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Introduction

We say that a partially ordered set C) satisfies the K-chain condition if

every set of pairwise incompatible elements of 0 has size  K. A

topological space X is said to satisfy the rc-c.c. if every family of pairwise
disjoint open subsets of X has size  K. In this note we give several
remarks on the well-known problem which asks for which cardinals K the
K-chain condition is a productive property (see [6; §3]). This problem for
the case K = 1 was first asked by E. Marczewski ([14]), and later by D.
Kurepa ([11], [12]) in a more general form. Kurepa [11] showed that the
countable chain condition (i.e., the 1-c.c.) of a Suslin continuum is not a
productive property. He also showed ([13]) that any product of K+-C.C.
spaces satisfies the (203BA)+-c.c. The first examples of non-productive 03BA+-c.c.
posets, assuming 2K = 03BA+, were constructed by F. Galvin and R. Laver
([8]). In [7], W. Fleissner showed that it is consistent with ZFC that 20 is
large and there exists a c.c.c. space X such that X2 does not satisfy the
20-c.c. In this note we show without additional set-theoretical assump-
tions that for class-many cardinals K the K-chain condition is not a

productive property. In particular, we show that the cf 20-c.c. is not

productive. This result was announced in [20] where the same result for
the 20-c.c. was incorrectly claimed. Our observation uses "entangled"
linear orders, and gives a quite general method for constructing non-pro-
ductive K-c.c. posets.

§1. Sierpinski’s construction

In this section we generalize a classical construction of rigid linear

suborderings of Il given by W. Sierpihski [19] from the case n = 1 to the
case of any finite n. Using a simple diagonalization argument Sierpihski
([19]) constructed a one-to-one sequence E = f ra : a  20} of real num-
bers with the following property:

(1) For any continuous function f from a G13 subset of R into R there
is an a  2to such that
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Using the well-known Lavrentiev Extension Theorem ([10; §35]) he
showed that (1) implies the following property of the set E:

(2) If f is a homeomorphism between two sets of reals, then

{03B1  20 : r03B1 E dom(f)&#x26;f(r03B1) ~ r03B1} is not cofinal in 20.

Sierpinski’s result was motivated by a problem of M. Fréchet about
the number of non-homeomorphic topological spaces. We refer the
reader to §§35 and 40 of [10] for further information and generalizations
of this result. In this note we shall be interested in the following property
of the set E which easily follows from (2) and which has been quite often
used in the theory of uncountable order types (see [4]):

(3) If f is an one-to-one monotonic function from a set of reals into
the reals, then (a  20 : r03B1 E dom(f)&#x26;f(r03B1) ~ r03B1} is not confinal
in 20.

Since a function may be regarded as a set of ordered pairs, the
statement (3) suggests a stronger statement where the pairs are replaced
by the n-tuples from E. It turns out that in order to get this stronger
property one has only replace (1) by a stronger statement which includes
any continuous function f from a G8 subset of Rn into R for any n  w.

Since later we intend to give some applications of this result, let us prove
it in the following more general form. But first we need some definitions.
Let L be an infinite linearly ordered set and let {r03B1 : 03B1  03B8} be a

one-to-one enumeration of L. Then for any n  w and x E Ln by D(x)
we denote the set (a  03B8: 3 i  n xl = r03B1}. We say that A c Ln is cofinal

(in 0) iff b’a  0 3x e A a  D(x).

THEOREM 1: Assume L is a linear ordering of size 203BB with a dense subset D
of size  03BB. Then there is a one-to-one sequence E = {r03B1 : a  203BB} of
elements of L such that:

(4) For every n  w, for any cofinal set A c En consisting of one-to-one
n-tuples, and for every s E n 2, there exist x, y Fr A such that

PROOF : Let us assume that L is a dense linear ordering and let K be the
Dedekind completion of L. The following fact is an easy generalization
of a similar fact for R ([10; § 35]).

LEMMA 1: Let f be a continuous function from a subset of Kn into K where
n  w. Then f can be continuously extended to a G03BB subset of IK n.

