative character of F. We define the (modified)
Gauss sum G(X, 03C8) associated to X and 4, to be -03A3a~F  X(a)03C8(a).

Next, let N be an integer greater than 1, and let K = Q(03B6N) be the field
obtained by adjoining a primitive N-th root of unity 03B6N to Q. For
b E (Z/NZ) , we define Q6 E G(K/Q) by 03C3b(03B6N) = 03B6bN, thus identifying
(ZINZ) " with G(K/Q). For each rational prime p, let 03C8p be the additive
character 03C8p(a) = e203C0ia/p, a ~ Z/pZ. For any finite field F of character-
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istic p, let 03C8F be the additive character obtained by composing 03C8p with
the trace from F to Z/pZ. Fix once and for all an embedding of
K = Q(03B6N) into C. Let p be a prime ideal of K prime to N, and let
Np = q = pf. Let a ~ Z/NZ be different from 0.

Define Xap(x), for x in 03BA(p), to be t(xa(q-1)/N), where t(À) is the

unique N-th root of unity in K reducing to the N-th root of unity À in
Kip ). Then define a function JN(a) from the set of prime ideals of K
prime to N to the complex numbers by JN(a)(p) = G(Xap, 03C803BA(p)). Extend
JN(a) multiplicatively to a homomorphism from the group of fractional
ideals of K prime to N into C ’. Let 0 be an element of the free abelian
group Z[Z/NZ - {0}], and define JN(03B8) be extending JN(a) multiplica-
tively.
Now let k be an abelian extension of Q, and assume that k c Q(03B6Nl)

for i = 1,... s, and that all the N are distinct. Let 0 be an element of the
free abelian group on the disjoint union of Z/NlZ - {0}, i = 1, ... s, and
write 0 = 03A3sl=103B8l, 03B8l = 03A3nl(a)[a]Nl. If a is an ideal of k prime to every N,,
define JNl(03B8l, k)(a) to be JNl(03B8l)(aoNl), where oNl is the ring of integers
in Q(03B6Nl). Then define J( B, k)(a) to be 03A0sl=1JNl(03B8l, k)(a). When is

J(03B8, k ) a Hecke character? The answer is given by the following result
([K-L]) which is a straight-forward generalization of the similar result of
Weil ([W1], [W2]):

If a is in Z/NZ, let a be any integer representing a, and write
~03B1/N~ = ~a/N~ = the fractional part of a/N. Let B = 03A3sl=103B8l and 0, =

03A3nl(a)[a]Nl. Let K; = Q(03B6Nl). Define I(03B8, k) to be 03A3sl=103C1l(03A3a03A3bnl(a)~-
ab/Nl~03C3-1b), where b runs through (Z/NlZ)  and p, is the natural map
from Q[G(K,/Q)] to Q[G(k/Q)].

THEOREM 1.1: 

(a) The following are equivalent:
(i) J(03B8, k) is a Hecke character.
(ii) I(O, k) lies in Z[G(k/Q)].

(b) If these conditions are satisfied, then
(iii) I(O, k) is the infinity-type of J(O, k).
(iv) J(O, k) has values in k.
(v) If 0’ is any automorphis in G(k /Q), then J(O, k)(a03C3) =

(J(03B8, k)(a))03C3,
i. e. J(O, k) is Galois-equivariant.
(vi) If 0 = 03A303A3ni(a)[a]Nl and b is any integer prime to all the N,, then
(J(03B8, k)(a))03C3b = J(b*03B8, k)(a), where b*B = 03A303A3nl(a)[ba]Nl.

DEFINITION 1.2: A Hecke character of k which may be written in the
form J(03B8, k) for 0 as above is called a strict Jacobi-sum character of k.

DEFINITION 1.3: If s = 1, so 03B8 = 03B81 = 03A3n(a)[a]N, we say that J(03B8, k) is
pure of level N.
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DEFINITION 1.4: If k is any number field, then 03C8 is a Jacobi-sum character
of k if there exist abelian extensions kj of Q, j = 1,... t, such that kj 9 k,
and corresponding 01, such that 03C8 = 03A0tj=1 (J(03B8j, kj)oNk/kj), where each
J(03B8J, kj) is a strict Jacobi-sum character of kJ.

