COMPOSITIO MATHEMATICA

STEVO TODORČEVIĆ Remarks on chain conditions in products

Compositio Mathematica, tome 55, nº 3 (1985), p. 295-302 <http://www.numdam.org/item?id=CM_1985_55_3_295_0>

© Foundation Compositio Mathematica, 1985, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

REMARKS ON CHAIN CONDITIONS IN PRODUCTS

Stevo Todorčević

Introduction

We say that a partially ordered set \mathfrak{O} satisfies the κ -chain condition if every set of pairwise incompatible elements of \mathfrak{O} has size $< \kappa$. A topological space X is said to satisfy the κ -c.c. if every family of pairwise disjoint open subsets of X has size $< \kappa$. In this note we give several remarks on the well-known problem which asks for which cardinals κ the κ -chain condition is a productive property (see [6; §3]). This problem for the case $\kappa = \aleph_1$ was first asked by E. Marczewski ([14]), and later by D. Kurepa ([11], [12]) in a more general form. Kurepa [11] showed that the countable chain condition (i.e., the \aleph_1 -c.c.) of a Suslin continuum is not a productive property. He also showed ([13]) that any product of κ^+ -c.c. spaces satisfies the $(2^{\kappa})^+$ -c.c. The first examples of non-productive κ^+ -c.c. posets, assuming $2^{\kappa} = \kappa^+$, were constructed by F. Galvin and R. Laver ([8]). In [7], W. Fleissner showed that it is consistent with ZFC that 2^{\aleph_0} is large and there exists a c.c.c. space X such that X^2 does not satisfy the 2^{\aleph_0} -c.c. In this note we show without additional set-theoretical assumptions that for class-many cardinals κ the κ -chain condition is not a productive property. In particular, we show that the $cf2^{\aleph_0}$ -c.c. is not productive. This result was announced in [20] where the same result for the 2^{\aleph_0} -c.c. was incorrectly claimed. Our observation uses "entangled" linear orders, and gives a quite general method for constructing non-productive κ -c.c. posets.

§1. Sierpiński's construction

In this section we generalize a classical construction of rigid linear suborderings of \mathbb{R} given by W. Sierpiński [19] from the case n = 1 to the case of any finite *n*. Using a simple diagonalization argument Sierpiński ([19]) constructed a one-to-one sequence $E = \{r_{\alpha} : \alpha < 2^{\aleph_0}\}$ of real numbers with the following property:

(1) For any continuous function f from a G_{δ} subset of \mathbb{R} into \mathbb{R} there is an $\alpha < 2^{\aleph_0}$ such that

$$\forall \beta \geq \alpha \ f'' \{ r_{\gamma} : \gamma < \beta \} \cap E \subseteq \{ r_{\gamma} : \gamma < \beta \}.$$

Using the well-known Lavrentiev Extension Theorem ([10; $\S35$]) he showed that (1) implies the following property of the set *E*:

(2) If f is a homeomorphism between two sets of reals, then

$$\{\alpha < 2^{\aleph_0} : r_\alpha \in \operatorname{dom}(f) \& f(r_\alpha) \neq r_\alpha\}$$
 is not cofinal in 2^{\aleph_0} .

Sierpiński's result was motivated by a problem of M. Fréchet about the number of non-homeomorphic topological spaces. We refer the reader to §§35 and 40 of [10] for further information and generalizations of this result. In this note we shall be interested in the following property of the set E which easily follows from (2) and which has been quite often used in the theory of uncountable order types (see [4]):

(3) If f is an one-to-one monotonic function from a set of reals into the reals, then {α < 2^{ℵ₀}: r_α ∈ dom(f)&f(r_α) ≠ r_α} is not confinal in 2^{ℵ₀}.

Since a function may be regarded as a set of ordered pairs, the statement (3) suggests a stronger statement where the pairs are replaced by the *n*-tuples from *E*. It turns out that in order to get this stronger property one has only replace (1) by a stronger statement which includes any continuous function *f* from a G_{δ} subset of \mathbb{R}^n into \mathbb{R} for any $n < \omega$. Since later we intend to give some applications of this result, let us prove it in the following more general form. But first we need some definitions. Let *L* be an infinite linearly ordered set and let $\{r_{\alpha}: \alpha < \theta\}$ be a one-to-one enumeration of *L*. Then for any $n < \omega$ and $x \in L^n$ by D(x) we denote the set $\{\alpha < \theta : \exists i < n \ x_i = r_{\alpha}\}$. We say that $A \subseteq L^n$ is cofinal (in θ) iff $\forall \alpha < \theta \ \exists x \in A \ \alpha < D(x)$.