PROOF : Let A = dom( f ). For p E Kn we define
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Thus for each p e Kn, 03C9(p) is a (possibly empty) compact subset of Kn.
Let A* = {p ~ IK n : |03C9(p)| = 1}. Then A c A* and f extends continu-
ously on A*. Using the fact that K has a dense subset of size  À one
easily shows that A* is a Gx subset of Kn.

Since there exist only 203BB continuous functions from G03BB subsets of Kn
into K, ( n  03C9), we can easily choose a one-to-one sequence E = {r03B1 : 03B1
 203BB} c L with the following property:

(5) For any continuous function f from a G. subset of K " into K,
( n  03C9) there is an a  203BB such that

We shall show that this E satisfies (4). Assume not, and let m be the
minimal n  w for which (4) fails. Clearly m &#x3E; 1. Let A c Em be a
cofinal set of disjoint one-to-one m-tuples and let s e m2 be such that no
x, y E A satisfy Vi  m (xl  yl a s, = 0). Using a permutation of coordi-
nates of elements of A and of s we may assume that

Let B = (x  (m - 1) : x ~ A} ~ Em-1. Define f: B-K by f(z)=r iff

3x E A x = zr. By (5), (6) and Lemma 1 it follows directly that f cannot
be continuous on a cofinal subset of B. So the following lemma gives a
contradiction. For p ~ Km-1, 03C9(p) is defined for our f and B as in the
proof of Lemma 1.

LEMMA 2: The set Bo = (z ~ B : |03C9(z)|  21 is not cofinal in 203BB.

PROOF: Otherwise, by going to a cofinal subset of Bo and by symmetry,
we may assume that there is a d E D such that

Assume for definiteness that Sm-1 = 0; the case sm-1 = 1 is considered

similarly. By the minimality of m we can find u, v E Bo so that
~i  m - 1 (ui  vl ~ sl = 0). Let

Then I is an open subset of IK m-l which contains v. Note that by the
choice of A and s it follows that ~z ~ I ~ B, f(z)  f(u)  d. Hence
ú)( v) ç f "B ~ I  d. But this contradicts (7) and finishes the proof.
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§2. Entangled linear orderings

This section begins with a slight generalization of a notion of Avraham,
Rubin and Shelah ([1], [2]) and ends with some applications of the result
of §1 which were mentioned in the introduction.

Let L be an infinite linear ordering, let K be an infinite cardinal and
let n  03C9. Then by ( L )n we denote the set of all x0,..., xn-1&#x3E; E Ln
such that x0  ...  xn-1. We say that L is (K, n )-entangled iff for every
A c (L)" of size K and for every s E "2 there exist x, y E A such that
~i  n (xi  yi ~ si = 0). L is K-entangled iff L is ( K, n )-entangled for
every n  w. L is an entangled linear ordering iff L is K-entangled for
03BA = 1.

Note that every linear order is (K, 0)- and (K, 1 )-entangled. Note also
that L is (K, 2)-entangled iff for every one-to-one monotonic function
from a subset of L into L, we have that |{r ~ dom( f ) : f(r) ~ r ) |  K.
Clearly if L is (K, 2)-entangled then every family of disjoint non-trivial
intervals of L is of size  K. If L is (K, 3)-entangled then L moreover
has a dense subset of size  K. Thus every (1, 3)-entangled linear

ordering is isomorphic with a set of reals. The next easy folklore result
shows that uncountable 81-entangled sets of reals can exist in certain
models of set theory. On the other hand, in the model of Baumgartner [3]
there is no uncountable (1, 2)-entangled linear ordering.

THEOREM 2: If E is any set of Cohen or random reals, then E is

 1-en tangled .

