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GEOMETRIC INVARIANT THEORY FOR GENERAL ALGEBRAIC
GROUPS

Amassa Fauntleroy

Compositio Mathematica 55 (1985) 63-87.
@ 1985 Martinus Nijhoff Publishers, Dordrecht. Printed in The Netherlands.

The solutions of many of the moduli problems which occur in algebraic
geometry involve the construction of orbit spaces for the action of an

algebraic group on a suitable variety. In most cases the groups involved
are reductive. Mumford in [10] worked out the theory of reductive group
actions, particularly those arising from linear representations in the affine
cone over a projective space, to a point sufficient for applications to
moduli problems. With a view toward similar applications of more
general algebraic groups acting on quasi-projective varieties, this paper
studies the problem of constructing quotients of varieties under the
action of arbitrary connected linear groups.

Our approach is to first treat the case of unipotent groups and then to
reduce to the cases in which Mumford’s geometric invariant theory
applies. Section 1 of this paper discusses the case of unipotent groups
acting on quasi-affine varieties. We give necessary conditions for the
existence of a quotient and give a complete description of proper actions
with a quotient.

In section 2 we give a local criterion for the action of a connected
unipotent group G on a quasi-affine variety X to be properly stable (c.f.
2.1) under the assumption that the ring of global sections 0393(X, Ox) is
factorial. We define stable points XS(G) of X and in (2.2) we give an
inductive procedure for constructing the quotient of XS(G) by G when
the action on X is proper. Finally, in sections 3 and 4 we apply these
results to the problem of constructing quotients by general connected
linear groups.

Most of the results of this paper are valid in any characteristic.

However, we have assumed that the ground field has characteristic zero
in order to avoid too many p-pathologies. In this paper all ground
fields-generally called k - are algebraically closed. The word ’scheme’
here means reduced, irreducible algebraic scheme over k. A variety is a
separated scheme. Points of a scheme are assumed closed unless other-
wise stated. All algebraic groups are affine and we identify 0393(X, Ox)
with the subring of k(X) consisting of everywhere defined rational
functions on the scheme X.
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0. Generalities on group actions

This section gives a brief summary of the results on actions of algebraic
groups on varieties which will be used in the following sections. They are
given here essentially for convenience of reference.

0.1. Let G be an algebraic group acting rationally on a scheme X. A pair
(Y, q ) consisting of a scheme Y and a morphism q : X - Y is a geometric
quotient of X by G denoted X/G if the following conditions hold:

(i) q is open and surjective
(ii) q*(OX)G = OY
(iii) q is an orbit map; i.e., the fiber of closed points are orbits.
The action of G on X is said to be locally trivial if each point x e X is

contained in a G-stable open subset U of X which is equivariantly
isomorphic to G X S for some scheme S.

THEOREM 0.1 (Generic Quotient Theorem [12]): Let G act on an algebraic
scheme X. Then there exists a G-stable open subset U of X such that
Y = U/G exists and Y is a quasi-projective variety.

In general the determination of the open set described in 0.1 is a
non-trivial task. However, for reductive algebraic groups somewhat more
can be said. Let G be reductive and a finite dimensional rational
G-module. Let P(V) denote the associated projective space consisting of
lines through the origin in V and let R be the ring of polynomial
functions on V (with respect to some basis). A point v e P(V) is called
semi-stable if there exists an invariant nonconstant homogeneous element
fER with f(v) ~ 0. A point v E P(V) is stable if it is semi-stable and
the orbit G· v is closed.

THEOREM 0.2 ( Mumford; [10: 1.10]) : Let G and V be as above and let X be
the set of stable points of P(V). Then X is open and Y = X/G exists.

The only other result of a general nature aside from Mumford’s
theorem is a result due to Seshadri which we now describe. If G is a
connected algebraic group acting on a scheme X, then the action is said
to be proper if the map G X X ~ X  X given by (g, x) - (gx, x) is

proper.

THEOREM 0.3 (Seshardi [16]): Let G be a connected algebraic group acting
on a variety X such that for each point x in X the isotropy subgroup of G at
x is finite. Then there exists a morphism p : Z - X such that

(i) Z is a normal variety, G operates on Z and p is a finite surjective
G-morphism
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(ii) G operates freely on Z, the geometric quotient W = ZIG exists and
the quotient map q : Z ~ W is a locally trivial principal fibre space
with structure group G.

(iii) If the action of G on X is proper then the action of G on Z is proper
and W is separated.

