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REMARKS ON CHAIN CONDITIONS IN PRODUCTS

Stevo Todorcevié¢

Introduction

We say that a partially ordered set O satisfies the k-chain condition if
every set of pairwise incompatible elements of © has size <«k. A
topological space X is said to satisfy the k-c.c. if every family of pairwise
disjoint open subsets of X has size <. In this note we give several
remarks on the well-known problem which asks for which cardinals « the
k-chain condition is a productive property (see [6; §3]). This problem for
the case k = N, was first asked by E. Marczewski ([14]), and later by D.
Kurepa ([11], [12]) in a more general form. Kurepa [11] showed that the
countable chain condition (i.e., the 8¥;-c.c.) of a Suslin continuum is not a
productive property. He also showed ([13]) that any product of k*-c.c.
spaces satisfies the (2*)*-c.c. The first examples of non-productive k*-c.c.
posets, assuming 2° = k*, were constructed by F. Galvin and R. Laver
([8]). In [7], W. Fleissner showed that it is consistent with ZFC that 2% is
large and there exists a c.c.c. space X such that X? does not satisfy the
2%oc.c. In this note we show without additional set-theoretical assump-
tions that for class-many cardinals « the k-chain condition is not a
productive property. In particular, we show that the cf2%o-c.c. is not
productive. This result was announced in [20] where the same result for
the 2%oc.c. was incorrectly claimed. Our observation uses “entangled”
linear orders, and gives a quite general method for constructing non-pro-
ductive k-c.c. posets.

§1. Sierpinski’s construction

In this section we generalize a classical construction of rigid linear
suborderings of R given by W. Sierpinski [19] from the case n =1 to the
case of any finite ». Using a simple diagonalization argument Sierpihski
([19]) constructed a one-to-one sequence E = {r,: a < 2%} of real num-
bers with the following property:

(1) For any continuous function f from a G; subset of R into R there
is an a < 2%° such that

VB>a f"{r:y<B}NEC({r:y<B}.

295



296 Chain conditions in products

Using the well-known Lavrentiev Extension Theorem ([10; §35]) he
showed that (1) implies the following property of the set E:

(2) If f is a homeomorphism between two sets of reals, then
{a<2%:r, €dom(f)&f(r,)#r,} is not cofinal in 2%,

Sierpihski’s result was motivated by a problem of M. Fréchet about
the number of non-homeomorphic topological spaces. We refer the
reader to §§35 and 40 of [10] for further information and generalizations
of this result. In this note we shall be interested in the following property
of the set E which easily follows from (2) and which has been quite often
used in the theory of uncountable order types (see [4]):

(3) If f is an one-to-one monotonic function from a set of reals into

the reals, then {a <2%:r € dom(f)&f(r,)#r,} is not confinal
in 2%

Since a function may be regarded as a set of ordered pairs, the
statement (3) suggests a stronger statement where the pairs are replaced
by the n-tuples from E. It turns out that in order to get this stronger
property one has only replace (1) by a stronger statement which includes
any continuous function f from a G4 subset of R” into R for any » < w.
Since later we intend to give some applications of this result, let us prove
it in the following more general form. But first we need some definitions.
Let L be an infinite linearly ordered set and let {r,:a <8} be a
one-to-one enumeration of L. Then for any n <w and x € L" by D(x)
we denote the set {a <@:3i<n x,=r,}. We say that 4 C L" is cofinal
(in 0) iff Va <0 Ix €A a < D(x).

THEOREM 1: Assume L is a linear ordering of size 2" with a dense subset D
of size <\. Then there is a one-to-one sequence E= {r,:a <2} of
elements of L such that:
(4) For every n < w, for any cofinal set A C E" consisting of one-to-one
n-tuples, and for every s € "2, there exist x, y € A such that

Vi<n(x,<y os,=0).

PROOF: Let us assume that L is a dense linear ordering and let K be the
Dedekind completion of L. The following fact is an easy generalization
of a similar fact for R ([10; § 35]).

