
COMPOSITIO MATHEMATICA

A. HAEFLIGER
Deformations of transversely holomorphic flows on
spheres and deformations of hopf manifolds
Compositio Mathematica, tome 55, no 2 (1985), p. 241-251
<http://www.numdam.org/item?id=CM_1985__55_2_241_0>

© Foundation Compositio Mathematica, 1985, tous droits réservés.

L’accès aux archives de la revue « Compositio Mathematica » (http:
//http://www.compositio.nl/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/legal.php). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CM_1985__55_2_241_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/legal.php
http://www.numdam.org/
http://www.numdam.org/


241

DEFORMATIONS OF TRANSVERSELY HOLOMORPHIC FLOWS
ON SPHERES AND DEFORMATIONS OF HOPF MANIFOLDS

A. Haefliger

Compositio Mathematica 55 (1985) 241-251.
@ 1985 Martinus Nijhoff Publishers, Dordrecht. Printed in the Netherlands.

Abstract

In this note we consider a transversely holomorphic foliation F of dimension one on
s2n-l obtained by intersecting the orbits of a holomorphic flow on en having zero as a
contracting fixed point. It is shown that any deformation of F (in the class of transversely
holomorphic foliations) is still obtained by intersecting S2n-1 with the orbits of a

deformation of the holomorphic flow.
We use an analogue of the theorem of Kodaira-Spencer on the existence of a versal

deformation for transversely holomorphic foliation (see [6] or [7]) and the classification of
germs of holomorphic contracting vector fields (Poincaré-Dulac theorem) as explained in
the book of Arnold [1]. This book was the main inspiration for this paper.

In an appendix which can be read independently, we show that parallel considerations
leads to a complete classification of Hopf manifolds. This completes results of C. Borcea
[2].

1. Statement of the main theorem

1.1. À-RESONANT VECTOR FIELDS. Let 03BB = (03BB1,...,03BBn) be a sequence of
complex numbers with strictly negative real part. Following Arnold ([1],
p. 178), an additive *) 03BB-resonant monomial vector field in C n is a vector
field of the form azm~/~zs, where m = (m1,...,mn) is a multiindex of
non negative integers mi such that

Here (m, 03BB) = 03A3mi03BBi, z m = zml ... z m and 03B1~C. This condition implies
that the m are not all zero.

DEFINITION: g03BB denotes the vector space of À-resonant vector fields, i.e.
vector fields which are sum of À-resonant monomial vector fields. It is a
finite dimensional vector space. It can also be characterized as the

subspace of holomorphic vector fields on C " commuting with the diago-

* In the appendix, we shall define multiplicative p-resonant vector fields.



242

nal vector field 03A303BBs~/~zs. Therefore yx is a Lie subalgebra of the Lie
algebra of holomorphic vector fields on C ".

For generic À, dim g03BB = n. For n = 2, dim g03BB can be 2, 3 or 4. For
n &#x3E; 3, dim gx is not bounded.

1.2. THE THEOREM OF POINCARÉ-DULAC. Let 03BE=03A303B1smzm~/~zs be a

holomorphic vector field on a neighbourhood of 0 in en, vanishing at 0
and such that the eigenvalues 03BB1,..., 03BBn of the matrix (asi) of the linear
part of t have strictly negative real parts (in other words the flow
generated by 03BE is contracting). We can order the À i’s so that Re 03BB1 
...  Re 03BBn  0.

The theorem of Poincaré-Dulac (Cf. Arnold [1], p. 183) asserts that
one can find new coordinates such that t is under the form of a
À-resonant vector field, with linear part under Jordan form, so

where the sum is over the sequences (s, m ) such that

Remark that after a diagonal change of coordinates, one can assume
that the coefficients am are as small as we want. Indeed if h is the

diagonal linear map with entries 03BC1,...,in the diagonal, then

So we can choose p, k = ~-k, where e is very small.
In other words, under the action of the group of linear automorphisms

of C", the orbit of the diagonal vector field 03A303BBszs~/~zs is in the
adherence of the orbit of t.