(iv) k(Z) is a finite normal extension of k(X) and the canonical action
of Aut(k(Z)/k(X)) on Z commutes with the action of G.

In the situation described in 0.3 we will call (Z, W, p) a Seshardi
cover of X.

When X is a variety on which the connected algebraic group G
operates then a quotient map can be characterized in a slightly different
way. If q : X - Y is a surjective orbit map and Y is a normal variety,
then Y is the geometric quotient of X mod G. This is the content of [1;
6.6]. The fact that q is open follows from Chevalley’s result [1; AG 0,
10.3]. This condition is often the easiest to check.

Recall that a scheme Q is called a categorical quotient of X by G if
there is a morphism q : X ~ Q such that whenever f : X ~ S is a mor-
phism constant on G orbits, then there is a unique morphism h : Q - S
with f = h 0 q. Clearly, a geometric quotient is a categorical quotient. If G
is reductive and acts linearly on Pn, that is via a linear action on the
affine cone An+1 over Pn then x ~ Pn is semi-stable provided there is a
G-invariant section s E H0(Pn, OPn(m)) for some m &#x3E; 0 with s(x) ~ 0.
The set of semi-stable points U of Pn is open and a projective categorical
quotient of U by G exists. [11; Theorem 3.21.]

There is a similar result for unipotent groups. Let H be a connected
unipotent group acting on a normal quasi-affine variety V. We assume
that the stability group of each point of V is finite. Let B = f(V, Ov)
and A = BH. There is a canonical morphism c : V - Spec A. A point
v E h will be called semi-stable if dim c-1(c(v)) = dim H. Let Vss de-
note the set of semi-stable points of V.

THEOREM 0.4 [4; Proposition 6]: The set hSS is open and H-stable in V.

There exists a quasi-affine variety Q and a morphism q : Vss ~ Q constant
on H-orbits satisfying the following:

Given any variety W and a morphism f : Vss - W constant on H-orbits,
there is a unique map h : Q - W such that f = h 0 q.

If further B = f(V, Ov) is factorial and U is any open set in V, stable
under the action of H, such that Y = U/H exists and U - Y is affine,
then U c hSS. If Y is separated then the natural map Y - Q is an open
immersion. This result is generalized in 3.4 of the present paper to

arbitrary connected groups acting on quasi-projective varieties.
Finally we want to make explicit mention of a result due originally to

Rosenlicht concerning invariant rational functions [15]. If H is unipotent
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and acts on a quasi-affine variety X then any invariant rational function
is a quotient of global invariant functions. Unfortunately if f is such a
rational function and f is defined at a point x E X there may be no way
of expressing f as a/b with a, b global invariants and b(x) ~ 0. This
observation escaped us in [5] but was pointed out to the author by
Mumford. It explains the need for our factoriality assumptions in sec-
tions 2 and 3 of this paper. 

*

1. Necessary and suf f icient conditions f or the existence of quotients

Let X be a normal variety on which the connected unipotent group G
operates via the morphism a : G  X ~ X and let ~ := 03C3  1 : G  X ~ X
X X. We will assume throughout this section that X is quasi-affine and 0
quasi-finite. We put B = 0393(X, Ox) and denote by A the subring of
G-invariant functions of B.

DEFINITION 1.1: The variety X X X can be considered in a natural way as
an open subscheme of Spec(B ~ B). The G-diagonal of X, denoted
G V 0(X) is the closed subset defined by the common zeroes of the
functions a 0 1 - 1 ~ a, a E A.

Note that the image of 03A6 is always contained in G V 0394(X).

LEMMA 1.2: Let G, X and 03A6 be as above. Assume that a geometric
quotient Y = X/G exists and is affine. Then Im 03A6 = G V 0394(X).

PROOF: Since Y is affine we have Im 03A6 = (q X q)-1(0394(Y)) is closed in
X  X where q : X - Y is the quotient map. On the other hand 0394(Y) is
defined by the ideal in 03A6(Y, OY) generated by {a ~ 1 - 1 ~ a : a ~
0393(Y, OY) = A} so (q  q)-1(0394(Y)) = G V 0394(X). ~

DEFINITION 1.3: Let G and X be as above. We say that the action a is
stable if Im 03A6 = G V 0394(X). We call a point x E X stable if there exists a
G-stable open neighborhood U containing x such that the action of G on
U is stable. We note by XS(G) the set of stable points of X.

