COMPOSITIO MATHEMATICA

A. HAEFLIGER

Deformations of transversely holomorphic flows on spheres and deformations of hopf manifolds

Compositio Mathematica, tome 55, nº 2 (1985), p. 241-251 <http://www.numdam.org/item?id=CM 1985 55 2 241 0>

© Foundation Compositio Mathematica, 1985, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

DEFORMATIONS OF TRANSVERSELY HOLOMORPHIC FLOWS ON SPHERES AND DEFORMATIONS OF HOPF MANIFOLDS

A. Haefliger

Abstract

In this note we consider a transversely holomorphic foliation \mathscr{F} of dimension one on S^{2n-1} obtained by intersecting the orbits of a holomorphic flow on \mathbb{C}^n having zero as a contracting fixed point. It is shown that any deformation of \mathscr{F} (in the class of transversely holomorphic foliations) is still obtained by intersecting S^{2n-1} with the orbits of a deformation of the holomorphic flow.

We use an analogue of the theorem of Kodaira-Spencer on the existence of a versal deformation for transversely holomorphic foliation (see [6] or [7]) and the classification of germs of holomorphic contracting vector fields (Poincaré-Dulac theorem) as explained in the book of Arnold [1]. This book was the main inspiration for this paper.

In an appendix which can be read independently, we show that parallel considerations leads to a complete classification of Hopf manifolds. This completes results of C. Borcea [2].

1. Statement of the main theorem

1.1. λ -RESONANT VECTOR FIELDS. Let $\lambda = (\lambda_1, \dots, \lambda_n)$ be a sequence of complex numbers with strictly negative real part. Following Arnold ([1], p. 178), an additive *) λ -resonant monomial vector field in \mathbb{C}^n is a vector field of the form $az^m \partial/\partial z_s$, where $m = (m_1, \dots, m_n)$ is a multiindex of non negative integers m_i such that

 $\lambda_s = (m, \lambda).$

Here $(m, \lambda) = \sum m_i \lambda_i$, $z^m = z^{m_1} \dots z^{m_n}$ and $a \in \mathbb{C}$. This condition implies that the m_i are not all zero.

DEFINITION: \mathcal{G}_{λ} denotes the vector space of λ -resonant vector fields, i.e. vector fields which are sum of λ -resonant monomial vector fields. It is a finite dimensional vector space. It can also be characterized as the subspace of holomorphic vector fields on \mathbb{C}^n commuting with the diago-

^{*} In the appendix, we shall define multiplicative μ -resonant vector fields.

nal vector field $\sum \lambda_s \partial / \partial z_s$. Therefore \mathscr{G}_{λ} is a Lie subalgebra of the Lie algebra of holomorphic vector fields on \mathbb{C}^n .

For generic λ , dim $g_{\lambda} = n$. For n = 2, dim g_{λ} can be 2, 3 or 4. For $n \ge 3$, dim g_{λ} is not bounded.

1.2. THE THEOREM OF POINCARÉ-DULAC. Let $\xi = \sum a_m^s z^m \partial/\partial z_s$ be a holomorphic vector field on a neighbourhood of 0 in \mathbb{C}^n , vanishing at 0 and such that the eigenvalues $\lambda_1, \ldots, \lambda_n$ of the matrix (a_i^s) of the linear part of ξ have strictly negative real parts (in other words the flow generated by ξ is contracting). We can order the λ_i 's so that Re $\lambda_1 \leq \ldots \leq \operatorname{Re} \lambda_n < 0$.

The theorem of Poincaré-Dulac (Cf. Arnold [1], p. 183) asserts that one can find new coordinates such that ξ is under the form of a λ -resonant vector field, with linear part under Jordan form, so

$$\boldsymbol{\xi} = \sum \lambda_s \boldsymbol{z}_s \partial / \partial \boldsymbol{z}_s + \sum_{(s,m)} a_m^s \boldsymbol{z}^m \partial / \partial \boldsymbol{z}_s \tag{1.2.1}$$

where the sum is over the sequences (s, m) such that

$$\lambda_s = \sum m_i \lambda_i, \quad m_i = 0 \qquad \text{for} \quad i \ge s.$$

Remark that after a diagonal change of coordinates, one can assume that the coefficients a_m^s are as small as we want. Indeed if h is the diagonal linear map with entries μ_1, \ldots, μ_n in the diagonal, then

$$(h_*\xi)(z) = \sum \lambda_s z_s \partial/\partial z_s + \sum_{(s,m)} \frac{\mu_s}{\mu^m} a_m^s z^m \partial/\partial z_s.$$

So we can choose $\mu_k = \epsilon^{-k}$, where ϵ is very small.

In other words, under the action of the group of linear automorphisms of \mathbb{C}^n , the orbit of the diagonal vector field $\sum \lambda_s z_s \partial / \partial z_s$ is in the adherence of the orbit of ξ .