The vector field t generates a global holomorphic flow z(t) of the
form

(the coefficients bm,,. are determined step by step, starting with s = n ).
The orbits of this flow in Cn-{0} are complex curves which are the

leaves of a holomorphic foliation 3fi. Note that t vanishes only at 0.
Those leaves are transversal to the unit sphere s2n-l in Cn, if the
coefficients am are small enough. It follows that their intersection with
s2n-l are curves which are the leaves of a transversely holomorphic
foliation 1-eio on S2n-1 induced by F03BE.
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THEOREM: Let S be a small enough neighbourhood of 0 in a vector

subspace of gx ( cf . 1.1) complementary to the vector subspace generated by
gx] ] and 03BE.

The family F003BE+s of transversely holomorphic foliations on S2n-1 ob-
tained by intersecting the orbits of the flows generated by t + s is a versal
deformation of F003BE parametrized by s E S (in the sense of [7]).

Note that if t is the diagonal vector field LÀsZsa/azs, then the
dimension of S is dim?À - 1. In any case, dim S  n - 1.

Let 03B8trF03BE0 be the sheaf of germs of transversely holomorphic vector fields
for F003BE (cf. Lemma 3.2), we obtain that

and for i &#x3E; 1

REMARK: An open neighbourhood of 0 in a vector subspace of g03BB
complementary to [t, g03BB] parametrizes a versal deformation of the

holomorphic vector field t (see Arnold [1], p. 302, and N. Brouchlinskaia
[2] where the existence of a versal deformation is proved).

2. Infinitésimal déformation def ined by a déformation of a vector field

2.1. Let e be an everywhere non zero holomorphic vector field on a
complex manifold X and let F be the holomorphic foliation whose
leaves are the orbits of the flow generated by 03BE.
We consider the following sheaves:
03B8 = sheaf of germs of holomorphic vector fields on X,
0, = subsheaf of 03B8 of vectors fields preserving F,
03B803BE = subsheaf of 03B8 of vector fields commuting with 1,
03B8trF= sheaf of germs of transversely holomorphic vector fields for F

(quotient of 0, by vector fields tangent to the leaves of -4v)
a = sheaf of germs of holomorphic functions on X
03C3trF= subsheaf of germs of holomorphic functions locally constant on

the leaves of F.
We have the following exact sequences of sheaves
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where L03BE: 03C3 ~ a is the derivative in the direction of e, L03BE : 03B8 ~ 03B8 the

Poisson bracket with t and the inclusion 03C3trF ~ 0 i the multiplication by 03BE.
The multiplication by t send the sequence (2.1.1) in the sequence (2.1.2).

To check exactness, choose local coordinates (z, w1,..., wn-1) such
that e is given by 3/9z.

Let S be a germ of analytic space with a base point 0; its Zariski

tangent space of 0 is denoted by ToS. Let e, be a holomorphic family of
everywhere non zero vector fields on X parametrized by S and such that
eo = 03BE. Denote by Fs the corresponding family of holomorphic foliations
on X.

2.2. PROPOSITION: The Kodaira-Spencer map

measuring the infinitesimal deformations of the family Fs is given by

where 03B4 : H0(X, 03B8) ~ H1(X, 03B803BE) is the connecting homomorphism associ-
ated to (2.1.2) and r H1(X, 03B803BE) ~ H1(X, 03B8F) is induced by the inclusion
of 03B803BE in 03B8F.

PROOF: Let {Ui}i~I be an open covering of X such that there are
families of holomorphic charts ~si: U ~ C X en -1 so that ~si*(03BEs) = a/az,
where (z, w) E e  Cn-1.

Let gsij be the change of charts defined by ~si = gsij~sj on U ~ Uj.
The element p(a/as) of H1(X, 03B8F) corresponding to the infinitesimal

deformation ~/~s is represented by the 1-cocycle associating to U r1 U
the vector field

Let ~i be the holomorphic vector field on Ui defined by ~i =

d/ds((~si)-1~0i)s=0. On Ui ~ U, we have 03B8ij = ~j - ~i.
Moreover L03BE~i = - d/ds03BEs|s=0 because t, = ((~si)-1~0i)*03BE hence d/d s

es 1 S=O = [~i, 03BE].
This shows that p(a/as) = - i 0 03B4(d03BEs/ds | s=0).