THEOREM 1.4: Let G and X be as above. The set Xs(G) is open and
G-stable in X. Moreover a geometric quotient Y = Xs(G)/G exists as an
algebraic scheme.

PROOF: The definition of Xs(G) implies that this set is open and that
G - Xs(G) = Xs(G). Since the existence of a geometric quotient is local on
Xs(G) it suffices to show that if G acts stably on an open set V c Xs(G)
then VIG exists and is quasi-affine.

* In this regard see [10: p. 154].
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Let A = f(V, OV)G and consider the canonical morphism q : V ~

Spec A. It is evidently constant on G orbits and separable. Suppose x
and y are in the same fiber of q (above a closed point). Then a(x) = a(y)
for all a E A. But this means (x, y ) E G V 0394(V) = Im 03A6 so that x and y
are in the same G-orbit. Hence q is an orbit map We next show that A
can be replaced if necessary by a finitely generated subring R of A.
Indeed V is locally noetherian and quasi-compact and at each point of
G V 0394(V) the functions {a~1-1~a:a~A} generate the ideal of
G~0394(V). Using quasi-compactness we can find a finite family of

functions {a03B1: a03B1~ A, a E 11 such {a03B1~1-1~a03B1:03B1~I} defines G
V 0394(V) at each point. Let R be the smallest finitely generated k-subalge-
bra of A which is normal, contains all the a a and has the same quotient
field as A. Then q’ : Vu Spec R will define a separable open orbit map
from to Y = q(V) with Y c Spec R open hence quasi-affine. By [1; 6.6]
Y is the geometric quotient of V by G. This proves the theorem. 0

REMARK: Even though the quotients above are constructed using rings of
invariants, they can in fact be non separated schemes (cf. [6; Example 2]).
Note that we have not assumed - indeed we cannot - that rings of
invariants are actually affine rings; i.e. finitely generated k-algebras.
Indeed, it appears that the "14th Problem" is not the issue here!

COROLLARY 1.5: Let G and X be as in the theorem. If X/G exists then
X = Xs(G).

PROOF: Let Y = X/G and {Y03B1} an affine open cover of Y. Apply Lemma
1.2 to the covering ( U,, = q-1(Y03B1)} of X. 0

Recall that the action of G on X is separated if the image of 03A6 is

closed in X X X.

COROLLARY 1.6: Jf (1 is separated then Y= XS(G)/G is a variety.

PROOF: Since Xs(G) is G-stable and open, the image of V restricted to
G X XS(G) is closed in XS(G) X XS(G). By [10; p. 13] this implies that Y
is separated. D

DEFINITION 1.7: The action of G on X is called properly stable if

X = Xs(G) and 0 is proper.

THEOREM 1.8: Let X be a normal quasi-affine variety on which the

connected unipotent group G acts. Assume that the action of G on X is
properly stable and let Y = X/Go Then the quotient map q : X ~ Y is affine
and X is locally trivial. Conversely, if Y = X/G exists, is separated, and X
is locally trivial then the action of G is properly stable.
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PROOF: Let Z ~ X be a Seshadri cover of X (see Theorem 0.3) Then
W = Z/G is separated and hence the natural map p : W - Y is finite. If
Yo c Y is an open affine, then W0 = p-1(Y0) is affine and hence Zo =
q-1(W0) = G x Wo is also affine.

Consider the commutative square

It is immediate that Zo = p-1(X0) so Xo = p(Z0) is affine. Thus q is an
affine map. Further the separable degree of p is 1 F | where r =

Aut(k(Z)/k(X)). Let To = p(0 X W0). Then the natural map G X To -
Xo is surjective and since p factors as G  W0 ~ G  T0 ~ X0 and the
separable degree of the first map in |0393|, it follows that G X To ~ Xo is
bijective. Now p is proper and G  W0 ~ G  T0 is proper. It follows
from [2; 5.4.3] that G X To - Xo is proper hence finite so that Xo is

trivial as a G-space.
Assume conversely that X is locally trivial and Y = X/G is separated.

Let {Y03B1} be an affine open cover of Y and {X03B1 = q-1(Ya) = G X Y03B1} the
corresponding affine open cover of X. Since the property of properness
of a morphism is local on the range it suffices to show that 03A6:03A6-1(X03B1 X
X03B2) ~ Xa X Xp is proper for each pair of indices a, /3.