LEMMA 1: Let f be a continuous function from a subset of K" into K where
n < w. Then f can be continuously extended to a G, subset of K".

PROOF: Let A = dom(f). For p € K" we define

w(p)=N{f"(ANT):IisopeninK"&pel}.



Stevo Todorcevi¢ 297

Thus for each p € K", w( p) is a (possibly empty) compact subset of K".
Let 4*={peK":|w(p)|=1}. Then A C A* and f extends continu-
ously on A*. Using the fact that K has a dense subset of size <A one
easily shows that 4* is a G, subset of K",

Since there exist only 2* continuous functions from G, subsets of "
into K, (n < w), we can easily choose a one-to-one sequence E = {r,: «
< 2>‘} C L with the following property:

(5) For any continuous function f from a G, subset of K" into K,

(n < w) there is an a < 2" such that

VB>a f'{r,iy<B}) NEC{r:y<pB}.

We shall show that this E satisfies (4). Assume not, and let m be the
minimal n < w for which (4) fails. Clearly m>1. Let ACE™ be a
cofinal set of disjoint one-to-one m-tuples and let s € ™2 be such that no
x, y € A satisfy Vi <m (x, <y, e s, = 0). Using a permutation of coordi-
nates of elements of 4 and of s we may assume that

m=1

(6) Vxe4 (x=<ra0,...,ra Y=g < ... <a,_q)

Let B={x!(m—1):x€A}C E" ' Define f: B—> K by f(z)=r iff
dx €A x=zr. By (5), (6) and Lemma 1 it follows directly that f cannot
be continuous on a cofinal subset of B. So the following lemma gives a
contradiction. For p € K", w( p) is defined for our f and B as in the
proof of Lemma 1.

LEMMA 2: The set By={z € B:|w(z)| =2} is not cofinal in 2".

ProOF: Otherwise, by going to a cofinal subset of B, and by symmetry,
we may assume that there is a d € D such that

(7) VzeByarew(z) f(z)<d<r.
Assume for definiteness that s,,_, = 0; the case s,,_; =1 is considered
similarly. By the minimality of m we can find u, v€ B, so that
Vi<m-—1(u;<v,es5=0). Let

I={zeK" ":Vi<m—1(u,<z,<s5=0)}.
Then I is an open subset of ™! which contains v. Note that by the

choice of A and s it follows that VzeINB, f(z)<f(u)<d. Hence
w(v) S f"BN1I<d. But this contradicts (7) and finishes the proof.
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§2. Entangled linear orderings

This section begins with a slight generalization of a notion of Avraham,
Rubin and Shelah ([1], [2]) and ends with some applications of the result
of §1 which were mentioned in the introduction.

Let L be an infinite linear ordering, let k be an infinite cardinal and
let n <w. Then by (L)" we denote the set of all (xg,...,x,_;)€L"
such that x, < ... <x,,. We say that L is (k, n)-entangled iff for every
A C (L)" of size k and for every s € "2 there exist x, y € A such that
Vi<n (x,<yes,=0). L is k-entangled iff L is (k, n)-entangled for
every n <w. L is an entangled linear ordering iff L is k-entangled for
k=N,

Note that every linear order is (k, 0)- and (k, 1)-entangled. Note also
that L is (k, 2)-entangled iff for every one-to-one monotonic function
from a subset of L into L, we have that |{r€dom(f): f(r)#r}| <k.
Clearly if L is (k, 2)-entangled then every family of disjoint non-trivial
intervals of L is of size <k. If L is (k, 3)-entangled then L moreover
has a dense subset of size <«k. Thus every (¥,, 3)-entangled linear
ordering is isomorphic with a set of reals. The next easy folklore result
shows that uncountable N¥;-entangled sets of reals can exist in certain
models of set theory. On the other hand, in the model of Baumgartner [3]
there is no uncountable (¥, 2)-entangled linear ordering.