The vector field ξ generates a global holomorphic flow z(t) of the form

$$z_{s}(t) = e^{\lambda_{s}t} \left(z_{s}(0) + \sum_{(s,m),r} b_{m,r}^{s} t^{r} z^{m}(0) \right)$$
(1.2.2)

(the coefficients $b_{m,r}^s$ are determined step by step, starting with s = n).

The orbits of this flow in \mathbb{C}^{n} -{0} are complex curves which are the leaves of a holomorphic foliation \mathscr{F}_{ξ} . Note that ξ vanishes only at 0. Those leaves are transversal to the unit sphere S^{2n-1} in \mathbb{C}^{n} , if the coefficients a_{m}^{s} are small enough. It follows that their intersection with S^{2n-1} are curves which are the leaves of a transversely holomorphic foliation \mathscr{F}_{ξ}^{0} on S^{2n-1} induced by \mathscr{F}_{ξ} .

THEOREM: Let S be a small enough neighbourhood of 0 in a vector subspace of g_{λ} (cf. 1.1) complementary to the vector subspace generated by $[\xi, g_{\lambda}]$ and ξ .

The family $\mathcal{F}_{\xi+s}^0$ of transversely holomorphic foliations on S^{2n-1} obtained by intersecting the orbits of the flows generated by $\xi + s$ is a versal deformation of \mathcal{F}_{ξ}^0 parametrized by $s \in S$ (in the sense of [7]).

Note that if ξ is the diagonal vector field $\sum \lambda_s z_s \partial / \partial z_s$, then the dimension of S is dim $g_{\lambda} - 1$. In any case, dim $S \ge n - 1$.

Let $\theta_{F_{\ell}}^{tr}$ be the sheaf of germs of transversely holomorphic vector fields for \mathscr{F}_{ℓ}^{0} (cf. Lemma 3.2), we obtain that

dim
$$H^0\left(S^{2n-1}, \theta_{F_{\xi}^0}^{\operatorname{tr}}\right) = \dim H^1\left(S^{2n-1}, \theta_{F_{\xi}^0}^{\operatorname{tr}}\right) = \dim S$$

and for i > 1

$$H^i\!\left(S^{2n-1},\,\boldsymbol{\theta}_{F^0_{\boldsymbol{\xi}}}^{\mathrm{tr}}\right)=0.$$

REMARK: An open neighbourhood of 0 in a vector subspace of \mathscr{G}_{λ} complementary to $[\xi, \mathscr{G}^{\lambda}]$ parametrizes a versal deformation of the holomorphic vector field ξ (see Arnold [1], p. 302, and N. Brouchlinskaïa [2] where the existence of a versal deformation is proved).

2. Infinitesimal deformation defined by a deformation of a vector field

2.1. Let ξ be an everywhere non zero holomorphic vector field on a complex manifold X and let \mathscr{F} be the holomorphic foliation whose leaves are the orbits of the flow generated by ξ .

We consider the following sheaves:

- θ = sheaf of germs of holomorphic vector fields on X,
- $\theta_{\mathscr{F}}$ = subsheaf of θ of vectors fields preserving \mathscr{F} ,
- θ^{ξ} = subsheaf of θ of vector fields commuting with ξ ,
- $\theta_{\mathscr{F}}^{tr}$ = sheaf of germs of transversely holomorphic vector fields for \mathscr{F} (quotient of $\theta_{\mathscr{F}}$ by vector fields tangent to the leaves of \mathscr{F})
- σ = sheaf of germs of holomorphic functions on X
- $\sigma_{\mathscr{F}}^{tr}$ = subsheaf of germs of holomorphic functions locally constant on the leaves of \mathscr{F} .

We have the following exact sequences of sheaves

$$0 \to \sigma_{\mathscr{F}}^{\mathrm{tr}} \to \sigma \to \sigma \to 0 \tag{2.1.1}$$

$$0 \to \theta^{\xi} \to \theta \xrightarrow{L_{\xi}} \theta \to 0 \tag{2.1.2}$$

$$0 \to \sigma_{\mathscr{F}}^{\mathrm{tr}} \to \theta^{\xi} \to \theta_{\mathscr{F}}^{\mathrm{tr}} \to 0 \tag{2.1.3}$$

where $L_{\xi}: \sigma \to \sigma$ is the derivative in the direction of ξ , $L_{\xi}: \theta \to \theta$ the Poisson bracket with ξ and the inclusion $\sigma_{\mathscr{F}}^{tr} \to \theta^{\xi}$ the multiplication by ξ . The multiplication by ξ send the sequence (2.1.1) in the sequence (2.1.2).

To check exactness, choose local coordinates $(z, w_1, \ldots, w_{n-1})$ such that ξ is given by $\partial/\partial z$.