Now 03A6-1(X03B1 X X03B2) = G X (X03B1 ~ Xp) and we may factor (D as follows:

where the morphism 03C8 is T X 0394Y with 0394Y the diagonal morphism of Y
and T( g, h) = ( gh, h) an isomorphism. Since Y is separated 0394Y and
hence 03C8 is a closed immersion, thus proper. This proves the theorem. 0

REMARK: In principle one should be able to strengthen the converse to
the case where X is locally trivial in the finite radicial topology. Theorem
1.8 is similar to Propositions 0.8 and 0.9 of [10].

COROLLARY 1.9: Let X be a normal variety on which the connected

algebraic group H operates. Assume Y = X/H exists, is separated and that
q : X ~ Y is a locally trivial principal H-bundle. Then the action of H on X
is proper.

PROOF : The proof of the converse of 1.8 is independent of any particular
property of the group G. 0
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It may happen that properties of the variety X force the geometric
quotient Y = X/G to be well behaved. We give an important special case
of this phenomena next.

DEFINITION 1.10: A variety X is called quasi-factorial if it is quasi-affine
and r( X, Ox) is a unique factorization domain. Any open subset of a
quasi-factorial variety is quasi-factorial. In particular, any open subset of
affine space is quasi-factorial.
PROPOSITION 1.11: Let G be a connected unipotent group acting on the
quasi-factorial variety X. Assume that the action of G on X is properly
stable. Then Y = X/G is quasi-factorial.

PROOF: By [Theorem 0.4] there exists a quasi-affine variety Q and a
morphism 99: X ~ Q making Q the categorical quotient of X by G. But
Y being a geometric quotient is also a categorical quotient hence Y = Q.
Since 0393(Y, QY) = 0393(X, OX)G is factorial by [9] Y is quasi-factorial. D

REMARK: It is easily seen that this is a result about unipotent groups. If
X is the cone over Pn for example, then X is certainly quasi-factorial
and X ~ Pn is a principal Gm bundle, but Pn is evidently not quasi-af-
fine.

2. Local criteria f or properly stable actions

Let X be a quasi-affine variety on which the connected unipotent group
G operates. We have defined stability in the last section as a local

property on X. However, the notion of properly stable is a global
property of the morphism 03A6:G  X ~ X  X. In this section we will
show that if X is quasi-factorial then properly stable is actually a local
property of the action of G on X (Theorem 2.4). We also investigate the
connection between the set of properly stable points XPS(G) and the set
Xps(N) where N is a normal subgroup of G. Throughout this section X
denotes a quasi-factorial variety and G a unipotent algebraic group. We
assume the base field k has characteristic zero and put B = r( X, Ox).

THEOREM 2.1: Suppose the connected unipotent group G acts properly on
the quasi-factorial variety X. Then the following hold:

(1) There exists an algebraic space Y and a morphism q : X - Y making
Y the geometric quotient of X by G in the category of algebraic
spaces.

(2) If A = BG the square

commutes where the horizontal maps are the canonical ones.
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(3) Let Yo = f y E Y:|c-1(c(y))|  ~}. Then Yo is open in Y and c/Yo
is an open immersion.

(4) If Yo is as in (3) then q-1(Yo) = XS(G).
Further, if k = C and X is nonsingular, then Y is a complex manifold.

PROOF: Let (Z, W p) be a Seshadri cover of X (note that since X is
quasi-affine and V is proper, the stability groups are finite). Now G acts
properly on Z by [Theorem 0.3] so W is a variety. By [8; p. 183]
Y = W/r exists as an algebraic space. This quotient is clearly the

geometric quotient of X by G. This proves (1). The assertion (2) is

immediate.To see (3) consider the commutative diagram

where R = r( W, Ow) and the horizontal maps are again the canonical
ones. If y0 ~ Y0 and w~03C0-1(y0) we also have |c-1(c(w))|  ~. But
c : W ~ Spec R is birational so by Zariski’s Main Theorem, c is an open
immersion in a neighborhood of w. Thus if Wo = 77’’BYo) then c : Wo
Spec R is an open immersion so Wo is quasi-affine. Clearly Wo is
r-stable so Yo = 03C0(W0) is open in Y. As Yo = Wo/r, Yo is also quasi-af-
fine. Now from this it follows that Xo = q-1(Y0) has a quotient (viz Yo )
in the category of algebraic varieties and by [Theorem 0.4] Y0 ~ Spec A is
an open immersion.