THEOREM 1: Assume L is a linear ordering of size 2^{λ} with a dense subset D of size $\leq \lambda$. Then there is a one-to-one sequence $E = \{r_{\alpha} : \alpha < 2^{\lambda}\}$ of elements of L such that:

(4) For every $n < \omega$, for any cofinal set $A \subseteq E^n$ consisting of one-to-one *n*-tuples, and for every $s \in {}^n2$, there exist $x, y \in A$ such that

 $\forall i < n \ (x_i < y_i \leftrightarrow s_i = 0).$

PROOF: Let us assume that L is a dense linear ordering and let \mathbb{K} be the Dedekind completion of L. The following fact is an easy generalization of a similar fact for \mathbb{R} ([10; § 35]).

LEMMA 1: Let f be a continuous function from a subset of \mathbb{K}^n into \mathbb{K} where $n < \omega$. Then f can be continuously extended to a G_{λ} subset of \mathbb{K}^n .

PROOF: Let A = dom(f). For $p \in \mathbb{K}^n$ we define

$$\omega(p) = \bigcap \{ \overline{f''(A \cap I)} : I \text{ is open in } \mathbb{K}^n \& p \in I \}.$$

Thus for each $p \in \mathbb{K}^n$, $\omega(p)$ is a (possibly empty) compact subset of \mathbb{K}^n . Let $A^* = \{ p \in \mathbb{K}^n : |\omega(p)| = 1 \}$. Then $A \subseteq A^*$ and f extends continuously on A^* . Using the fact that \mathbb{K} has a dense subset of size $\leq \lambda$ one easily shows that A^* is a G_{λ} subset of \mathbb{K}^n .

Since there exist only 2^{λ} continuous functions from G_{λ} subsets of \mathbb{K}^{n} into \mathbb{K} , $(n < \omega)$, we can easily choose a one-to-one sequence $E = \{r_{\alpha} : \alpha < 2^{\lambda}\} \subseteq L$ with the following property:

(5) For any continuous function f from a G_λ subset of Kⁿ into K, (n < ω) there is an α < 2^λ such that

$$\forall \beta \geq \alpha \ f'' \{ r_{\gamma} : \gamma < \beta \}'' \cap E \subseteq \{ r_{\gamma} : \gamma < \beta \}.$$

We shall show that this *E* satisfies (4). Assume not, and let *m* be the minimal $n < \omega$ for which (4) fails. Clearly m > 1. Let $A \subseteq E^m$ be a cofinal set of disjoint one-to-one *m*-tuples and let $s \in m^2$ be such that no $x, y \in A$ satisfy $\forall i < m \ (x_i < y_i \Leftrightarrow s_i = 0)$. Using a permutation of coordinates of elements of *A* and of *s* we may assume that

(6)
$$\forall x \in A \ (x = \langle r_{\alpha_0}, \dots, r_{\alpha_{m-1}} \rangle \Rightarrow \alpha_0 < \dots < \alpha_{m-1})$$

Let $B = \{x \upharpoonright (m-1) : x \in A\} \subseteq E^{m-1}$. Define $f : B \to \mathbb{K}$ by f(z) = r iff $\exists x \in A \ x = z^{r}$. By (5), (6) and Lemma 1 it follows directly that f cannot be continuous on a cofinal subset of B. So the following lemma gives a contradiction. For $p \in K^{m-1}$, $\omega(p)$ is defined for our f and B as in the proof of Lemma 1.

LEMMA 2: The set
$$B_0 = \{z \in B : |\omega(z)| \ge 2\}$$
 is not cofinal in 2^{λ} .