2.3. COROLLARY: If we consider -4vs as a family of transversely holomorphic
foliations, then the Kodaira-Spencer map

is the composition of 03B4 and of the map p : H1( X, 03B803BE) ~ H1( X, 0;) induced
by the projection 03B803BE ~ 03B8trF,.
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3. Proof of the theorem

3.1. We denote by F the holomorphic foliation on w= en - {0} whose
leaves are the orbits of the flow generated by t and by F0 the

transversely holomorphic foliation on s2n-1 induced from 9’ by the
inclusion i:S2n-1 ~ Cn. As before we denote by 03B8trF (resp. 0;’0) the
sheaf of germs of transversely holomorphic vector fields for F (resp.
F0); clearly 03B8trF0 = i*O"7.

By the analogue of the Kodaira-Spencer theorem proved in [6] or in [7]
for transversely holomorphic foliations, it will be sufficient to prove that
the Kodaira-Spencer map p : TOS - H1(S2n-1, 8;’0) is an isomorphism.

For the real parameter t, the orbits (1.2.2) of the flow generated by 03BE
are tangent to the leaves of F, transveral to the sphere S2n-1, tend to 0
for t ~ + oo and to infinity in norm for t ~ - oo. So there is a projection
qr : W ~ S2n-1 mapping the point z on the point of intersection with
s2n-1 of the orbit passing through z. The pull back by 03C0 of F° is the

transversely holomorphic foliation associated to F. Hence 03C3trF = 03C0*03C3trF0
and

because W retracts by deformation on s2n-l along the orbits. For the
same reasons and with the notations of 2, we have

For n &#x3E; 1, any holomorphic vector field on W extends to a holomor-
phic vector field on Cn, so any element of H0(W, 03B8) is represented by a
convergent series 03A3asmzm~/~zs (here 8 denotes the sheaf of germs of
holomorphic vector fields on W; it is isomorphic to on, where a is the
sheaf of germs of holomorphic functions on W).

Consider the cohomology long exact sequences associated to the short
exact sequences (2.1.1) and (2.1.2):

Let y’ be the vector subspace of H0(W, 03B8) of holomorphic vector
fields which are sum of monomial vector fields az m a/azs which are not
À-resonant. It is clear that Li maps gx in gx and y’ in g03BB~ , because the
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bracket of a À-resonant monomial vector field with a monomial vector
field which is not À-resonant is not 03BB-resonant.

3.2. LEMMA :

(a) Hi(W, 03C3) = Hi(W, 03B8) = 0 for i ~ 0, n - 1. Hn-1(W, 03C3) (resp.
Hn-1(W, 8)) is isomorphic to the vector space of convergent series
LamZm (resp. 03A3asmzm~/~zs) on (C-{0})n where the sum is over the
sequences m such that all mi  0.

(b) For i &#x3E; 0, the maps L03BE : Hi(W, 03C3) ~ Hi(W, 03C3) and L03BE : Hi(W, C)
~ Hi(W, 03B8) are isomorphisms.

(c) The kernel and cokernel of L03BE : H0(W, 03C3) ~ H0(W, o) are gener-
ated by the constant function 1. L03BE : g03BB~ --:,?t is an isomorphism.

PROOF OF (A): Consider the covering u = {Ui} of W by the Stein open
sets Ui = {z ~ W : zi ~ 0}. By the theorem of Leray, Hk ( W, 0) is isomor-
phic to the Cech cohomology Hk(u, 03C3) computed using alternate
cochains. Hence Hk(W, 03C3) = 0 for k  n. In dimension n - 1, cochains
are cocycles and are holomorphic functions on ~Ui = (C - {0})n; their
Laurent expansion are of the form 03A3amzm, where m = (m1,...,mn),
m1 ~ Z. Modulo the coboundaries, each element of Hn-1(W, 0) has a
unique representative with all m  0.

To prove that Hk(W, 03C3) = 0 for 0  k  n - 1, one can consider W as
the union of {z ~ W : z1,..., zn-1 not all zero} = (Cn-1 - {0})  C and
{z ~ W : zn ~ 0} = (Cn-1, and write the Mayer-Vietoris
cohomology exact sequence associated to this covering. Part a) of the
lemma for a follows by induction on n, using Künneth formula.

As 8 = an, the similar result for Hi(W, C) follows.

