
COMPOSITIO MATHEMATICA

ROBERT E. KOTTWITZ
Isocrystals with additional structure
Compositio Mathematica, tome 56, no 2 (1985), p. 201-220
<http://www.numdam.org/item?id=CM_1985__56_2_201_0>

© Foundation Compositio Mathematica, 1985, tous droits réservés.

L’accès aux archives de la revue « Compositio Mathematica » (http:
//http://www.compositio.nl/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CM_1985__56_2_201_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


201

ISOCRYSTALS WITH ADDITIONAL STRUCTURE
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Let k be an algebraically closed field of characteristic p &#x3E; 0, and let K
be the fraction field of the Witt ring W( k ). The Frobenius automorphism
of k induces an automorphism a of K. An F-isocrystal is a finite

dimensional vector space V over K together with a a-semilinear bijection
(D: V ~ V (recall that (D is said to be a-semilinear if it is a group

homomorphism such that 03A6(03B103BD) = 03C3(03B1)03A6(03BD) for all 03B1 ~ K, v E V). In
this paper we will shorten "F-isocrystal" to "isocrystal".

Let V be an n-dimensional vector space over Op and let G = GL(V).
For any element b E G(K) we get an isocrystal (VK, 03A6), where VK = V
~QpK and 4Y = b · (idv ~ 03C3 ). If b’ is a-conjugate to b (in other words, if
b’ =gb03C3(g)-1 for some g E G ( K )), then the two isocrystals we get are
isomorphic. This construction yields a bijection from the set of 0-con-
jugacy classes in G(K) to the set of isomorphism classes of n-dimen-
sional isocrystals. The Dieudonné-Manin description of the category of
isocrystals (see §3 for a review of this theory) makes it possible to give a
simple classification of n-dimensional isocrystals, which can then be
translated into a classification of the a-conjugacy classes in G ( K ).

This paper studies the set B(G) of a-conjugacy classes in G(K) for
any connected reductive group G over 0 p. In fact we work with a slightly
more general situation, in which 0 p is replaced by a finite extension F,
but in this introduction we discuss only the case F = Qp.

Let D be the diagonalizable pro-algebraic group over Qp with char-
acter group Q. Return for the moment to the case G = GL ( h ). Let
b ~ G(K) and let (VK, 03A6) be the corresponding isocrystal. The slope
decomposition of VK (see §3) gives us a homomorphism v : D - G

defined over K. In this way we get a mapping b H v from G(K) to
HomK(D, G).

In §4 we construct a mapping b H v for any connected linear group G.
Roughly speaking, we consider simultaneously all representations p of G
on finite dimensional vector spaces over 0 p in order to reduce to the case
of GL(V). We also show that v is trivial if and only if the a-conjugacy
class of b is in the image of the canonical injection

* Partially supported by the National Science Foundation under Grant MCS 82-00785.
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We say that an element b ~ G(K) is basic if the corresponding
homomorphism v : D - G factors through the center of G. For G =

GL(V) the element b is basic if and only if the corresponding isocrystal
is isotypic. We write B(G)h for the set of a-conjugacy classes of basic
elements of G(K). In §5 we construct a canonical bijection

for any connected reductive group G over Qp. Here Z(6) is the center of
G = LG° (see [B] for the definition of LG0), and r is Gal(Qp/Qp). This
bijection extends the bijection

in §6 of [Kl]. For G = GL(V) we have G = GLn(C) ( n = dim V) with
trivial l-action, and therefore X*(Z()0393) is equal to X*(Gm) = Z. The
n-dimensional isocrystal corresponding to m ~ Z is isotypic of slope
min.

For tori T every element of T( K ) is basic, B(T) is a group, and we
get a group isomorphism

Since we prove the general case by reducing to the case of tori, we must
handle tori directly. This is done in §2. Note that X*(tr) = X*(T)0393, the
coinvariants of r on X*(T), and what we get in §2 is actually a
canonical isomorphism

This is proved by characterizing the functor T ~ X*(T)0393 (Lemma 2.2)
and showing that B(T ) satisfies this characterization (Proposition 2.3).

So far we have only discussed the subset B(G)b of B(G). If G is

quasisplit, we can describe all of B(G) by using Levi subgroups M of G.
For G = GL(V) this just amounts to decomposing an isocrystal into a
direct sum of isotypic subspaces. For a Levi subgroup M of any quasi-
split group G we say that a basic element b E M( K ) is G-regular if the
centralizer in G of v : D ~ M is equal to M, and we write B(M)br for the
subset of B(M)b consisting of G-regular elements. In §6 we show that
every element of B(G) arises from a pair (M, b), where M is a Levi
subgroup of G and b ~ B(M)br, and that the pair (M, b ) is uniquely
determined up to G(Qp)-conjugacy.