PROOF: Otherwise, by going to a cofinal subset of B_0 and by symmetry, we may assume that there is a $d \in D$ such that

(7)
$$\forall z \in B_0 \exists r \in \omega(z) \ f(z) < d < r.$$

Assume for definiteness that $s_{m-1} = 0$; the case $s_{m-1} = 1$ is considered similarly. By the minimality of m we can find $u, v \in B_0$ so that $\forall i < m-1 \ (u_i < v_i \Leftrightarrow s_i = 0)$. Let

$$I = \left\{ z \in \mathbb{K}^{m-1} : \forall i < m-1 \ \left(u_i < z_i \Leftrightarrow s_i = 0 \right) \right\}.$$

Then *I* is an open subset of \mathbb{K}^{m-1} which contains *v*. Note that by the choice of *A* and *s* it follows that $\forall z \in I \cap B$, f(z) < f(u) < d. Hence $\omega(v) \subseteq \overline{f''B \cap I} < d$. But this contradicts (7) and finishes the proof.

§2. Entangled linear orderings

This section begins with a slight generalization of a notion of Avraham, Rubin and Shelah ([1], [2]) and ends with some applications of the result of §1 which were mentioned in the introduction.

Let *L* be an infinite linear ordering, let κ be an infinite cardinal and let $n < \omega$. Then by $(L)^n$ we denote the set of all $\langle x_0, \ldots, x_{n-1} \rangle \in L^n$ such that $x_0 < \ldots < x_{n-1}$. We say that *L* is (κ, n) -entangled iff for every $A \subseteq (L)^n$ of size κ and for every $s \in {}^n 2$ there exist $x, y \in A$ such that $\forall i < n \ (x_i < y_i \Leftrightarrow s_i = 0)$. *L* is κ -entangled iff *L* is (κ, n) -entangled for every $n < \omega$. *L* is an entangled linear ordering iff *L* is κ -entangled for $\kappa = \aleph_1$.

Note that every linear order is $(\kappa, 0)$ - and $(\kappa, 1)$ -entangled. Note also that L is $(\kappa, 2)$ -entangled iff for every one-to-one monotonic function from a subset of L into L, we have that $|\{r \in \text{dom}(f): f(r) \neq r\}| < \kappa$. Clearly if L is $(\kappa, 2)$ -entangled then every family of disjoint non-trivial intervals of L is of size $< \kappa$. If L is $(\kappa, 3)$ -entangled then L moreover has a dense subset of size $< \kappa$. Thus every $(\aleph_1, 3)$ -entangled linear ordering is isomorphic with a set of reals. The next easy folklore result shows that uncountable \aleph_1 -entangled sets of reals can exist in certain models of set theory. On the other hand, in the model of Baumgartner [3] there is no uncountable $(\aleph_1, 2)$ -entangled linear ordering.

THEOREM 2: If E is any set of Cohen or random reals, then E is \aleph_1 -entangled.

To state the result of §1 using the new terminology let ded(λ , θ) denote the fact that there is a linear ordering of size θ with a dense subset of size $\leq \lambda$. Sierpiński [19] showed that ded(λ , λ^+) always holds and that $\forall \theta < \lambda \ 2^{\theta} \leq \lambda$ implies ded(λ , 2^{λ}). Thus ded(λ , 2^{λ}) holds if, for example, $2^{\lambda} = \lambda^+$ or if λ is a strong limit cardinal. In [16], W. Mitchell constructed a model of ZFC in which ded($\aleph_1, 2^{\aleph_1}$) fails. Theorem 1 can also be written in the following form.

THEOREM 3: Assume ded $(\lambda, 2^{\lambda})$. Then for every $\kappa \leq 2^{\lambda}$ with $cf \kappa = cf 2^{\lambda}$, there is an κ -entangled linear ordering of size κ which moreover has a dense subset of size $\leq \lambda$.

COROLLARY 4: For every $\kappa \leq 2^{\aleph_0}$ with $cf \kappa = cf 2^{\aleph_0}$ there is an κ -entangled set of reals of size κ .

COROLLARY 5: (Sierpiński) For every $\kappa \leq 2^{\aleph_0}$ with $cf \kappa = cf 2^{\aleph_0}$ there is an $(\kappa, 2)$ -entangled set of reals of size κ .

The next proposition contains our basic observation which connects entangled linear orders and chain conditions. We shall state later a slightly stronger result of this kind.