Let S be a germ of analytic space with a base point 0; its Zariski tangent space of 0 is denoted by T_0S . Let ξ_s be a holomorphic family of everywhere non zero vector fields on X parametrized by S and such that $\xi_0 = \xi$. Denote by \mathscr{F}_s the corresponding family of holomorphic foliations on X.

2.2. PROPOSITION: The Kodaira-Spencer map

 $\rho: T_0 S \to H^1(X, \theta_{\mathcal{F}})$

measuring the infinitesimal deformations of the family \mathcal{F}_s is given by

 $\rho(\partial/\partial s) = -i \cdot \delta(\partial \xi_s/\partial s|_{s=0})$

where $\delta: H^0(X, \theta) \to H^1(X, \theta^{\xi})$ is the connecting homomorphism associated to (2.1.2) and i: $H^1(X, \theta^{\xi}) \to H^1(X, \theta_{\mathscr{F}})$ is induced by the inclusion of θ^{ξ} in θ_{φ} .

PROOF: Let $\{U_i\}_{i \in I}$ be an open covering of X such that there are families of holomorphic charts $\varphi_i^s: U_i \to \mathbb{C} \times \mathbb{C}^{n-1}$ so that $\varphi_i^s \star (\xi_s) = \partial/\partial z$, where $(z, w) \in \mathbb{C} \times \mathbb{C}^{n-1}$.

Let g_{ii}^s be the change of charts defined by $\varphi_i^s = g_{ii}^s \varphi_i^s$ on $U_i \cap U_i$.

The element $\rho(\partial/\partial s)$ of $H^1(X, \theta_{\mathcal{F}})$ corresponding to the infinitesimal deformation $\partial/\partial s$ is represented by the 1-cocycle associating to $U_i \cap U_i$ the vector field

$$\theta_{ij} = d/ds \left(\left(\varphi_i^0 \right)^{-1} \varphi_i^s \left(\varphi_j^s \right)^{-1} \varphi_j^0 \right)_{s=0} = \left(\left(\varphi_i^0 \right)^{-1} \right)_* \left(\frac{d}{ds} g_{ij}^s \bigg|_{s=0} \right).$$

Let η_i be the holomorphic vector field on U_i defined by $\eta_i =$

 $d/ds((\varphi_i^s)^{-1}\varphi_i^0)_{s=0}$. On $U_i \cap U_j$, we have $\theta_{ij} = \eta_j - \eta_i$. Moreover $L_{\xi}\eta_i = -d/ds\xi_s|_{s=0}$ because $\xi_s = ((\varphi_i^s)^{-1}\varphi_i^0)_{*}\xi$ hence d/ds $\xi_{s}|_{s=0} = [\eta_{i}, \xi].$

This shows that $\rho(\partial/\partial s) = -i \circ \delta(d\xi_s/ds|_{s=0})$.

2.3. COROLLARY: If we consider \mathcal{F}_s as a family of transversely holomorphic foliations, then the Kodaira-Spencer map

 $\rho: T_0 S \to H^1(X, \theta_{\mathscr{F}}^{\mathrm{tr}})$

is the composition of δ and of the map $p: H^1(X, \theta^{\xi}) \to H^1(X, \theta^{tr})$ induced by the projection $\theta^{\xi} \to \theta_{\mathscr{F}}^{\mathrm{tr}}$.

3. Proof of the theorem

3.1. We denote by \mathscr{F} the holomorphic foliation on $W = \mathbb{C}^n - \{0\}$ whose leaves are the orbits of the flow generated by ξ and by \mathscr{F}^0 the transversely holomorphic foliation on S^{2n-1} induced from \mathscr{F} by the inclusion $i: S^{2n-1} \to \mathbb{C}^n$. As before we denote by $\theta_{\mathscr{F}}^{\text{tr}}$ (resp. $\theta_{\mathscr{F}}^{\text{tr}}$) the sheaf of germs of transversely holomorphic vector fields for \mathscr{F} (resp. \mathscr{F}_0); clearly $\theta_{\mathscr{F}}^{\text{tr}} = i^* \theta_{\mathscr{F}}^{\text{tr}}$.

By the analogue of the Kodaira-Spencer theorem proved in [6] or in [7] for transversely holomorphic foliations, it will be sufficient to prove that the Kodaira-Spencer map $\rho: T_0 S \to H^1(S^{2n-1}, \theta_{\mathscr{F}^0}^{tr})$ is an isomorphism.