These results about B(G) are useful in studying the points mod p on
Shimura varieties. In fact the appendix of [L] gives a construction of
certain elements of B(G), and this paper arose from an attempt to
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systematize Langlands’s construction. However, the methods of the two
papers are sufficiently different that it will require some patience on the
part of the reader to appreciate the connection between the two.

1. Preliminaries

The following notation will be used throughout this paper.
k - an algebraically closed field of characteristic p &#x3E; 0

K - the fraction field of the Witt ring W(k)
K - an algebraic closure of K _
F - a finite extension of Qp in K -
F - the algebraic closure of F in K
L - the compositum of K_ and F in K
r - the Galois group of F/F

1.1. Let kF denote the residue field of F and let M denote the fraction
field of W(kF). The extension F/M is totally ramified of degree e, the
absolute ramification index of F. The canonical homomorphism K 0 m F
- L is an isomorphism, since an Eisenstein polynomial over M remains
Eisenstein over K. In particular, the extension L/K is totally ramified of
degree e, which means that e is also the absolute ramification index of
L.

The Frobenius automorphism of k relative to kF induces an automor-
phism of K over M, which in turn induces an automorphism Q of L over
F.

1.2. LEMMA: The fixed field of u on L is F.

Let N denote this fixed field. It is clear that N contains F, has the
same residue field as F, and is discretely valued. Therefore N is a finite
totally ramified extension of F in L. Since L and F have the same
absolute ramification index, N is equal to F.

1.3. We define the Weil group W(K/F) to be the group of continuous
automorphisms of K which fix F pointwise and which induce on the
residue field of K an integral power of the Frobenius automorphism.
There is an exact sequence

where (J) denotes the infinite cyclic group generated by a. We turn
W(K/F) into a topological group by requiring that the injection
Gal(K/L) ~ W(K/F) identify Gal(K/L) with an open subgroup of
W(K/F)/

-

For any finite Galois extension E of F in K there is an exact

sequence
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1.4. EXAMPLE. Suppose that k is an algebraic closure of Fp. Then F is
dense in K, and the restriction homomorphism W(K/F) ~ Gal(F/F)
induces an isomorphism between W(K/F) and the usual absolute Weil
group of the local field F.

1.5. EXAMPLE. The group W(K/Qp) is used in [B-O], where it is called
the crystalline Weil group of K.

1.6. Let A be a group on which W(K/F) acts. We say that A is
discrete if the stabilizer of any element of A is open in W(K/F). For
example, G(K) is discrete for any algebraic group G over F. For any
discrete W(K/F)-group A we define Hl(W(KIF), A) to be the direct
limit over N of the sets H1(W(K/F)/N, AN), where N runs through the
directed set of open normal subgroups of W(K/F).

1.7. Let G be an algebraic group over F. We define B(G) to be the
pointed set H1(03C3&#x3E;, C(L)). More concretely, B(G) is the quotient of
G(L) by the equivalence relation a-conjugacy : x, y E G(L) are said to
be a-conjugate if there exists g ~ G(L) such that y = gx03C3(g)-1. Note
that x, y are a-conjugate if and only if the elements xa, yu of the
semidirect product G(L)  03C3&#x3E; are conjugate under G(L).

1.8. Assume further that G is connected and linear. Then H1(L, G) is
trivial [St] since (cohomological) dim L  1, and thus we have a bijection

(inflation for the quotient 03C3&#x3E; of W(K/F)). _

The restriction homomorphism W(K/F) ~ Gal(F/F) and the inclu-
sion G(F) ~ G(K) give us an injection

To prove the injectivity it is enough to show that

is injective for every finite Galois extension E of F in K. It follows from
1.2 and 1.3.2 that this map is the inflation map for G(K) and the
quotient Gal(E/F) of W( K/F ), and inflation maps are always injective
for H1.

Combining (1.8.1) and (1.8.2), we get an injection
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1.9. Let 1 - G1 ~ G2 ~ G3 ~ 1 be an exact sequence of algebraic
groups over F, and assume that G1 is connected and linear. Since

H1(L, G1 ) is trivial, the sequence

is exact. Taking cohomology with respect to the group (a) and using 1.2,
we get an exact sequence

The surjectivity of B(G2) ~ B (G3) is an immediate consequence of the
surjectivity of G2(L) - G3(L). 