DEFINITION 1.5: Let 03B8 = 03A3l03A3anl(a)[a]Nl, and let a be in G(k/Q).
Choose b, prime to N such that 0’ = Qh . Define 039303C3(03B8, k ) in R ’/0 ’ to be
the class of 03A0l03A0a03A0c0393(cbla/Nl)nl(a), where c runs through G(Q(03B6Nl)/k).
(It is immediate that this is independent of the choice of b,.) In particu-
lar, we let 0393(03B8 k ) be 039303C3(03B8, k ) when a is the identity element of G(k/Q).

DEFINITION 1.6: Let 03C8 = 03A0tJ=1J(03B8J, kj)oNk/kj. Define 039303C3(03C8, 03B8) to be

03A0tj=1 039303C3(03B8j, kj) in R /Q . (We write 039303C3(03C8, 03B8) to emphasize the depen-
dence of fa upon the choice of Jacobi-sum representation 0 for 03C8.)

Let k be a CM-field, so a totally imaginary quadratic extension of a
totally real number field. Let £ be a CM-type of k ; so S contains exactly
one element from each pair of conjugate complex embeddings of k.
Assume that k c C, and identify embeddings with elements of the Galois
group G(k/Q).

DEFINITION 1.7:

LEMMA 1.8 : Let 41 = J(03B8) be a Jacobi-sum character of a field k c C. Let
or = O’c be an element of G(k/Q). Define 03C803C3 by 03C803C3(p) = (03C8(p))03C3 for .p a

prime ideal of k. Then 0393(03C803C3, c*03B8) = 039303C3(03C8, 0).

PROOF: We may assume that 4, = J(03B8), 0 = 03A3l03A3anl(a)[a]Nl. Then 03C803C3 =

J(c*03B8), by Theorem 1.1, (vi). So 

where b runs through G(Q(03B6Nl)/k). On the other hand, by definition
039303C3(03C8) = 03A0l03A0a03A0d0393(da/Nl)nl(a), where d in G(Q(03B6Nl )/Q) restricts to

a = O’c in G(k/Q). But clearly abc restricts to O’c if and only if ab leaves k
fixed.

THEOREM 1.9 (Generalized Deligne’s theorem): Let 41 = J( B, k) be a strict
Jacobi-sum character of k, and assume that 03C8 is of the form XNr, where
r ~ Z and X is a Dirichlet character of k. let
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Then 0393*(03B8, k) transforms via X, in the sense that:
(i) f*( 0, k) generates the abelian extension K of k corresponding to X;

(ii) if 0’ is in G(K/k), then 03C3(0393*(03B8, k)) = X(03C3)0393*(03B8, k).

PROOF: This is the main result of [K-L]. For pure characters it is due to
Deligne ([Del], [De2]).

§2. Jacobi-sum characters of 0

In this section we completely identify all Jacobi-sum characters of 0 and
show that the r-hypothesis holds for 0. Along the way, we demonstrate
various results which will prove useful in subsequent sections. The

complete identification of the jacobi-sum characters is a special case of a
result of one of us (Brattstrôm), who solved the analogous problem for
arbitrary real abelian fields.

Let 0 = Y-s=10,, 0, = 03A3ni(a)[a]Nl. Since 0’ - 1 is in G (K,/Q) and is
different from 1 if Nl &#x3E; 2, we see immediately from Theorem 1.1 that:

PROPOSITION 2.1: The only condition for J(03B8, Q) to be a Hecke character is
that if Ni = 2, n, (a) must be even.

It then follows that if J(03B8, 0) is a Hecke character, so are all the

J(Oi’ Q), and it suffices to assume s = 1 to determine all Jacobi-sum Hecke
characters of Q. So let 0 = En (a)[ a 1 N with n(1) even if N = 2, and write
JN ( B, Q) = J(03B8, Q). Since J(03B8, Q) is a Hecke character of 0 with values in
Q, it must be of the form XdNr, where r is an integer, N is the norm
character of Q and X d is the character corresponding to the extension

Q(d) of 0 of degree 1 or 2. We write J( B, Q) = Xd(03B8)Nr(03B8). Let ~(03B8) =
En (a). Let ~ denote the Euler ~-function. Then we have, precisely,

THEOREM 2.2: The infinity-type of JN(03B8, Q) = r = ~(N)~(03B8)/2. If 0 =
[a] 1 N then d = 1, unless:

(i) N = lk, 1 prime ~ 1(mod 4), when d = 1.
(ii) N = lk, 1 prime 3(mod 4), when d = -1.
(iii) N = 2k, k  3, a odd, when d = 2.
(iv) N = 2l k, 1 prime 1 (mod 4), a even, when d = 1.
(v) N = 21k, 1 prime 3(mod 4), when d = - l if a is even and d = -1

if a is odd
(vi) N = 4, when d = -1 if a is even and d = - 2 if a is odd.