THEOREM 2: If E is any set of Cohen or random reals, then E is
N, -entangled.

To state the result of §1 using the new terminology let ded(A, 8)
denote the fact that there is a linear ordering of size # with a dense
subset of size < A. Sierpinski [19] showed that ded(A, A*) always holds
and that V8 <X 2% <\ implies ded(A, 2*). Thus ded(A, 2*) holds if, for
example, 2* = X" or if A is a strong limit cardinal. In [16], W. Mitchell
constructed a model of ZFC in which ded(¥,, 2™) fails. Theorem 1 can
also be written in the following form.

THEOREM 3: Assume ded(\, 21). Then for every k < 2™ with cf k = cf 2,
there is an k-entangled linear ordering of size k which moreover has a dense
subset of size <.

COROLLARY 4: For every k < 280 with cf k = cf 280 there is an k-entangled
set of reals of size k.

COROLLARY 5: (Sierpinski) For every k < 2%° with cf k= cf 2%° there is
an (k, 2)-entangled set of reals of size k.
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The next proposition contains our basic observation which connects
entangled linear orders and chain conditions. We shall state later a
slightly stronger result of this kind.

THEOREM 6: Let k be a regular infinite cardinal and let L be a k-entangled
linear order of size N\ > k. Then there exist partially ordered sets O, and
0, such that O, and O, satisfy the k-c.c. but O, X O, does not satisfy
the A-c.c.

PrOOF: Let {r,:a <A} be a one-to-one enumeration of L and let
E={{ry, rys1y:a even <A}. We consider E as a subposet of L X L
with the product ordering. Let

D(E)= {pE[E]<N":p is a chain of E },
O,(E)={ pe[E]™™: p is an antichain of E},

considered as posets under the ordering 2. Let 4 be a subset of O,(E)
or 9,(FE) of size k. By the standard A-system argument we may assume
that the elements of 4 are disjoint and of the same cardinality n < w.
Since L is k-entangled, L contains a dense subset D of size < k. Every
member of 4 can be separated by a set of 2n intervals with end-points in
D, and by regularity of k we may assume that the separating set is the
same for each p € 4. Now a simple application of the (k, 2n)-entangled-
ness of L gives two compatible members of A. The product O,(E) X
9,(E)isnot A-c.c. since {{{e}, {e}): e € E} is a pairwise incompatible
subset of O y(E) X D,(E). This completes the proof.

Note the following direct way of getting topological spaces which
satisfy the conclusion of Theorem 6. Let X|, be the set of all chains of E
and let X; be the set of all antichains of E. We consider X; and X; as
subspaces of {0, 1}* under the standard identification via characteristic
functions. Then X, and X; are compact Hausdorff k-c.c. spaces such
that X, X X; is not A-c.c. It is clear that the proof of Theorem 6 also
shows that each (finite) power of ©,(E) and of ©,(E) is again a k-c.c.
poset.

By Theorems 3 and 6 it follows directly that ded(A, 2*) implies the
existence of two cf 2*-c.c. posets O, and O, such that O, X £, is not cf
2*-c.c. Thus in particular, the cf 2¥-c.c. is not productive. We shall later
state a more general result of this kind, and in order to do this we need
some definitions of Galvin [§].

Let A >k > N, be cardinals and let H C [A]%. Then we let O(\, H)
={Fe[A]“N:[F]*Cc H}; O(X, H) is partially ordered by D. A set
K C[A]? is called k-big if, given any n < w and any H,..., H, C[A]?, if
KcH Nn...NnH,, and if each of H, is the union of less than «
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300 Chain conditions in products

rectangles, then O(A, H)) X ... XO(A, H,) satisfies the k-c.c. A set
K C[A]? is big iff K is A-big. Galvin [8] showed that 2* = k* implies the
existence of k" disjoint big subsets of [k*]? and that MA implies the
existence of 8, disjoint big subsets of [2¥°]2. The next proposition shows
that entangled linear orderings can also be used in constructing disjoint
big subsets of [A]?.