-

1.10. Let F’ be a finite extension of F contained in K, and let L’, Q’
be the analogues of L, a for F’. Let G be an algebraic group over F’, and
let RG denote the F-group obtained from G by restriction of scalars.
Then the (03C3)-group RG ( L ) is induced from the 03C3’&#x3E;-group G ( L’). Thus
there is a Shapiro bijection

2. Tori

In this section we study B(T) for F-tori T. Throughout this section E
(and sometimes E’ as well) denotes a finite Galois extension of F that is
contained in F. The set of all such E is a directed set, and it will be

"lim"
useful to consider the pro-object - RE/FGm, where RE/F denotes
restriction of scalars from E to F. For E’ D E the transition homomor-

phism is the norm homomorphism NE’/E. The r-module X*(RE/FGm) is
canonically isomorphic to Z[Gal(E/F)], with r acting by left transla-
tions. The group Gal(E/F) acts on RE/FGm by F-automorphisms; for
T E Gal(E/F) we use 1". to denote the corresponding automorphism of
RE/FGm. For p, r e Gal(EIF) the automorphism f03C1 sends the basis
element T of X*(RE/FGm) to the basis element rp-1. Applying X* to
the norm homomorphism NE’IE: RE’/FGm ~ RE/FGm, we get the homo-
morphism Z[Gal(E’/F)] ~ Z[Gal(E/F)] induced by the canonical

surjection Gal(E’/F) ~ Gal( E/F ).
2.1. Consider additive functors A : (F-tori) ~ (abelian groups) satisfy-

ing the following two conditions:
(2.1.1) A(RE/FGm) is isomorphic to Z for any E.
(2.1.2) For any exact sequence 1 ~ T1 ~ T2 ~ T3 ~ 1 of F-tori, the

sequence A(T1) ~ A(T2) ~ A(T3) ~ 1 is exact.
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The following lemma is valid for any field F, not just the p-adic fields
we are considering in this paper.

2.2. LEMMA. (a) The functor T ~ X*(T)0393 satisfies the conditions of 2.1
( we use a subscript F to denote the coinvariants of 0393).

(b) Assume that A satisfies the conditions of 2.1. Then A is isomorphic
to the functor X*( )0393 of (a), and the canonical homomorphism

isomorphism. (2.2.1)

Part (a) is an easy exercise. As for part (b), we first note that

is an isomorphism for all E, E’ with E’D E, since A(NE’/E) is a

surjection (use (2.1.2), which is applicable since the kernel of NE’/E is an
F-torus) from one infinite cyclic group to another (use (2.1.1)).
Now we prove that (2.2.1) is an isomorphism. The functor X* is

" lim" lim

pro-represented by É RE/FGm and the element (03BCE) ~ ~

X*(RE/FGm), where 03BCE is the element of X*(RE/FGm) corresponding
to 1 E Z[Gal(E/F)]. Therefore we have an isomorphism

Since the transition homomorphisms (2.2.2) are isomorphisms, the pro-
jective limit is simply A(Gm), and thus we get an isomorphism

The homomorphism (2.2.1) is the composition of (2.2.3) and the homo-
morphism

obtained from the canonical homomorphism X* ~ X*()0393. We must
show that (2.2.4) is an isomorphism.

The injectivity of (2.2.4) follows from the surjectivity of X*(T) ~
X*(T)0393. To prove the surjectivity of (2.2.4), we consider « E Hom( X *, A )
and show that aT : X*(T) ~ A(T) factors through X*(T) ~- X*(T)0393 for
any F torus T. Choose E so that T splits over E. Let p E X*(T ) and let
T E Gal(E/F). There exists a (unique) F homomorphism RE/FGm ~ T
that carries itE into p. Thus, without loss of generality, we may assume
that T = RE/FGm and 03BC=03BCE. In the beginning of this section we
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defined an F-automorphism f03C4 of RE/FGm. This F-automorphism car-
ries ry, into 03BCE. Thus it is enough to show that A(f03C4) is the identity, and
this follows from the fact that NE/F  fT = NE/F’ since we have seen that
A(NE/F) is an isomorphism.
Now we prove the first part of (b). By (2.1.1) the group A(Gm) is

isomorphic to 7L; we choose a generator of A(Gm) and let a : X*( )0393 ~ A
be the corresponding homomorphism of functors (use (2.2.1)). Our plan
is to show that a is an isomorphism.