PROOF OF (B): If 03BE is diagonal, namely if 03BE = 03A303BBszs~/~zs, then

If all the m are strictly negative, (m, À) and (m, 03BB) - 03BBs have strictly
positive real part, hence are non zero. It follows that the endomorphism
L03BE of Hn-1(W, a) and Hn-1(W, 0) are injective. Surjectivity is also easy
because I(m, À)I-1 and I(m, À)-’Àsl-1 are smaller than 1 for 1 m big
enough.

In general we can assume that Z is under the form 1.2.1. With respect
to the lexicographic order,

L03BE(zm) = (m, 03BB)zm + bigger monomials, and

L03BE(zm~/~zs) = [(m, 03BB) - 03BBs] z m + bigger monomial vector fields,



247

if we decide that zma/azs  zna/azt for s &#x3E; t. It follows that L is

injective. One should be able to prove directly that L is also surjective.
We give another argument using the upper semi-continuity of the

dimension of the space of solutions of a differential elliptic operator on a
eompact manifold depending smoothly on a parameter (cf.
Kodaira-Spencer III, [8] Th. 4, p. 48). When 1 is diagonal, we have
checked that Le is an isomorphism. Hence from the exact sequence 3.1.3,
we have Hi(W, 03C3trF) = Hi(S2n-1, 03C3trF0) = 0 for i  2. As this group is

isomorphic to the space of solutions of an elliptic differential operator
(cf. Kalka-Duchamp [5]), for all t close enough to a diagonal vector field
(this is always the case by 1.2), we still have Hi(S2n-1, 03C3trF0) = 0 for i  2.
Hence Le: Hi(W, 03C3) ~ Hi(W, a) is an isomorphism for i &#x3E; 0. The simi-
lar argument works for a replaced by 0.

PROOF OF (c): The elements of H0(W, a ) are convergent series 03A3amzm,
with all mi  0. For 03BE diagonal, it is easy to check that the kernel and
cokernel of Le are generated by 1. So from the exact sequence (3.1.3) and
(3.1.1), we have dim H0(S2n-1, 03C3trF) = dim H1(S2n-1, 03C3trF) = 1. Hence
1)’ dim Hi(S2n-1, 0;0) = O. This number is the index of an elliptic
complex (cf. Kalka-Duchamp [5]), so it is constant under deformation.
Hence when e is not diagonal, we still have dim HO(s2n-1, 03C3trF0) =
dim H1(S2n-1, 03C3trF0)  1 (we also use semi-continuity as above). But the
kernel of Li contains 1, hence dim H1(S2n-1, 03C3trF0) = dim H1(W, 03C3trF) = 1.
Therefore Le surjects on the space of holomorphic functions vanishing at
zero.

Similarly Le restricted to y’ is injective and, when t is diagonal, it is
an isomorphism on y’. As above, we see that dim H0(W, 03B803BE) =
dim H1(W, (J), for all e. But H0(W, 03B803BE) = Ker L03BE = Ker(L03BE|g03BB) =
g03BB/L03BE(g03BB), because gx is finite dimensional, and H1(W, 03B803BE) = Coker Le.
Hence Le maps y’ surjectively on itself.

3.3. END OF THE PROOF OF THE THEOREM. Consider the commutative

diagram

where the first row is mapped in the second one by the multiplication by
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03BE, and the vertical column is the cohomology exact sequence associated to
(2.1.3).

By 2.3, we have to check that the restriction of p o 8 to the subspace
T0S of H0(W, 03B8) is an isomorphism on H1(W, 03B8trF).

By the lemma, the map p as well as both maps 8 are surjective. Also
the restriction of 8 to the vector subspace of H0(W, 03B8) generated by T° S
and t is an isomorphism on H’(W, 03B803BE). But Se generates the kernel of
p ; hence p o 03B4 | T0S is an isomorphism.

Appendix: Versal déformation of Hopf manifolds

A.1. it-RESONANT MAPS. Let IL =. (03BC1,..., 03BCn) be a sequence of non zero
complex numbers such that |03BCi|  1. A (multiplicative) ju-resonant
monomial (cf. Arnold [1], p. 185) is a polynomial map of C n in C n of the
form z - azmes such that

Here m = (m1,..., mn) is a sequence of positive integers, 03BCm = 03BCm11... 03BCmnn,
a E C and e1,..., en is the canonical basis of en. We shall assume that

A it-resonant polynomial map f : Cn ~ Cn is a sum of p-resonant
monomials. Equivalently f is a polynomial map of Cn in Cn which
commutes with the diagonal linear map dl,, : ( zl, ... , zn) ~
(03BC1z1,...., JLnzn). Note that f(0) = o.