If N = 2 and 0 = 2[1]2, then d = - l.
The proof is given in [B].

We now wish to describe completely when a character XdNr can be of
the form J(03B8, Q), i.e. is a Jacobi-sum Hecke character of Q.
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COROLLARY 2.3 : Let d be square-free and let r E 7L. XdNr is a Jacobi-sum
Hecke character if and only if either r is even d is positive, or r is odd and d
is negative.

PROOF: Let S be the subgroup of Jacobi-sum characters. From Theorem
2.2, we know X-3N E S, hence N 2 E S.
If 1 ~ 1(mod 4), xlNl-1/2 ~ S, hence xl E S.If 1 3(mod 4), x-lNl-1/2 E S, hence X-/’" E S.
From (vi) x-1N and X-2N E S.
From (iii) x2 ~ S, and it is easily checked that these generate all char-
acters of the desired type and that no other occur.
We now define rN(a) to be the class of 03A0b(b,N)=1 0393(ab/N) in R ’/0

for a E Z, a =1= 0 (mod N), where the product is taken over b strictly
between 0 and N and prime to N. We wish to compute this in all cases up
to a rational number. (Note that 0393N(a) = 0393(03B8, Q) for 0 = [a]N.)

THEOREM 2.4:

(i) If a n c(mod N), TN (a) = TN(c).
(ii) If N is divisible by two odd primes, or by 4 and an odd prime, then

r ,(a) = 03C0~(N)/2.
If N = 2k, k  2 and a is even, 0393N(a) = 03C0~(N)/2.
If N = 2k, k  2 and a is odd, 0393N(a) = 03C0~(N)/2. 21/2.
If N = lk, and 1 is odd, 0393N(a) = 03C0~(N)/2. l1/2.
If N = 2l k and a is odd, 0393N(a) = 03C0~(N)/2.
If N = 21 k and a is even, 0393N(a) = 03C0~(N)/2. l1/2.

( All equalities are of course in R /Q .)

PROOF: (i) follows immediately, since 0393(z + 1) = z 0393(z). For (ii), let us

first assume (a, N) = 1 and N &#x3E; 2, and let K= Q(03B6N). Since F(z)lr(l -
z) = 1T jsin 7rz,

Let RN = 03A0Nb=1(b,N)=1 sin(03C0b/N). Then RN is obviously real and positive.
Observe that if 03B6N = e203C0i/N,

But 03B6b2N - 03B6-b2N = 03B6-b2N(03B62b2N - 1). As bruns from 1 to N, with (b, N) = 1,
(03B62b2N - 1) = (03B6bN - 1) runs through a complete set of conjugates for (03B6N -
1). So RN = 03B6-03A3b2N. NK/Q(03B6N - 1)/(2i)~(N). Now NK/Q(03B6N - 1) = l if N is
a power of l, 1 prime, and is equal to 1 otherwise. Since RN is real and
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positive, RN = IR NI = l/2~(N) if N is a power of 1, 1/2~(N) if not. So if
(a, N) = 1, FN (a) = 03A0Nb=1(b,N)=1 0393(ab/N) = 03A0Nb=1(b,N)=1 0393(b/N), which

equals 03C0~(N)/2. l-1/2 if N is a power of 1, 03C0~(N)/2 if not. Next we consider
the general case. Let (a, N ) = d, and write a = kd, N = md, with (k, m )
= 1. Since (Z/NZ)  maps onto (Z/mZ) , we have:

Since we have just computed fm(k), an easy case-by-case analysis
concludes the proof of the theorem.

PROPOSITION 2.5 : Let X d be the character corresponding to Q(d), and let
r E Z. Then L(Xd, - r) = 7r -’FI dl in R /Q  if r is negative and even and
d is positive, or if r is negative and odd and d is negative.