THEOREM 6: Let κ be a regular infinite cardinal and let L be a κ -entangled linear order of size $\lambda \ge \kappa$. Then there exist partially ordered sets \mathfrak{D}_0 and \mathfrak{D}_1 such that \mathfrak{D}_0 and \mathfrak{D}_1 satisfy the κ -c.c. but $\mathfrak{D}_0 \times \mathfrak{D}_1$ does not satisfy the λ -c.c.

PROOF: Let $\{r_{\alpha}: \alpha < \lambda\}$ be a one-to-one enumeration of L and let $E = \{\langle r_{\alpha}, r_{\alpha+1} \rangle : \alpha \text{ even } < \lambda\}$. We consider E as a subposet of $L \times L$ with the product ordering. Let

$$\mathfrak{D}_0(E) = \{ p \in [E]^{<\aleph_0} : p \text{ is a chain of } E \},$$
$$\mathfrak{D}_1(E) = \{ p \in [E]^{<\aleph_0} : p \text{ is an antichain of } E \}.$$

considered as posets under the ordering \supseteq . Let A be a subset of $\mathfrak{D}_0(E)$ or $\mathfrak{D}_1(E)$ of size κ . By the standard Δ -system argument we may assume that the elements of A are disjoint and of the same cardinality $n < \omega$. Since L is κ -entangled, L contains a dense subset D of size $< \kappa$. Every member of A can be separated by a set of 2n intervals with end-points in D, and by regularity of κ we may assume that the separating set is the same for each $p \in A$. Now a simple application of the $(\kappa, 2n)$ -entangledness of L gives two compatible members of A. The product $\mathfrak{D}_0(E) \times$ $\mathfrak{D}_1(E)$ is not λ -c.c. since $\{\langle \{e\}, \{e\} \rangle : e \in E\}$ is a pairwise incompatible subset of $\mathfrak{D}_0(E) \times \mathfrak{D}_1(E)$. This completes the proof.

Note the following direct way of getting topological spaces which satisfy the conclusion of Theorem 6. Let X_0 be the set of all chains of E and let X_1 be the set of all antichains of E. We consider X_0 and X_1 as subspaces of $\{0, 1\}^E$ under the standard identification via characteristic functions. Then X_0 and X_1 are compact Hausdorff κ -c.c. spaces such that $X_0 \times X_1$ is not λ -c.c. It is clear that the proof of Theorem 6 also shows that each (finite) power of $\mathfrak{D}_0(E)$ and of $\mathfrak{D}_1(E)$ is again a κ -c.c. poset.

By Theorems 3 and 6 it follows directly that $ded(\lambda, 2^{\lambda})$ implies the existence of two of 2^{λ} -c.c. posets \mathfrak{D}_0 and \mathfrak{D}_1 such that $\mathfrak{D}_0 \times \mathfrak{D}_1$ is not of 2^{λ} -c.c. Thus in particular, the of 2^{\aleph_0} -c.c. is not productive. We shall later state a more general result of this kind, and in order to do this we need some definitions of Galvin [8].

Let $\lambda \ge \kappa \ge \aleph_0$ be cardinals and let $H \subseteq [\lambda]^2$. Then we let $\mathfrak{O}(\lambda, H) = \{F \in [\lambda]^{<\aleph_0} : [F]^2 \subseteq H\}$; $\mathfrak{O}(\lambda, H)$ is partially ordered by \supseteq . A set $K \subseteq [\lambda]^2$ is called κ -big if, given any $n < \omega$ and any $H_1, \ldots, H_n \subseteq [\lambda]^2$, if $K \subseteq H_1 \cap \ldots \cap H_n$, and if each of H_i is the union of less than κ

rectangles, then $\mathfrak{O}(\lambda, H_1) \times \ldots \times \mathfrak{O}(\lambda, H_n)$ satisfies the κ -c.c. A set $K \subseteq [\lambda]^2$ is big iff K is λ -big. Galvin [8] showed that $2^{\kappa} = \kappa^+$ implies the existence of κ^+ disjoint big subsets of $[\kappa^+]^2$ and that MA implies the existence of \aleph_0 disjoint big subsets of $[2^{\aleph_0}]^2$. The next proposition shows that entangled linear orderings can also be used in constructing disjoint big subsets of $[\lambda]^2$.