For the real parameter t, the orbits (1.2.2) of the flow generated by ξ are tangent to the leaves of \mathscr{F} , transveral to the sphere S^{2n-1} , tend to 0 for $t \to +\infty$ and to infinity in norm for $t \to -\infty$. So there is a projection $\pi: W \to S^{2n-1}$ mapping the point z on the point of intersection with S^{2n-1} of the orbit passing through z. The pull back by π of \mathscr{F}^0 is the transversely holomorphic foliation associated to \mathscr{F} . Hence $\sigma_{\mathscr{F}}^{tr} = \pi^* \sigma_{\mathscr{F}^0}^{tr}$ and

$$H^{i}(S^{2n-1}, \sigma_{\mathscr{F}^{0}}^{\mathrm{tr}}) \approx H^{i}(W, \sigma_{\mathscr{F}}^{\mathrm{tr}})$$

$$(3.1.1)$$

because W retracts by deformation on S^{2n-1} along the orbits. For the same reasons and with the notations of 2, we have

$$H^{i}(S^{2n-1}, i^{*}\theta^{\xi}) \approx H^{i}(W, \theta^{\xi}).$$

$$(3.1.2)$$

For n > 1, any holomorphic vector field on W extends to a holomorphic vector field on \mathbb{C}^n , so any element of $H^0(W, \theta)$ is represented by a convergent series $\sum a_m^s z^m \partial / \partial z_s$ (here θ denotes the sheaf of germs of holomorphic vector fields on W; it is isomorphic to σ^n , where σ is the sheaf of germs of holomorphic functions on W).

Consider the cohomology long exact sequences associated to the short exact sequences (2.1.1) and (2.1.2):

$$0 \to H^{0}(W, \sigma_{\mathscr{F}}^{\mathrm{tr}}) \to H^{0}(W, \sigma) \xrightarrow{L_{\xi}} H^{0}(W, \sigma) \to H^{1}(W, \sigma_{\mathscr{F}}^{\mathrm{tr}}) \to \dots$$
(3.1.3)

$$0 \to H^0(W, \theta_{\mathscr{F}}^{\xi}) \to H^0(W, \theta) \xrightarrow{L_{\xi}} H^0(W, \theta) \to H^1(W, \theta_{\mathscr{F}}^{\xi}) \to \dots$$
(3.1.4)

Let g_{λ}^{\perp} be the vector subspace of $H^{0}(W, \theta)$ of holomorphic vector fields which are sum of monomial vector fields $az^{m}\partial/\partial z_{s}$ which are not λ -resonant. It is clear that L_{ξ} maps g_{λ} in g_{λ} and g_{λ}^{\perp} in g_{λ}^{\perp} , because the bracket of a λ -resonant monomial vector field with a monomial vector field which is not λ -resonant is not λ -resonant.

- 3.2. Lemma:
 - (a) $H^{i}(W, \sigma) = H^{i}(W, \theta) = 0$ for $i \neq 0$, n-1. $H^{n-1}(W, \sigma)$ (resp. $H^{n-1}(W, \theta)$) is isomorphic to the vector space of convergent series $\sum a_{m} z^{m}$ (resp. $\sum a_{m}^{s} z^{m} \partial/\partial z_{s}$) on $(\mathbb{C} \{0\})^{n}$ where the sum is over the sequences m such that all $m_{i} < 0$.
 - (b) For i > 0, the maps $L_{\xi}: H^{i}(W, \sigma) \to H^{i}(W, \sigma)$ and $L_{\xi}: H^{i}(W, \theta) \to H^{i}(W, \theta)$ are isomorphisms.
 - (c) The kernel and cokernel of $L_{\xi}: H^{0}(W, \sigma) \to H^{0}(W, \sigma)$ are generated by the constant function 1. $L_{\xi}: g_{\lambda}^{\perp} \to g_{\lambda}^{\perp}$ is an isomorphism.

PROOF OF (A): Consider the covering $\mathscr{U} = \{U_i\}$ of W by the Stein open sets $U_i = \{z \in W : z_i \neq 0\}$. By the theorem of Leray, $H^k(W, \sigma)$ is isomorphic to the Čech cohomology $H^k(\mathscr{U}, \sigma)$ computed using alternate cochains. Hence $H^k(W, \sigma) = 0$ for $k \ge n$. In dimension n - 1, cochains are cocycles and are holomorphic functions on $\bigcap U_i = (\mathbb{C} - \{0\})^n$; their Laurent expansion are of the form $\sum a_m z^m$, where $m = (m_1, \ldots, m_n)$, $m_i \in \mathbb{Z}$. Modulo the coboundaries, each element of $H^{n-1}(W, \sigma)$ has a unique representative with all $m_i < 0$.

To prove that $H^k(W, \sigma) = 0$ for 0 < k < n-1, one can consider W as the union of $\{z \in W : z_1, \ldots, z_{n-1} \text{ not all zero}\} = (\mathbb{C}^{n-1} - \{0\}) \times \mathbb{C}$ and $\{z \in W : z_n \neq 0\} = (\mathbb{C} - \{0\}) \times \mathbb{C}^{n-1}$, and write the Mayer-Vietoris cohomology exact sequence associated to this covering. Part a) of the lemma for σ follows by induction on n, using Künneth formula.