PROOF: This follows immediately from standard results on the L-func-
tions of Dirichlet character. (See [1], especially pp. 9 and 12.)

Now, if 03C8 is any Hecke character of Q, let L(03C8) = L(03C8, 0). Observe
that L(XdNr) = L(Xd, -r). If N is even, let ~1(03B8) = Ln(a), a odd, and
~2(03B8) = 03A3n(a), a even, so ~(03B8) = ~1(03B8) + ~2(03B8). For convenience, let

J(O)=JN(0,0), L(03B8) = L(J(03B8)), and 0393(03B8) = 0393(03B8, Q). It follows im-

mediately from our previous results that we have:

PROPOSITION 2.6 : Let m = ~(N)/2.
(1) If N is divisible by two odd primes or by 41, 1 an odd prime, then
J( 0) = Nm~(03B8) and 0393(03B8) = 03C0m~(03B8).

(2) If N = lk, 1 prime ~ 1(mod 4), then J(O) = X~(03B8)lNm~(03B8) and 0393(03B8) =
03C0m~(03B8)(l1/2)~(03B8).

(3) If N = lk, 1 prime 3(mod 4), then J(O) = X~(03B8)-lNm~(03B8) and 0393(03B8) =
03C0m~(03B8)(l1/2)~(03B8).

(4) If N = 21k, 1 prime - 1(mod 4), then J(03B8) = X~2(03B8)lNm~(03B8) and
0393(03B8) = 03C0m~(03B8)(l1/2)~2(03B8)Ú

(5) If N = 2l k, 1 prime 3(mod 4), then J(O) = X~2(03B8)-lX~1(03B8)-1Nm~(03B8) and
0393(03B8) = 03C0m~(03B8)(l1/2)~2(03B8).

(6) If N = 2k, k  3, then J(O) = X~1(03B8)2Nm~(03B8) and 0393(03B8) =
03C0m~(03B8)(21/2)~1(03B8).

(7) If N = 4, J(O) = X~1(03B8)-2X~2(03B8)-1Nm~(03B8) and 0393(03B8) = 03C0m~(03B8)(21/2)~1(03B8).

Now let 0 = 03A3si=103B8i, and let ~(03B8) = 03A3si=1~(03B8i), and f(O) = 03A0si=10393(03B8i).

THEOREM 2.7: Assume r(03B8)  0. Then L (J(O» = F(O) - in R ’/0 ’.
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PROOF: If 03C8 is a Hecke character of Q of the form XdNr, with either r
even and d positive or r odd and d negative, define E(03C8) to be 03C0r|d|.
Clearly E(03C8) is multiplicative in 03C8. By corollary 2.3, E(03C8) is defined for
every Jacobi-sum character. We claim that E(J(03B8)) = 0393(03B8). Both sides
are obviously multiplicative in 0, so we may assume that 0 is pure. (See
Definition 1.3.) But then the claim follows immediately from Proposition
2.6. J(03B8) = Xd(03B8)Nr(03B8), so if r(03B8)  0, then Proposition 2.5 gives L(J(03B8))
= E(J(B))-1 and hence L(J(03B8)) = 0393(03B8)-1 in R /Q .

REMARK 2.8: This is indeed the full r-hypothesis for Q since if r &#x3E; 0 then
I(03C8) does not lie in the good range. By Corollary 2.3 either Xd is real and
r even or xd is complex and r odd. In the former case the functional
equation involves the factors 0393((1 - s)/2) and r(s/2) (along with some
exponential factors which never have poles or zeros). Since r is even

r( s/2) has a pole at s = - r if r &#x3E; 0 and is otherwise finite and non-zero
at this point, whereas r((l + r )/2) is always finite and non-zero. Hence
I(03C8) is in the good range if and only if r  0. Similar considerations show
that this is true when r is odd also.

§3. The independence and existence theorems

Let k be an arbitrary imaginary quadratic field, with ring of integers
o = ok. In this section we will prove that our main theorem is indepen-
dent of the choice of the Jacobi-sum representation for a given Hecke
character. If k has class number one and is not Q( 1 ) or Q(-3) we
will give a complete characterization of all Jacobi-sum Hecke characters,
and we will obtain a partial characterization in the cases k = Q(-1) or
Q(-3).
We also will explicitly compute the periods of our basic elliptic curves

with complex multiplication by o k if k = Q(-1), Q( 0), or Q( 0).
Let G = G(k/Q), and let e and p be the identity and non-identity

elements of G, respectively. Denote the norm character of k by N.