THEOREM 7: Let κ be regular and infinite and let L be a κ -entangled linear order of size $\lambda \ge \kappa$. Then there exist \aleph_0 pairwise disjoint κ -big subsets of $[\lambda]^2$.

PROOF: Let $\{r_{\alpha} : \alpha < \lambda\}$ be a one-to-one enumeration of *L*, and let Λ denote the set of all limit ordinals $<\lambda$. For α , $\beta \in \Lambda$ and $n < \omega$, we define

$$\{\alpha, \beta\} \in K_n \text{ iff } r_{\alpha+n+1} > r_{\beta+n+1} \& \forall i \leq n \ r_{\alpha+1} < r_{\beta+1}.$$

It is clear that the proof of Theorem 6 also shows that K_n , $(n < \omega)$ is a family of \aleph_0 disjoint κ -big subsets of $[\Lambda]^2$. This finishes the proof.

COROLLARY 8: Assume ded(λ , 2^{λ}). Then there exist \aleph_0 pairwise disjoint big subsets of $[cf \ 2^{\lambda}]^2$.

Note that the proof of Theorem 7 also gives the following proposition where κ is not necessarily a regular cardinal.

THEOREM 9: If there exists a κ -entangled linear ordering of size $\lambda \ge \kappa$, then $\lambda \rightarrow [\kappa]_{\aleph_c}^2$.

Note that Corollary 4 and Theorem 9 have as an immediate consequence $\kappa \neq [\kappa]^2_{\aleph_0}$ for all $\kappa \leq 2^{\aleph_0}$ with cf $\kappa = cf 2^{\aleph_0}$, which is a well-known result of S. Shelah ([9]).

Galvin [8] used families of disjoint big subsets of $[\lambda]^2$ in constructing several very strong counter-examples to productiveness of the κ -chain condition. Using Theorem 7 and Galvin's ideas we can also get some of his general results. However, here we mention only one instance of such a general result, but let us note that it is possible to prove an analogue of Theorem 4.7 from Galvin [8].

THEOREM 10: Assume $ded(\lambda, 2^{\lambda})$. Then for every $n < \omega$ there is a partially ordered set \mathfrak{D} such that \mathfrak{D}^n satisfies the cf 2^{λ} -c.c. but \mathfrak{D}^{n+1} does not.

PROOF: Let *L* be a cf 2^{λ} -entangled linear ordering which exists by Theorem 3. Let $\{r_{\alpha} : \alpha < \text{cf } 2^{\lambda}\}$ be an one-to-one enumeratin of *L* and let Λ be the set of all limit ordinals $< \text{cf } 2^{\lambda}$. Let K_0, \ldots, K_n be the disjoint

300

big subsets of $[\Lambda]^2$ defined in the proof of Theorem 7. Clearly, we may assume that $n \ge 1$. For $i \le n$, let $H_i = \bigcup \{K_j : j \le n \& j \ne i\}$. Let $\mathfrak{D}_i = \mathfrak{D}(\lambda, H_i)$ for $i \le n$. Since K_i 's are big sets any product of $\le n$ of the posets $\mathfrak{D}_0, \ldots, \mathfrak{D}_n$ satisfies the cf 2^{λ} -c.c., but clearly $\mathfrak{D}_0 \times \ldots \times \mathfrak{D}_n$ is not a cf 2^{λ} -c.c. poset. Hence $\mathfrak{D} = \mathfrak{D}_0 \oplus \ldots \oplus \mathfrak{D}_n$ satisfies the conclusion of the Theorem.

COROLLARY 11: For every $n < \omega$ there is a partially ordered set \mathfrak{D} such that \mathfrak{D}^n satisfies the cf 2^{\aleph_0} -c.c. but \mathfrak{D}^{n+1} does not.

THEOREM 12: Let \mathfrak{B}_{κ} be the standard poset for adding $\kappa > \aleph_0$ Cohen or random reals. Then \mathfrak{B}_{κ} forces that for every $n < \omega$ there is a poset \mathfrak{D} such that \mathfrak{D}^n satisfies the c.c.c. but \mathfrak{D}^{n+1} does not satisfy the κ -c.c.

PROOF: By Theorem 2 and the proof of Theorem 10.