To see (4) note that X0 = q-1(Y0)~Xs(G) and that G acts properly
on any open G-stable subset. By Proposition 1.11 XS(G)/G exists and is
quasi-affine. Using this fact and the definition of the Seshadri cover
(Z, W, p ) it is easily verified that

(a) if W0 = {w ~ W:|c-1(c(w))|~} then 03C0(W0) = Yo.
(b) if Zo = p-1(Xs(G)) then Zo = q-1(Wo).

It then follows that q(Xs(G)) = (q 0 p)(Z0) = (03C0 ° q)(Z0) = 03C0(W0) = Yo
Thus Xs(G)~ q-1(Y0) and the desired equality follows.

Finally, if k = C and X is smooth then for each x E X we can find a
smooth subvariety Tx transversal to the orbit of x under G. By [10;
Appendix 1] this implies Y is a smooth algebraic space over C, i.e. a

complex manifold. D

Let H be a closed subgroup of G. Note that if G acts properly on X
then so does H. Indeed, 03A6H:H  X ~ X  X is the composition H X X
~ G  X ~ X  X and the first map being a closed immersion (hence
proper) implies the composition (DH is proper provided V is proper.

THEOREM 2.2: Let G act properly on X and let N be a closed normal
subgroup of G. Let Xo = Xs(N) and Yo = Xo/N. Then G/N acts canoni-
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cally on Yo and this action is again proper. Further if q : Xo - Yo is the

quotient map then XS(G) = q-1(Y¿(GIN).

PROOF: Let B = 0393(X, OX) and let Y be the quotient of X by N in the
category of algebraic spaces given in 2.1. Then G/N acts on Y and it is
clear that c:Y ~ Spec BN is a G/N morphism. It follows from the

defining properly of Yo that G/N acts on Yo. Now the natural map
Spec B - Spec BN is also a G-morphism where G acts on BN via the
natural map G - GIN. Hence Xo = q-1(yO) is G-stable and G acts

properly on Xo.
Note that if x = h - x’, h E N, then g · x and g · x’ are in the same N

orbit: for g·x=g(h·x’)=(gh)·x’=(h"g)·x’=h"(g·x’), h"EN.

Now consider the diagram

Here 03A60 = Q X ly, as usual. The vertical maps are quotient maps for the
action of N X N. If we let N X N act on G X Xo by (h1, h2) ( g, x ) =

(h1gh-12, h2x) then V is N X N equivariant and G/N X Yo is still the

quotient of G X Yo by N X N since N is normal in G. Since (h1g· x, h2·
x) and (g·x, x) have the same image in Yo X Yo for all h1, h2~N,
g e G, x E Xo the square commutes. By [3; 1.3] 0. is proper which

proves the first assertion of the theorem.
Now since G acts properly on X, the map Xs ~ XSjG is a locally

trivial principal G-bundle by Theorem 1.8. It follows that XSIN exists so
Xs~X0 and is N-stable. Then q(Xs) is open in Yo and G/N acts
properly stably on it by the first part of the theorem. Clearly XS/G is the
quotient q(Xs)/(G/N) so Xs~q-1(Ys0(G/N)). Conversely, since

YoS(GjN)/(GjN) exists, this quotient must be a geometric quotient of
q-1(Ys0(G/N)) by G. Thus q-1(Ys(G/N))~Xs(G) and the desired

equality follows. D

COROLLARY 2.3: Let G act properly on X. Then a point x in X is unstable if
there exists a 1-dimensional subgroup H of G such that x is unstable for H.

PROOF: We argue by induction on dim G. If dim G = 1 there is nothing
to prove. Let H be a proper one dimensional subgroup of G with x not
in Xs(H). 1 dam there is a normal subgroup N of G with H c N and
dim N  dim G. Granting this claim we have, since dim N  dim G,
x~Xs(N). But by the theorem Xs(G)=q-1(Ys0(G/N))~Xs(N) so
x ~ XS(G).
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To establish the claim recall that if Hl = NormG(H) then dim Hl 
dim H (cf [13; p. 140]). Thus defining Hi+1 = NormG(Hi) we obtain a
normal series H  H1  H2  ...  Hp = G. Put N = Hp _ 1 if p &#x3E; 1
otherwise N = H. 

The next result is an extension of a result in [5] to arbitrary unipotent
groups. In the context of the present development it establishes that the
properness of an action is local on X.

THEOREM 2.4: Let X be a quasi-factorial variety on which the connected
unipotent group G operates. If the action of G on X is locally trivial, then
03A6 : G  X ~ X  X is proper. In particular Y = X/G exists and is quasi-
factorial.