LEMMA 3.1: 

(a) Let k = Q(-p), p prime, p = 3(mod 4), p ~ 3. Let 03C8 = J([1]p, k),
and let h be the class number of k. Then the infinity-type of 4, = 1 4 (p - 1
+ 2h)e + 1 4(p - 1 - 2h)03C1.

(b) If k = Q( 1 ), let 03C8 = J([1]4 + [2]4 - [3]4, k ). Then the infinity-type
of 03C8 is e. 

(c) If k = Q(-2), let 03C8 = J([1]g - [5]g, k)N. Then the infinity-type of 03C8
is 2e.

(d) If k = Q(-3), let 03C8 = J([216 + [3]6 - [5]6, k). Then the infinity-type
of 03C8 is e.
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PROOF: (a) By Theorem 1.1, the infinity-type of 03C8 is equal to Ae + Bp,
where A = 03A3a~-a/p~ and B = 03A3b~-b/p~, where a runs through
quadratic residues mod p and b runs through quadratic non-residues. By
the analytic class number formula for imaginary quadratic fields (see for
instance [B-S], p. 344), A - B = h. On the other hand A + B = ( p - 1)/2,
so the lemma follows immediately. The proofs of (b), (c), and (d) are just
simple computations from Theorem 1.1.

LEMMA 3.2: Let k = Q(-2), and let 41 be any Jacobi-sum character of k.
Let the infinity-type of 4, be Ae + Bp. Then A B(mod 2).

PROOF: Any character induced from Q via the norm has infinity-type a
multiple of the norm. It follows readily from the results of [K-L] that any
strict Jacobi-sum character of k has an infinity-type which differs by a
multiple of the norm from the infinity-type of a pure character of level 8.
An explicit computation of all Jacobi-sum characters of level 8 completes
the proof.

REMARK 3.3: This exceptional lack of a Jacobi-sum character of infinity-
type e is due to a not sufficiently general definition of our Jacobi-sum
characters. For the correct definition, see [Ku].

Let k be an imaginary quadratic field with odd class number; this is
wellknown to imply that k is of the form Q(-p), where p is either 1, 2
or a prime congruent to 3 modulo 4. For p &#x3E; 3, let E be the Q-curve
A( p) defined in [G], p. 35.

More precisely, we choose an embedding 1: k - C (which will remain
fixed for the rest of the paper) such that the modular invariant of E is
mapped to j(o) ~ C . Then E has complex multiplication by o and in all
cases except p = 3 (where 0394 = -24 · 33) E has bad reduction only at
primes dividing the discriminant of k. Let H be the Hilbert class field
and h the class number of k.

Let 0 be an isomorphism k - End( E ) ~ Q such that w - 03B8(03B1) = aw for
all differential forms w of the first kind and all a E k. (See [La2] p. 119.)
Given 0 and the embedding 1: H ~ C, we can associate to E a

(complex-valued) Hecke character XE of H. Composing it with the
inclusion of the ideals of k into those of H produces a Hecke character
03C8E of k. 03C8E is of type Ao, has infinity-type he (e being the trivial element
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of G(k/Q)) and takes values in k. Our assumption that E is a Q-curve
implies that XEO = XE for any 0’ E G ([G], Lemmas 9.3.1 and 11.1.1), so if
we define 03C8E03C3 in analogy with 03C8E then we have 03C8E03C3 = 03C8E. (The latter
statement is in fact true even if we do not assume E to be a Q-curve; this
follows readily from Lemma 9.3.1 in [G] and the fact that XE takes values
in k.) By [G], Lemma 11.1.1, XE is Galois-equivariant, and hence so is
03C8E.