To state the result of §1 using the new terminology let ded(03BB, 0)
denote the fact that there is a linear ordering of size 0 with a dense
subset of size  À. Sierpinski [19] showed that ded(03BB, 03BB+) always holds
and that ~03B8  À 203B8  03BB implies ded(03BB, 203BB). Thus ded(03BB, 203BB) holds if, for
example, 203BB = 03BB+ or if À is a strong limit cardinal. In [16], W. Mitchell
constructed a model of ZFC in which ded(SI, 21) fails. Theorem 1 can
also be written in the following form.

THEOREM 3: Assume ded(À, 203BB). Then for every 03BA  203BB with cf K = cf 203BB,
there is an K-entangled linear ordering of size K which moreover has a dense
subset of size  03BB.

COROLLARY 4: For every 03BA  280 with cf K = cf 2mo there is an K-entangled
set of reals of size K.

COROLLARY 5: (Sierpiriski) For every 03BA  2Ko with cf K = cf 2"- there is
an (K, 2)-entangled set of reals of size K.
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The next proposition contains our basic observation which connects
entangled linear orders and chain conditions. We shall state later a

slightly stronger result of this kind.

THEOREM 6: Let K be a regular infinite cardinal and let L be a K-entangled
linear order of size 03BB  K. Then there exist partially ordered sets Ûo and
£i 1 such that D0 and Z 1 satisfy the 03BA-c.c. but D0  D 1 does not satisfy
the À-c.c.

PROOF: Let {r03B1 : «  03BB} be a one-to-one enumeration of L and let

E = {r03B1, r03B1+1&#x3E; ; 03B1 even  03BB}. We consider E as a subposet of L X L
with the product ordering. Let

considered as posets under the ordering D . Let A be a subset of D0(E)
or D1(E) of size K. By the standard A-system argument we may assume
that the elements of A are disjoint and of the same cardinality n  w.

Since L is K-entangled, L contains a dense subset D of size  K. Every
member of A can be separated by a set of 2 n intervals with end-points in
D, and by regularity of K we may assume that the separating set is the
same for each p E A. Now a simple application of the (K, 2n)-entangled-
ness of L gives two compatible members of A. The product D0(E) 
D1(E) is not À-c.c. since {{e}, {e}&#x3E; : e ~ E} is a pairwise incompatible
subset of D0(E)  D1(E). This completes the proof.

Note the following direct way of getting topological spaces which
satisfy the conclusion of Theorem 6. Let Xo be the set of all chains of E
and let Xl be the set of all antichains of E. We consider Xo and Xl as
subspaces of f 0, 1}E under the standard identification via characteristic
functions. Then Xo and Xl are compact Hausdorff K-c.c. spaces such
that Xo X Xl is not À-c.c. It is clear that the proof of Theorem 6 also
shows that each (finite) power of D0(E) and of D1(E) is again a K-c.c.
poset.

By Theorems 3 and 6 it follows directly that ded(03BB, 203BB) implies the
existence of two cf 2À-c.c. posets £ o and D1 such that So  D1 is not cf
2À-c.c. Thus in particular, the cf 2eo-c.c. is not productive. We shall later
state a more general result of this kind, and in order to do this we need
some definitions of Galvin [8].

Let 03BB  03BA  0 be cardinals and let H c [03BB]2. Then we let 0(Â, H)
= {F ~ [03BB]0 : [F]2 ~ H}; Z(X, H) is partially ordered by P. A set
K c [03BB]2 is called K-big if, given any n  03C9 and any Hl, ... , Hn ç [03BB]2, if
K ~ H1 ~ ... ~ Hn, and if each of H, is the union of less than K
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rectangles, then D(03BB, H1)  ...  D(03BB, Hn ) satisfies the K-c,c. A set

K ~ [X]2 is big iff K is À-big. Galvin [8] showed that 2" = 03BA+ implies the
existence of 03BA+ disjoint big subsets of [03BA+]2 and that MA implies the
existence of 0 disjoint big subsets of [20]2. The next proposition shows
that entangled linear orderings can also be used in constructing disjoint
big subsets of [03BB]2.

THEOREM 7: Let K be regular and infinite and let L be a K-entangled linear
order of size À  K. Then there exist 8 0 pairwise disjoint K-big subsets of
[03BB]2.