As $\theta = \sigma^n$, the similar result for $H^i(W, \theta)$ follows.

PROOF OF (B): If ξ is diagonal, namely if $\xi = \sum \lambda_s z_s \partial / \partial z_s$, then

$$L_{\xi}(z^{m}) = (m, \lambda) z^{m} \text{ and}$$
$$L(z^{m}\partial/\partial z_{s}) = [(m, \lambda) - \lambda_{s}] z^{m}\partial/\partial z_{s}.$$

If all the m_i are strictly negative, (m, λ) and $(m, \lambda) - \lambda_s$ have strictly positive real part, hence are non zero. It follows that the endomorphism L_{ξ} of $H^{n-1}(W, \sigma)$ and $H^{n-1}(W, \theta)$ are injective. Surjectivity is also easy because $|(m, \lambda)|^{-1}$ and $|(m, \lambda) - \lambda_s|^{-1}$ are smaller than 1 for |m| big enough.

In general we can assume that ξ is under the form 1.2.1. With respect to the lexicographic order,

 $L_{\xi}(z^m) = (m, \lambda)z^m$ + bigger monomials, and $L_{\xi}(z^m\partial/\partial z_s) = [(m, \lambda) - \lambda_s]z^m$ + bigger monomial vector fields, if we decide that $z^m \partial / \partial z_s < z^n \partial / \partial z_t$ for s > t. It follows that L is injective. One should be able to prove directly that L is also surjective.

We give another argument using the upper semi-continuity of the dimension of the space of solutions of a differential elliptic operator on a compact manifold depending smoothly on a parameter (cf. Kodaira-Spencer III, [8] Th. 4, p. 48). When ξ is diagonal, we have checked that L_{ξ} is an isomorphism. Hence from the exact sequence 3.1.3, we have $H^{i}(W, \sigma_{\mathcal{F}}^{tr}) = H^{i}(S^{2n-1}, \sigma_{\mathcal{F}_{0}}^{tr}) = 0$ for $i \ge 2$. As this group is isomorphic to the space of solutions of an elliptic differential operator (cf. Kalka-Duchamp [5]), for all ξ close enough to a diagonal vector field (this is always the case by 1.2), we still have $H^{i}(S^{2n-1}, \sigma_{\mathcal{F}_{0}}^{tr}) = 0$ for $i \ge 2$. Hence $L_{\xi}: H^{i}(W, \sigma) \to H^{i}(W, \sigma)$ is an isomorphism for i > 0. The similar argument works for σ replaced by θ .

PROOF OF (C): The elements of $H^0(W, \sigma)$ are convergent series $\sum a_m z^m$, with all $m_i \ge 0$. For ξ diagonal, it is easy to check that the kernel and cokernel of L_{ξ} are generated by 1. So from the exact sequence (3.1.3) and (3.1.1), we have dim $H^0(S^{2n-1}, \sigma_{\mathscr{F}}^{tr}) = \dim H^1(S^{2n-1}, \sigma_{\mathscr{F}}^{tr}) = 1$. Hence $\sum (-1)^i \dim H^i(S^{2n-1}, \sigma_{\mathscr{F}_0}^{tr}) = 0$. This number is the index of an elliptic complex (cf. Kalka-Duchamp [5]), so it is constant under deformation. Hence when ξ is not diagonal, we still have dim $H^0(S^{2n-1}, \sigma_{\mathscr{F}_0}^{tr}) = \dim H^1(S^{2n-1}, \sigma_{\mathscr{F}_0}^{tr}) \le 1$ (we also use semi-continuity as above). But the kernel of L_{ξ} contains 1, hence dim $H^1(S^{2n-1}, \sigma_{\mathscr{F}_0}^{tr}) = \dim H^1(W, \sigma_{\mathscr{F}}^{tr}) = 1$. Therefore L_{ξ} surjects on the space of holomorphic functions vanishing at zero.

Similarly L_{ξ} restricted to $\mathscr{G}_{\lambda}^{\perp}$ is injective and, when ξ is diagonal, it is an isomorphism on $\mathscr{G}_{\lambda}^{\perp}$. As above, we see that dim $H^{0}(W, \theta^{\xi}) =$ dim $H^{1}(W, \theta)$, for all ξ . But $H^{0}(W, \theta^{\xi}) = \operatorname{Ker} L_{\xi} = \operatorname{Ker}(L_{\xi}|\mathscr{G}_{\lambda}) =$ $\mathscr{G}_{\lambda}/L_{\xi}(\mathscr{G}_{\lambda})$, because \mathscr{G}_{λ} is finite dimensional, and $H^{1}(W, \theta^{\xi}) = \operatorname{Coker} L_{\xi}$. Hence L_{ξ} maps $\mathscr{G}_{\lambda}^{1}$ surjectively on itself.