THEOREM 7: Let k be regular and infinite and let L be a k-entangled linear
order of size X\ > k. Then there exist ¥, pairwise disjoint k-big subsets of

[A]%.

PROOF: Let {r,: a <A} be a one-to-one enumeration of L, and let A
denote the set of all limit ordinals <A. For a, B€ A and n < w, we
define

{(X, B} eKn iff Tatn+1 = rB+n+1&Vi< n Fyy, < rB+l'

It is clear that the proof of Theorem 6 also shows that K,, (n<w) is a
family of 8, disjoint k-big subsets of [ A]?. This finishes the proof.

COROLLARY 8: Assume ded(\, 2*). Then there exist N, pairwise disjoint
big subsets of [cf 2M]%.

Note that the proof of Theorem 7 also gives the following proposition
where k is not necessarily a regular cardinal.

THEOREM 9: If there exists a k-entangled linear ordering of size A > k, then

A [kl

Note that Corollary 4 and Theorem 9 have as an immediate conse-
quence k - [k]%, for all k < 2™ with cf x = cf 2%, which is a well-known
result of S. Shelah ([9]).

Galvin [8] used families of disjoint big subsets of [A]? in constructing
several very strong counter-examples to productiveness of the k-chain
condition. Using Theorem 7 and Galvin’s ideas we can also get some of
his general results. However, here we mention only one instance of such a
general result, but let us note that it is possible to prove an analogue of
Theorem 4.7 from Galvin [8].

THEOREM 10: Assume ded(\, 2). Then for every n < w there is a partially
ordered set O such that O" satisfies the cf 2*-c.c. but O"*' does not.

PROOF: Let L be a cf 2*entangled linear ordering which exists by
Theorem 3. Let {r,: a < cf 2"} be an one-to-one enumeratin of L and let
A be the set of all limit ordinals < cf 2*. Let K,,..., K, be the disjoint
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big subsets of [A]? defined in the proof of Theorem 7. Clearly, we may
assume that n>1. For i<n, let H=U{K,: j<n&j+#i}. Let O,=
(A, H,)) for i< n. Since K,’s are big sets any product of <n of the
posets O, ..., O, satisfies the cf 2*-c.c., but clearly Oy X ... XD, is not
a cf 2*-c.c. poset. Hence O =90, ... ®9, satisfies the conclusion of
the Theorem.

COROLLARY 11: For every n < w there is a partially ordered set O such
that Q" satisfies the cf 2%o-c.c. but 9" does not.

THEOREM 12: Let B, be the standard poset for adding k > 8, Cohen or
random reals. Then B, forces that for every n < w there is a poset £ such
that " satisfies the c.c.c. but "' does not satisfy the x-c.c.

PrOOF: By Theorem 2 and the proof of Theorem 10.

Theorem 12 for the case of Cohen reals was first proved by Fleissner
[7]. This theorem also holds for k =1 (or k =¥ ,) replacing the clause
“9D"*1 does not satisfy the k-c.c.” by “9O"*! does not satisfy the c.c.c.”.
This has been proved by J. Roitman [17].

The first construction of an uncountable entangled set of reals under
the assumption of CH was (implicitly) given by E. Michael [15]. This fact
was first pointed out by E.S. Berney (unpublished) who used it in a
construction of an uncountable Boolean algebra with no uncountable
antichain, a result which has been also independently proved by R.
Bonnet [5]. Michael’s construction is a very nice generalization of the
classical construction of concentrated sets of reals from the case n =1 to
the case of any finite n. His argument uses the Baire category theorem
and can also be done with MA instead of CH.

In [3], J. Baumgartner gave, assuming CH, a first generalization of the
classical construction ([10; §35]) of a function f: R — R which is not
monotonic on any uncountable subset of R from the case n =1 to the
case of any finite n. Baumgartner’s construction is more flexible than
Michael’s, and our §1 owes much to Baumgartner’s construction.
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