The set of p-resonant polynomial maps is a subalgebra R03BC of the
algebra of polynomial maps of Cn in Cn. It is finite dimensional. The
elements of degree one in R03BC are represented by matrices with possibly
non zero blocs along the diagonal with size equal to the number of times
a 03BCi is repeated.

Let G1J. be the group of invertible elements in R1J.. An element f in R1J.
is invertible iff its linear part (or equivalently its derivative f’(0) at 0) is
invertible. Indeed, after conjugation with a linear automorphism in Rp.,
one can assume that f is under lower triangular Jordan form. The
ith-coordinate is the sum of a non zero multiple of zi and a polynomial
containing only zl, ... , zi-1.

G1J. is a connected complex Lie group, open in R1J.. The kernel of the
projection of G1J. on the group Gi of linear automorphisms in R03BC is

nilpotent.
The Lie algebra g03BC of G1J. is the space of (multiplicatively) p-resonant

vector fields on en, namely those vector fields which are linear combina-
tion of vector fields of the form zma/azs, where 03BCs = it’. The 03BC-resonant
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vector fields can also be characterized as vector fields invariant by d03BC. As
a vector space, ?p. is isomorphic to R03BC.

A.2. DEFINITION OF HOPF MANIFOLDS. In this paragraph, we give several
equivalent definitions for a Hopf manifold. We begin with the one which
is apparently the most general.
A Hopf manifold of dimension n &#x3E; 1 is a complex manifold Wf which

is the quotient of W== Cn - (01 by an infinite cyclic group acting
holomorphicaly, and properly discontinuously on W. It is proved by C.
Borcea [2] that this group is generated by an element f such that

sup|z|a|fm(z)| 1 - 0 when m ~ ~ for any a, and that Wf is compact.
f extends to an automorphism of Cn. We claim that the eigenvalues of

the differential f’(0) of f at 0 are of absolute value smaller than one.
Indeed let v be an eigenvector corresponding to an eigenvalue it of f’(0),
and let p be a linear projection of Cn on the one-dimensional subspace V
generated by v. For m big enough, the restriction of f m to V composed
with p is a holomorphic map mapping the unit disk in V in a disk of
smaller radius. The derivative at 0 of this map is jum, and by Schwarz
lemma, 1 g must be smaller than one.

So we could have defined a Hopf manifold of dimension n as a

compact complex manifold Wf which is the quotient of W by a properly
discontinuous group generated by an automorphism f of Cn fixing 0 and
such that the eigenvalues 03BC1,...,03BCn, of f ’(0) are inside the unit circle.
According to the Poincaré-Dulac theorem (Cf. Arnold [1], p. 187), there
is a holomorphic isomorphism h of a neighbourhood of 0 on a

neighbourhood of 0 such that hfh-1 is the restriction of a polynomial
map  of Cn which is 03BC-resonant. We have seen in A.1 that f is bijective
and as each orbit of f and f meets an arbitrarily small neighbourhood of
0 in Cn, the map h extends to a global automorphism h of C n such that
=f-1.

Eventually we can equivalently define a Hopf manifold as the quotient
Wf of W=Cn - (01 by a polynomial automorphism f of Cn whose
derivative f ’(0) at 0 has eigenvalues it = (03BC1,..., 03BCn) inside the unit circle,
and such that f is jn-resonant.

A.3. THEOREM: Let f be as above. A versal deformation of the Hopf
manifold Wf is obtained as follows. Let S’ be a small complex submanifold
in G03BC passing through f and whose tangent space at f is complementary to
the tangent space of the orbit of f under the action of Gp. by conjugation on
itself. Then the family WS, where s E S, is a versal deformation of Wf
parametrized by S.

Let 03B8f be the sheaf of germs of holomorphic vector fields on Wf. Then
Hi(Wf, 03B8f) = 0 for i &#x3E; 1 and dim H0(Wf, Of) = dim H1(Wf, Of) is the
dimension of the centralizer of f in G03BC (which is also the dimension of the
kernel of the endomorphism 1 - f * of g03BC).
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For instance if f is diagonal, then dim H1(Wf, 03B8f) = dim g03BC. In

general n  dim H1(Mf, 03B8f)  dim g03BC.