3.3. END OF THE PROOF OF THE THEOREM. Consider the commutative diagram

where the first row is mapped in the second one by the multiplication by

 ξ , and the vertical column is the cohomology exact sequence associated to (2.1.3).

By 2.3, we have to check that the restriction of $p \circ \delta$ to the subspace $T_0 S$ of $H^0(W, \theta)$ is an isomorphism on $H^1(W, \theta_{\mathcal{F}}^{tr})$.

By the lemma, the map p as well as both maps δ are surjective. Also the restriction of δ to the vector subspace of $H^0(W, \theta)$ generated by T_0S and ξ is an isomorphism on $H^1(W, \theta^{\xi})$. But $\delta \xi$ generates the kernel of p; hence $p \circ \delta | T_0S$ is an isomorphism.

Appendix: Versal deformation of Hopf manifolds

A.1. μ -RESONANT MAPS. Let $\mu = (\mu_1, \dots, \mu_n)$ be a sequence of non zero complex numbers such that $|\mu_i| < 1$. A (multiplicative) μ -resonant monomial (cf. Arnold [1], p. 185) is a polynomial map of \mathbb{C}^n in \mathbb{C}^n of the form $z \to az^m e_s$ such that

 $\mu_s = \mu^m$.

Here $m = (m_1, ..., m_n)$ is a sequence of positive integers, $\mu^m = \mu_1^{m_1} ... \mu_n^{m_n}$, $a \in \mathbb{C}$ and $e_1, ..., e_n$ is the canonical basis of \mathbb{C}^n . We shall assume that

 $0 < |\mu_1| \le |\mu_2| \le \ldots \le |\mu_n| < 1.$

A μ -resonant polynomial map $f: \mathbb{C}^n \to \mathbb{C}^n$ is a sum of μ -resonant monomials. Equivalently f is a polynomial map of \mathbb{C}^n in \mathbb{C}^n which commutes with the diagonal linear map $d_{\mu}: (z_1, \ldots, z_n) \to (\mu_1 z_1, \ldots, \mu_n z_n)$. Note that f(0) = 0.

The set of μ -resonant polynomial maps is a subalgebra R_{μ} of the algebra of polynomial maps of \mathbb{C}^n in \mathbb{C}^n . It is finite dimensional. The elements of degree one in R_{μ} are represented by matrices with possibly non zero blocs along the diagonal with size equal to the number of times a μ_i is repeated.

Let G_{μ} be the group of invertible elements in R_{μ} . An element f in R_{μ} is invertible iff its linear part (or equivalently its derivative f'(0) at 0) is invertible. Indeed, after conjugation with a linear automorphism in R_{μ} , one can assume that f is under lower triangular Jordan form. The i^{th} -coordinate is the sum of a non zero multiple of z_i and a polynomial containing only z_1, \ldots, z_{i-1} .

 G_{μ} is a connected complex Lie group, open in R_{μ} . The kernel of the projection of G_{μ} on the group G_{μ}^{1} of linear automorphisms in R_{μ} is nilpotent.

The Lie algebra \mathscr{G}_{μ} of G_{μ} is the space of (multiplicatively) μ -resonant vector fields on \mathbb{C}^{n} , namely those vector fields which are linear combination of vector fields of the form $z^{m}\partial/\partial z_{s}$, where $\mu_{s} = \mu^{m}$. The μ -resonant

vector fields can also be characterized as vector fields invariant by d_{μ} . As a vector space, g_{μ} is isomorphic to R_{μ} .

A.2. DEFINITION OF HOPF MANIFOLDS. In this paragraph, we give several equivalent definitions for a Hopf manifold. We begin with the one which is apparently the most general.

A Hopf manifold of dimension n > 1 is a complex manifold W_f which is the quotient of $W = \mathbb{C}^n - \{0\}$ by an infinite cyclic group acting holomorphicaly, and properly discontinuously on W. It is proved by \mathbb{C} . Borcea [2] that this group is generated by an element f such that $\sup_{|z| < a} |f^m(z)| \to 0$ when $m \to \infty$ for any a, and that W_f is compact.

f extends to an automorphism of \mathbb{C}^n . We claim that the eigenvalues of the differential f'(0) of f at 0 are of absolute value smaller than one. Indeed let v be an eigenvector corresponding to an eigenvalue μ of f'(0), and let p be a linear projection of \mathbb{C}^n on the one-dimensional subspace Vgenerated by v. For m big enough, the restriction of f^m to V composed with p is a holomorphic map mapping the unit disk in V in a disk of smaller radius. The derivative at 0 of this map is μ^m , and by Schwarz lemma, $|\mu|$ must be smaller than one.