LEMMA 3.4:

PROOF : (a) By Lemma 3.1, 03C8E and 03C8JN-d have the same infinity-type, so
there exists a Dirichlet character Xo such that 03C8E = X003C8JN d. By [W2]
the conductor of 03C8J is a power of p = (-p). (On p. 14 of [W2], Weil
states that the conductor of a Jacobi-sum Hecke character JN( 0, k) is
divisible only by primes dividing 2 N, but what he actually proves is the
same statement with 2N replaced by N.) By Theorem 11.2.4, p. 33 in [G],
XE is ramified only at primes lying over p, so the conductor of XE is also
a power of p. Hence so is the conductor of X0. Moreover, since 03C8E, 03C8J
and N all values in k so does Xo, so Xo is either quadratic or trivial. If we
let ko be the extension of k corresponding to X o then the conductor of X o
equals the discriminant Dk0/k. Since the p-ramification in ko/k is tame,
Dk0/k is either .p or o (see [La1], p. 62), whence ko c Hp, the ray class field
mod of k. However, G(Hp/H) ~ (o/p) /{±1}, so [Hp:k] =
[Hp: H][H: k ] = 1 2 (p - 1)h is odd and we conclude that ko = k and X o = 1.
Hence 03C8E = 03C8JN-d.

(b) The curve y 2 = x3 - 4x is birational over Q to the curve E’ : y2 =
x4 + 1. It is shown in [W1] ] that the Hecke character 03C8E’ is equal to
X2,kJ([1]4 + [2]4 - [3J4)’ ( This is the special case of Weil’s paragraph 2
where e = 2, f = 4, y=6=l. Then in Weil ’s notation, mo = 4, and the
only Hecke character to occur is J1,2, which is easily seen to be X2,k(J([1]4
+ [2]4 - [3]4) in our notation.)

(c) By Lemma 3.1, 03C82E and J([1]8 - [5]8)N have the same infinity-type.
Since they are both Galois-equivariant and unramified outside of 2, they
must either be equal or differ by the quadratic character of Q(-2)
corresponding to Q(03BC8). Since this quadratic character is equal to -1 on
the prime ideal .p = (1 + -2) of Z[-2] lying above 3, if suffices to
check whether 03C82E(p)/9 and (J([1]8 - [5]8)N)/9 are congruent mod p.
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1 (mod ). We then use Stickelberger’s theorem to show that

and we are done.

(d) Weil shows in [W1] that = J([2]6 - [3]6 - [5]6). (This is the

special case of paragraph 2 where e = 2, f = 3, Y = 8 = 1. Then in Weil’s
notation, m0 = 6, and the only Hecke character to occur is J2,3’ which is
easily seen to be X-1,kJ([2]6 - [3]6 - [5]6) in our notation, where X-1,k is
the quadratic character of k = Q(-3) corresponding to k(-1).)

THEOREM 3.5: Let 03C8 be a Hecke character of k, and assume that k has class
number one.

(a) Let k ~ Q(-1), Q(-2), or Q(H). Then the following are
equivalent:

(1) 03C8 is a Jacobi-sum character, i.e. 03C8 J(01, k)(J(03B82, 0)’Nk/0) for
some 01 and O2,

(2) 03C8 is of type Ao, takes values in k, and is Galois-equivariant.
(3) 03C8 may be written in the form Xd,k03C8a-bENb, where a, b ~ Z, dE Q,

d &#x3E; 0 and Xd,k is the quadratic character of k corresponding to

k(d).
(b) Let k be Q(-1), Q(-2), or Q(H). Then the following are

equivalent:
(1) 03C8 is a Jacobi-sum character. 

X03C8a-bENb,(2) 03C8 may be written in the form E where X is a Jacobi-sum
Dirichlet character, and a - b is an arbitrary integer if k is Q(-1)
or Q(H), and an even integer if k is Q(-2).

PROOF: That 1) - 2) has been shown in [W2] and in [K-L]. We next show
2) - 3). If 41 is of type Ao, it has infinity-type ae + bp with a, b E 71, and
so can be written in the form 03C8 = X03C8a-bENb, with X a Dirichlet character.
Since 03C8, 03C8E and N have values in k and are Galois-equivariant, the same
must be true of X. Let F be the extension of k corresponding to X via
class field theory. Then since X is Galois-equivariant F is left fixed as a
set by any element of G(Q/Q), hence is Galois over Q, hence abelian,
being of degree four over 0. Moreover, G(F/Q) is non-cyclic since F
contains the two distinct quadratic subfields k and F+ , the maximal real
subfield of F. From this it follows that F = k(d), with d E Q, d &#x3E; 0, so
X = Xd,k-
We now show 3) ~ 1). We have seen in Section 2 (Corollary 2.3) that

X-pNQ is a Jacobi-sum character of 0. Composing this with Nk/Q, we
see that N = N k is a Jacobi-sum character of k. It then follows from
Lemma 3.4 that 4E is a Jacobi-sum character of k. Again, by Corollary
2.3, if d &#x3E; 0, then Xd is a Jacobi-sum character of Q, hence Xd,k is a
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Jacobi-sum character of k. It follows that 03C8 is a Jacobi-sum character of
k.