Theorem 12 for the case of Cohen reals was first proved by Fleissner [7]. This theorem also holds for $\kappa = 1$ (or $\kappa = \aleph_0$) replacing the clause " \mathfrak{O}^{n+1} does not satisfy the κ -c.c." by " \mathfrak{O}^{n+1} does not satisfy the c.c.c.". This has been proved by J. Roitman [17].

The first construction of an uncountable entangled set of reals under the assumption of CH was (implicitly) given by E. Michael [15]. This fact was first pointed out by E.S. Berney (unpublished) who used it in a construction of an uncountable Boolean algebra with no uncountable antichain, a result which has been also independently proved by R. Bonnet [5]. Michael's construction is a very nice generalization of the classical construction of concentrated sets of reals from the case n = 1 to the case of any finite n. His argument uses the Baire category theorem and can also be done with MA instead of CH.

In [3], J. Baumgartner gave, assuming CH, a first generalization of the classical construction ([10; §35]) of a function $f: \mathbb{R} \to \mathbb{R}$ which is not monotonic on any uncountable subset of \mathbb{R} from the case n = 1 to the case of any finite *n*. Baumgartner's construction is more flexible than Michael's, and our §1 owes much to Baumgartner's construction.

References

- U. AVRAHAM and S. SHELAH: Martin's Axiom does not imply every two ℵ₁-dense sets of reals are isomorphic. *Israel J. Math.* 38 (1980) 161–176.
- [2] U. AVRAHAM, M. RUBIN and S. SHELAH: On the consistency of some partition theorems for continuous colorings, and the structure of \aleph_1 -dense real order types.
- [3] J.E. BAUMGARTNER: All R₁-dense sets of reals can be isomorphic. Fund. Math. 79 (1973) 101-106.
- [4] J.E. BAUMGARTNER: Order types of real numbers and other uncountable orderings. I. Rival (ed.), Ordered sets (1981) 239-277 (D. Reidel Publ. Co.).
- [5] R. BONNET: Sur les algèbres de Boole rigides, Thesis. Lyon: Université Claude-Bernard (1978).

- [6] W.W. COMFORT and S. NEGREPONTIS: Chain conditions in topology. (Cambridge: Cambridge University Press (1982)).
- [7] W.G. FLEISSNER: Some spaces related to topological inequalities proved by the Erdös-Rado theorem. Proc. Amer. Math. Soc. 71 (1978) 313–320.
- [8] F. GALVIN: Chain conditions and products. Fund. Math. 108 (1980) 33-42.
- [9] F. GALVIN and S. SHELAH: Some counterexamples in the partition calculus. J. Comb. Theory A 15 (1973) 157–174.
- [10] K. KURATOWSKI: Topology I. Academic Press (1966).
- [11] D. KUREPA: La condition de Soslin et une propriété caractéristique des nombres réels. Comp. Rendus (Paris) 231 (1950) 1113–1114.
- [12] D. KUREPA: On an inequality concerning cartesian multiplication, Gen. Topology and its relations to Modern Analysis and Algebra. Proc. Symp. Prague (1961) 258-259.
- [13] D. KUREPA: The cartesian multiplication and the cellularity number. Publ. Inst. Math. 2(16) (1962) 121–139.
- [14] E. MARCZEWSKI: Séparabilité et multiplication cartésienne des espaces topologiques. Fund. Math. 34 (1947) 127–143.
- [15] E. MICHAEL: Paracompactness and the Lindelöf property in finite and countable cartesian products. *Compositio Math.* 23 (1971) 199–214.
- [16] W.J. MITCHELL: Aronszajn trees and the independence of the transfer property. Ann. Math. Logic 5 (1972) 21-46.
- [17] J. ROITMAN: Adding a random or a Cohen real. Fund. Math. 103 (1979) 47-60.
- [18] W. SIERPIŃSKI: Sur un problème concernant les sous-ensembles croissants du continu. *Fund. Math* 3 (1922) 109-112.
- [19] W. SIERPIŃSKI: Sur un problème concernant les types de dimensions, Fund. Math. 19 (1932) 65-71.
- [20] S. TODORČEVIĆ: Chain conditions in products. Abstracts Amer. Math. Soc. 4:3 (1983) 291-232.

(Oblatum 28-VI-1983)

Department of Mathematics University of California Berkeley, CA 94720 USA