So we could have defined a Hopf manifold of dimension n as a compact complex manifold W_f which is the quotient of W by a properly discontinuous group generated by an automorphism f of \mathbb{C}^n fixing 0 and such that the eigenvalues μ_1, \ldots, μ_n of f'(0) are inside the unit circle. According to the Poincaré-Dulac theorem (Cf. Arnold [1], p. 187), there is a holomorphic isomorphism h of a neighbourhood of 0 on a neighbourhood of 0 such that hfh^{-1} is the restriction of a polynomial map \tilde{f} of \mathbb{C}^n which is μ -resonant. We have seen in A.1 that \tilde{f} is bijective and as each orbit of f and \tilde{f} meets an arbitrarily small neighbourhood of 0 in \mathbb{C}^n , the map \tilde{h} extends to a global automorphism h of \mathbb{C}^n such that $\tilde{f} = \tilde{h}f\tilde{h}^{-1}$.

Eventually we can equivalently define a Hopf manifold as the quotient W_f of $W = \mathbb{C}^n - \{0\}$ by a polynomial automorphism f of \mathbb{C}^n whose derivative f'(0) at 0 has eigenvalues $\mu = (\mu_1, \dots, \mu_n)$ inside the unit circle, and such that f is μ -resonant.

A.3. THEOREM: Let f be as above. A versal deformation of the Hopf manifold W_f is obtained as follows. Let S be a small complex submanifold in G_{μ} passing through f and whose tangent space at f is complementary to the tangent space of the orbit of f under the action of G_{μ} by conjugation on itself. Then the family W_s , where $s \in S$, is a versal deformation of W_f parametrized by S.

Let θ_f be the sheaf of germs of holomorphic vector fields on W_f . Then $H^i(W_f, \theta_f) = 0$ for i > 1 and dim $H^0(W_f, \theta_f) = \dim H^1(W_f, \theta_f)$ is the dimension of the centralizer of f in G_{μ} (which is also the dimension of the kernel of the endomorphism $1 - f_*$ of \mathscr{G}_{μ}).

A. Haefliger

For instance if f is diagonal, then dim $H^1(W_f, \theta_f) = \dim \mathcal{G}_{\mu}$. In general $n \leq \dim H^1(W_f, \theta_f) \leq \dim \mathcal{G}_{\mu}$.

For $n \ge 3$, the dimension of \mathscr{G}_{μ} is not bounded. For instance, if n = 3 and μ_1 , μ_2 , μ_3 are real numbers such that $\mu_2 = \mu_3$ and $\mu_1 = \mu_2^p$, then dim $\mathscr{G}_{\mu} = p + 6$.

A.4. PROOF OF THE THEOREM: Consider the exact sequence (cf. [4], [2], [9]) analogous to (3.1.4):

$$0 \to H^{0}(W_{f}, \theta_{f}) \to H^{0}(W, \theta) \xrightarrow{1-f_{*}} H^{0}(W, \theta) \to H^{1}(W_{f}, \theta_{f})$$
$$\to H^{1}(W, \theta) \xrightarrow{1-f_{*}} H^{1}(W, \theta)$$
(A.4.1.)

where θ is the sheaf of germs of holomorphic vector fields on W.

The main facts are:

(a) for $i > 0, 1 - f_*$: $H^i(W, \theta) \to H^i(W, \theta)$ is an isomorphism.

(b) Denote by g_{μ}^{\perp} the subspace of $H^{0}(W, \theta)$ of those vector field of the form $\sum a_{m}^{s} z^{m} \partial / \partial z_{s}$, where the monomials $a_{m}^{s} z^{m} \partial / \partial z_{s}$ are not μ -resonant. Then $1 - f_{*}$ maps g_{μ} in g_{μ} and is an isomorphism of g_{μ}^{\perp} on g_{μ}^{\perp} .

(c) Let f_s be a holomorphic family of automorphisms of \mathbb{C}^n depending on a parameter t in a small neighbourhood of 0 in \mathbb{C} , such that $f = f_0$ and $f_t \in G_{\mu}$. For the corresponding family W_{f_t} of Hopf manifolds, the infinitesimal deformation $\rho(\partial/\partial t) \in H(W_f, \theta_f)$ is the image by δ of the vector field $d/dt(f_t f_0^{-1})|_{t=0}$ on W.

Those facts imply the theorem. By (a) and (b), the restriction of δ to the subspace \mathscr{G}_{μ} of $H^0(W, \theta)$ is a surjection on $H^1(W_f, \theta_f)$. The differential f^{-1}_* of the right translation by f^{-1} in G_{μ} maps isomorphically the tangent space at f to the orbit of f on the subspace $(1 - f_*)\mathscr{G}_{\mu}$ of \mathscr{G}_{μ} , and maps isomorphically $T_f S$ on a complement in \mathscr{G}_{μ} of $(1 - f_*)\mathscr{G}_{\mu}$. By c), the Kodaira-Spencer map $\rho: T_f S \to H^1(W_f, \theta_f)$ is the composition of f^{-1}_* with δ , hence is an isomorphism by the exactness of (A.4.1).