PROOF: We argue by induction on dim G. If G = Ga this is just Theorem
7 of [5]. Assume then that dim G &#x3E; 1 and let N be a 1-dimensional
connected central subgroup of G. Now if Xo is an open G-stable subset
of X with Xo = G X Yo then Xo = N X ((G/N) X Yo ) by [13; p. 150] so
Xo is also trivial as an N-stable open subset of X. Since X can be covered
by such sets it follows that N acts locally trivially on X and hence the
action is properly stable. Thus by 1.11 X/N is quasi-factorial again. The
action of G/N is clearly locally trivial on X/N and it is proper by the
induction hypothesis. Thus Y = X/G = (X/N)/(G/N) is quasi-factorial
and X - Y is a locally trivial principal G-bundle with Y separated so by
Corollary 1.9 the action of G on X is proper. 0

The above results say that an action of G on a quasi-factorial variety
X is properly stable if and only if it is locally trivial. Theorem 2.2 suggest
we look for the set of properly stable points by looking for properly
stable points Xps(N) of a proper normal subgroup N and then finding
the properly stable points of Y(N) = XP’(N)IN. Since we may always
choose N to be one-dimensional i.e. N = Ga it seems worthwhile to give a
description of properly stable points in this case. If Ga acts on the

quasi-factorial variety X (with finite stability groups) then for each
f E B = 0393(X, Ox) we can write

If 03C3*: B ~ B ~ k [ Ga ] = B[T] is the co-action then we have

In this case we call n the Ga-order of f and fn the weight form of f.
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PROPOSITION 2.5. Let Ga act on the quasi-factorial variety X. Then a point
x in X lies in Xps(Ga) if and only there exists a function f E r(X, Ox) of
Ga-order n for some n such that

(i) f(x) = 0 and
(ii) if fn is the weight form of f then fn(x) ~ 0.

In this case there exists such a function of Ga-order 1.

PROOF: If x E U c X with U Ga-stable affine and isomorphic to Ga X Y
then U ~ Spec B[h-1] for some h E B Ga since X is quasi-factorial. Then
the coordinate function T on Ga gives rise via this isomorphism to a
rational function a = f/h m with a(t· x ) = a ( x ) + t for each x ~ V, t ~ Ga.
It follows that 03C3*f = f + Thm. This proves the only if part of the
statement provided we adjust f by a suitable constant.

Conversely if (i) and (ü) hold write 03C3*f = 03A3ni=0fiTi. A straightforward
computation shows that fn is invariant and that 03C3*fn-1=fn-1+nTfn. If
we put b = n . fn and a = fn - 1 then 03C3*a = a + bT. It follows (cf. Lemma
5 of [5]) that Xb is trivial and the Proposition follows easily from this
fact. 0

COROLLARY 2.6. Let X be a quasi-factorial variety on which the connected
unipotent group G acts. Assume that the stability group of each point of X is
finite. Then the set of properly stable points Xps(G) of X is non empty.

PROOF: We argue by induction on n = dim G. If n = 1 then G = Ga and
we choose any non constant non invariant function f in B = r( X, Ox)
and apply the proposition to fn-1’ fn. Then Xfn is trivial so the action of
G is properly stable. 

In the general case let N be a one dimensional central subgroup of G.
Then Xps(N)~~ and by Theorem 2.2 (proof) Xps(N) is G-stable. Thus
G/N acts on Y = Xps(N)/N. By induction Yps(G/N)~~ and Xo =
q-1(Yps(G/N)) is open non empty in X and G acts properly stably on
it. 0

3. Semi-stability and stability f or general algebraic groups

Let G be a connected linear algebraic group with unipotent radical H.
Let V be a normal quasi-projective variety on which G acts and suppose
L E Pic( ). A G-linearization of L is a G-equivariant morphism a from V
into a projective space Pd on which G acts such that 03B1*OPd(1) = L.

Let V be a fixed projective, normal, G-variety and 03B1:V~Pd a
G-equivariant immersion into a projective space on which G operates
linearly; i.e., via a linear action on the cone Ad+1 over Pd. Let L =
03B1*OPd(1). Let C(V) be the affine cone over V minus the origin and
Cp(V) the normalization of C(V). Then since G acts linearly on Pd it
acts on C(V) and hence by [16; Sec. 6] on Cp(V). We say that the action
of G on Tl is regular if for almost all v E V, dim G. v = dim G. If the