(b) Let k = Q(-3). Then 03C8E is a Jacobi-sum character by Lemma
3.4d. Let k = Q(-1). Then X2,k = X 2 ° Nk/Q is a Jacobi-sum character
by Corollary 2.3, so 03C8E is a Jacobi-sum character by Lemma 3.4b. Let
k = Q(-2). Then 03C82E is a Jacobi-sum character by Lemma 3.4c. (Note
that N is a Jacobi-sum character as above.) This shows that 2) ~ 1).

To show 1) ~ 2), we observe that by Lemma 3.1 if k = Q(-1) or
Q(-1), and by Lemmas 3.1 and 3.2 if k = Q(-2), any Jacobi-sum
character has the same infinity-type as 03C8a-bENb for suitable integral a and
b where a - b is even if k = Q(-2). Since 03C8E and N are Jacobi-sum
characters, so is X = 03C8(03C8b-aEN-b), and X is clearly Dirichlet.

For an imaginary quadratic field we prove the generalized Deligne’s
theorem for all Jacobi-sum characters of the form XNr, not just the strict
ones:

THEOREM 3.6: Let k be an arbitrary imaginary quadratic field. Let 03C8 be a
Hecke character of k, and suppose 03C8 = J(03B81, k)(J(03B82, Q) 0’" klO) = Nr
where r Eland X is a Dirichlet character. Then 0393*(03C8, 03B8) =

0393(03B81, k)0393(03B82, 0)(2wi)-r transforms via X in the sense of Theorem 1.9.

PROOF: As in paragraph 2 we have J(03B82, Q) = X2Nr2Q, where r2 E 7L and
X 2 is a Dirichlet character of Q. (So for this proof we are deviating -
temporarily - from our usual notation, in which X 2 would have meant
the character corresponding to Q(2).) Thus J(021 Q) ° Nk/Q =
(X2 ° Nk/Q)Nr2. On the other hand we are assuming 03C8 = XNr, so it
follows that J(03B81, k) = X1Nr1, with r1 an integer and X1 a Dirichlet

character of k. J(03B81, k) is strict, so by Theorem 1.9 0393*(03B81, k) =
0393(03B81, k)(203C0i)-r1 transforms via X1, Also by Theorem 1.9 0393*(03B82, Q)
transforms via X 2 over Q, hence transforms via X 2 0 Nk/Q over k. (See for
instance [C-F], Prop. 3.2 p. 166.) From this it readily follows that

0393*(03C8, 0) = 0393*(03B81, k)lr*(02, 0) transforms via X = X1(X2 ° Nk/Q).
COROLLARY 3.7: If k is imaginary quadratic then 0393(03C8, 03B8) and 039303C1(03C8, 0)
only depend on 03C8 and not on 0.

PROOF: It suffices to show that 0393(03C8, 03B8) and 039303C1(03C8, 03B8) are rational if 03C8 is
the trivial Dirichlet character. By Theorem 3.6 0393(03C8, 03B8) then lies in k, and
since 0393(03C8, 03B8) is real, it lies in Q. By Lemma 1.8 039303C1(03C8, 0) = 0393(03C803C1, c*03B8)
for some integer c. But 03C803C1 = 03C8 ~ 1 so the corollary again follows from
Theorem 3.6.

DEFINITION 3.8: If 03C8 = J(03B81, k)(J(03B82, Q) o Nk/Q we may define 0393(03C8) to
be 0393(03B81)0393(03B82) and 039303C1(03C8) to be 039303C1(03B81)0393(03B82), and these definitions are
independent of the choice of 03B81 and 03B82 by Corollary 3.7.

COROLLARY 3.9: If 03C8 = 03C8103C82, then 0393(03C8) = 0393(03C81)0393(03C82) and I’P(4,)
039303C1(03C81)039303C1(03C82).