Also (a), (b) and the exactness of (A.4.1) imply that $H^i(W_f, \theta_f) = 0$ for i > 1 and that $H^0(W_f, \theta_f) = H^1(W_f, \theta_f)$. The Lie algebra of the centralizer of f is the kernel of the map $1 - f_* : g_\mu \to g_\mu$, so is canonically isomorphic to $H^0(W_f, \theta_f)$. Hence the connected component of the centralizer of f in G_μ (which acts naturally on W_f) is the connected component of the group of analytic automorphisms of W_f .

(c) is proved in Douady [4] and the proof of a) and b) is parallel to the proof of lemma 3.2 and is partly contained in [2] or [9]. We have seen in lemma 3.2 that $H^i(W, \theta) = 0$ for $i \neq 0, n-1$ and that $H^{n-1}(W, \theta)$ is isomorphic to the convergent series in $(\mathbb{C} - \{0\})^n$ of the form $\sum a_m^s z^m \partial/\partial z_s$, with $m_i < 0$. It is easy to check directly that $(1 - f_*)|_{\mathcal{G}_{\mu}^{\perp}}$ is injective, as

250

well as $1 - f_* : H^i(W, \theta) \to H^i(W, \theta)$ for i > 0. Indeed we can assume that $0 < |\mu_1| \leq \ldots \leq |\mu_n| < 1$ and that the linear part of f is under upper triangular form. Then for the order defined in 3.2 (proof of b)), we have

$$(1 - f_*)z^m \partial/\partial z_s = (1 - \mu_s/\mu_m)z^m \partial/\partial z_s + \text{bigger terms.}$$

Moreover $(1 - \mu_s/\mu^n) \neq 0$ if all m_i are negative or if $z^m \partial/\partial z_s \in g_{\mu}^{\perp}$. The surjectivity of $(1 - f_*)$: $H^i(W, \theta) \to H^i(W, \theta)$ for i > 0 is also obvious if f is diagonal.

From the preceding discussion and the exactness of A.3.1, it follows that $H^i(W_f, \theta_f) = 0$ for i > 1 in case f is diagonal. By upper semicontinuity, this is still true for f close enough to a diagonal map; this is always the case up to conjugation (cf. A.2). As in the proof of lemma 3.2, c), we see that $H^0(W_f, \theta_f) = H^1(W_f, \theta_f)$, because $\Sigma(-1)^i H^i(W_f, \theta_f) = 0$ for f diagonal, hence also for f close to diagonal. The restriction of $1 - f_*$ to g_{μ} has kernel and cokernel in g_{μ} of the same dimension. We have seen that the kernel of $1 - f_*$ restricted to g_{μ}^{\perp} is zero, so its cokernel in g_{μ}^{\perp} must also be zero. This completes the proof of b).

References

- V. ARNOLD: Chapitres supplémentaires de la théorie des équations différentielles ordinaires. Moscou: Editions Mir (1980) traduction française.
- [2] C. BORCEA: Some remarks on deformations of Hopf manifolds. Rev. Roum. Math. pures et appl. 26 (1981) 1287-1294.
- [3] N. BROUCHLINSKAIA: Finiteness theorem for familities of vector fields in the neighbourhood of a Poincaré-type singularity. *Funct. Anal.* 5 (1971), english translation 177–181.
- [4] A. DOUADY: Séminaire H. Cartan, exp. 3 (1960-1961).
- [5] T. DUCHAMP and M. KALKA, Deformation theory for holomorphic foliations. J. Diff. Geom. 14 (1979) 317-337.
- [6] T. DUCHAMP and M. KALKA: Holomorphic foliations and deformations of the Hopf foliation, preprint.
- [7] J. GIRBAU, A. HAEFLIGER and D. SUNDARARAMAN: On deformations of transversely holomorphic foliations, J. für die reine und ang. Math. 345 (1983) 122–147.
- [8] K. KODAIRA and D.C. SPENCER: On deformation of complex analytic structures, I, II, III. Ann. of Math. 67 (1958) 328-466 and 71 (1960) 43-76.
- [9] J. WEHLER: Versal deformation of Hopf surfaces. J. für die reine und ang. Math. 328 (1981) 22-32.

(Oblatum 15-VI-1983 & 31-I-1984)

Université de Genève Faculté des Sciences Section de Mathématiques 2–4, rue du Lièvre Case Postale 124 1211 Genève 24 Switzerland