For n  3, the dimension of ?p. is not bounded. For instance, if n = 3
and 03BC1, IL2, 03BC3 are real numbers such that 03BC2 = 03BC3 and ILl = 03BCp2, then
dim g03BC=p+6.

A.4. PROOF OF THE THEOREM: Consider the exact sequence (cf. [4], [2],
[9]) analogous to (3.1.4):

where 0 is the sheaf of germs of holomorphic vector fields on W.
The main facts are:

(a) for i &#x3E; 0, 1 - f * : H’(W, 03B8) ~ H’( W, 03B8) is an isomorphism.
(b) Denote by?: the subspace of H0(W, 03B8) of those vector field of

the form 03A3asmzm~/~zs, where the monomials asmzm~/~zs are not ju-reso-
nant. Then 1 f * maps ?p. in g03BC and is an isomorphism of ?p.l. on

(c) Let fs be a holomorphic family of automorphisms of Cn depend-
ing on a parameter t in a small neighbourhood of 0 in C, such that f = fo
and ft E G03BC. For the corresponding family Ujt of Hopf manifolds, the
infinitesimal deformation p(a/at) E H(Wf, 8f) is the image by 03B4 of the
vector field d/dt(ftf0-1) |t=0 on W.

Those facts imply the theorem. By (a) and (b), the restriction of 8 to
the subspace y. of H0(W, 0) is a surjection on H1(Wf, 8f). The differen-
tial f-1* of the right translation by rI in G03BC maps isomorphically the
tangent space at f to the orbit of f on the subspace (1 - f*)g03BC of g03BC,
and maps isomorphically TfS on a complement in ?p. of (1 - f*)g03BC. By
c), the Kodaira-Spencer map p : TfS ~ H1(Wf, 8f) is the composition off-1* with 8, hence is an isomorphism by the exactness of (A.4.1).

Also (a), (b) and the exactness of (A.4.1) imply that Hi(Uj, 8f) = 0 for
i &#x3E; 1 and that H0(Wf, 03B8f) = H1(Wf, 8f). The Lie algebra of the central-
izer of f is the kemel of the map 1 - f* : g03BC ~ g03BC, so is canonically
isomorphic to H0(Wf, 8f). Hence the connected component of the
centralizer of f in G03BC (which acts naturally on Uj) is the connected

component of the group of analytic automorphisms of Wf.
(c) is proved in Douady [4] and the proof of a) and b) is parallel to

the proof of lemma 3.2 and is partly contained in [2] or [9]. We have seen
in lemma 3.2 that H’(W, 03B8) = 0 for i ~ 0, n - 1 and that Hn-1(W, 0) is
isomorphic to the convergent series in (C-{0})n of the form 03A3asmzm~/~zs,
with mi  0. It is easy to check directly that (1 - f*) | I?: is injective, as
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well as 1 - f * : H’(W, 0) - Hi(W, 0) for i &#x3E; 0. Indeed we can assume
that 0  |03BC1|  ...  |03BCn|  1 and that the linear part of f is under

upper triangular form. Then for the order defined in 3.2 (proof of b)), we
have

(1 - f*)zm~/~zs = (1 - 03BCs/03BCm)zm~/~zs + bigger terms.

Moreover (1 - 03BCs/03BCm) ~ 0 if all mi are negative or if zma/azs ~ g03BC~. The
surjectivity of (1 - f*) : H’(W, 0 ) - Hi(W, 0) for i &#x3E; 0 is also obvious if

f is diagonal.
From the preceding discussion and the exactness of A.3.1, it follows

that Hi(Wf, 03B8f) = 0 for i &#x3E; 1 in case f is diagonal. By upper semi-
continuity, this is still true for f close enough to a diagonal map; this is
always the case up to conjugation (cf. A.2). As in the proof of lemma 3.2,
c), we see that H0(Wf, 03B8f) = H1(Wf, 0f), because 03A3(-1)iHi(Wf, (JI) = 0
for f diagonal, hence also for f close to diagonal. The restriction of
1 - f * to g03BC has kernel and cokernel in g03BC of the same dimension. We
have seen that the kernel of 1 - f* restricted to g03BC~ is zero, so its
cokernel in ?JL.L must also be zero. This completes the proof of b).
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