PROOF: Let f ra : a 03BB} be a one-to-one enumeration of L, and let A
denote the set of all limit ordinals  À. For a, 03B2 e A and n  w, we
define

It is clear that the proof of Theorem 6 also shows that Kn, ( n  03C9) is a
family of 0 disjoint K-big subsets of [039B]2. This finishes the proof.

COROLLARY 8: Assume ded(À, 203BB). Then there exist 0 pairwise disjoint
big subsets of [ cf 203BB]2.

Note that the proof of Theorem 7 also gives the following proposition
where K is not necessarily a regular cardinal.

THEOREM 9: If there exists a K-entangled linear ordering of size 03BB  K, then
03BB  [03BA]20.

Note that Corollary 4 and Theorem 9 have as an immediate conse-
quence K  [03BA]20 for all 03BA  20 with cf K = cf 20, which is a well-known
result of S. Shelah ([9]).

Galvin [8] used familles of disjoint big subsets of [03BB]2 in constructing
several very strong counter-examples to productiveness of the K-chain
condition. Using Theorem 7 and Galvin’s ideas we can also get some of
his general results. However, here we mention only one instance of such a
general result, but let us note that it is possible to prove an analogue of
Theorem 4.7 from Galvin [8].

THEOREM 10: Assume ded(03BB, 203BB). Then for every n  w there is a partially
ordered set Û such that Dn satisfies the cf 2 À -c.c. but Dn+1 does not.

PROOF: Let L be a cf 203BB-entangled linear ordering which exists by
Theorem 3. Let { r03B1 : 03B1  cf 203BB} be an one-to-one enumeratin of L and let
A be the set of all limit ordinals  cf 2À. Let Ko,..., Kn be the disjoint
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big subsets of [039B]2 defined in the proof of Theorem 7. Clearly, we may
assume that n  1. For i  n, let Hi = ~{KJ : j  n&#x26;j ~ i}. Let 8/=
8(À, Hi) for i  n. Since Ki’s are big sets any product of  n of the
posets 80, ... , 8 n satisfies the cf 2À -C.C., but clearly 80 X ... X 0 n is not
a cf 2À-c.c. poset. Hence Z = D0 ~ ... ~ Dn satisfies the conclusion of
the Theorem.

COROLLARY 11 : For every n  w there is a partially ordered set 8 such
that 8 n satisfies the cf 20-c.c. but 0 n + 

1 does not.

THEOREM 12: Let B03BA be the standard poset for adding K &#x3E; 0 Cohen or
random reals. Then B03BA forces that for every n  w there is a poset 8 such
that 8 n satisfies the c.c.c. but Z n’ 1 does not satisfy the K-C.C.

PROOF: By Theorem 2 and the proof of Theorem 10.

Theorem 12 for the case of Cohen reals was first proved by Fleissner
[7]. This theorem also holds for K = 1 (or K = 0) replacing the clause
" 8 n + 1 does not satisfy the K-c.c." by "Dn+

1 does not satisfy the c.c.c.".
This has been proved by J. Roitman [17].

The first construction of an uncountable entangled set of reals under
the assumption of CH was (implicitly) given by E. Michael [15]. This fact
was first pointed out by E.S. Berney (unpublished) who used it in a

construction of an uncountable Boolean algebra with no uncountable
antichain, a result which has been also independently proved by R.
Bonnet [5]. Michael’s construction is a very nice generalization of the
classical construction of concentrated sets of reals from the case n = 1 to
the case of any finite n. His argument uses the Baire category theorem
and can also be done with MA instead of CH.

In [3], J. Baumgartner gave, assuming CH, a first generalization of the
classical construction ([10; §35]) of a function f: R ~ R which is not
monotonic on any uncountable subset of R from the case n = 1 to the
case of any finite n. Baumgartner’s construction is more flexible than
Michael’s, and our §1 owes much to Baumgartner’s construction.
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