By construction, aT : X*(T)0393 -A (T) is an isomorphism for T=Gm.
Using (2.2.2) for the functors X*( )0393 and A, we see that aT is an

isomorphism for T = RE/FGm. Since A is additive, we have A ( Tl X T2) =
A(T1) A(T2), and therefore aT is an isomorphism for any product of
tori of the form RE/FGm. Finally, for an arbitrary torus T we choose an
exact sequence 1 ~ U ~ V ~ T ~ 1 of tori, where is a product of tori
of the form RE/FGm. We have a commutative diagram

with exact rows. Since a v is an isomorphism, aT is surjective. Applying
this to U, we see that au is surjective. This is enough to show that aT is
an isomorphism.

2.3. PROPOSITION: The functor T ~ B(T) satisfies the two conditions

of 2.1.

First we check (2.1.1). Using 1.10, we see that it suffices to show that
B(Gm) is isomorphic to Z. For this it is enough to show that x E L’ is of
the form y03C3(y)-1 (y ~ L ) if and only if the valuation of x is 0. It is
obvious that the valuation of y03C3(y)-1 is 0. We will prove the reverse

implication by showing that the homomorphism 03B2: L ~ O L defined by
03B2(y)=y03C3(y)-1 is surjective (OL denotes the valuation ring of L). Since
03B2 preserves the usual filtration of 0 Z, and since O L is complete and
separated for the topology defined by this filtration, it is enough to check
that /3 induces surjections on the pieces of the associated graded group.
Thus it is enough to check that

are surjective, where q = Card(kF). This is obvious, since k is algebrai-
cally closed.

Condition (2.1.2) follows immediately from (1.9.1).
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2.4. The results in 2.2 and 2.3 show that the functors X*( )0393 and B
are isomorphic, and that choosing an isomorphism

is the same as choosing a generator of the infinite cyclic group B(Gm).
We normalize (2.4.1) by choosing as generator of B(Gm) the a-conjugacy
class in L’ consisting of elements with normalized valuation 1.

2.5. There is an explicit formula for the isomorphism X *(T)r ...; B(T).
Choose E so that T splits over E. Let Eo be the largest field between E
and F that is unramified over F. Consider p E X*(T). Under X*(T)0393
B(T), the class of p maps to the a-conjugacy class containing
NmE/E0(03BC(03C0E)), where 03C0E is a uniformizing element for E and NmE/E
is the norm homomorphism T(E) ~ T(E0) (note that Eo eL). By
functoriality it is enough to prove this formula in the universal case
T = RE/FGm, 03BC = it El which can be handled easily by using the fact that

is an isomorphism.
2.6. The isomorphism X*(T)0393  B(T) of 2.4 is compatible with the

Shapiro isomorphism of 1.10. In other words, for any finite extension F’
of F in K and any F’-torus T, the diagram

commutes, where the right vertical arrow is the Shapiro isomorphism, r’
is the Galois group of F/F’, and the left vertical arrow is induced by the
r’-equi variant homomorphism

which sends p E X*(T ) to 03BC 0 1.
To prove this, we note that the diagram (2.6.1) yields two functorial

homomorphisms X*(T)0393’ ~ B(T); we must prove that these homomor-
phisms are equal. Using Lemma 2.2 (for the field E ), we reduce to the
case T = Gm, which is easy to handle.

2.7. Consider a torus T and a field E that splits T. Then the

isomorphism X*(T)0393 B(T) of 2.4 is compatible with the Tate-

Nakayama isomorphism



209

In other words, the diagram

commutes, where the right vertical arrow is the composition of the
inflation map H1(E/F, T(E)) ~ H1( F, T ) (an isomorphism in this case)
and the injection (1.8.3) H1(F, T) ~ B(T), and where the left vertical
arrow is the canonical injection

We now prove that the diagram (2.7.1) commutes. For any p E X*(T)
such that LTEGal(E/F) rit = 0, we must show that the two homomor-

phisms fi-’(EIF, X*(T)) ~ B(T) obtained from (2.7.1) carry the class
of p into the same element of B(T). Both of these homomorphisms are
functorial in T, and therefore it is enough to consider the following
universal case: T = RE/FGmlv(Gm), 03BC = /3 0 JUE, where v = LTEGal(E/F)
03C403BCE and /3 is the canonical homomorphism RE/FGm ~ T.
We write c, for the element of B(T) obtained from p by going first

across and then down in diagram (2.7.1) and write c2 for the element of
B(T) obtained by going the other way around (2.7.1). We must show that
cl = c2. We will accomplish this by showing that cl, C2 both lie in the
subset H1(F, T ) of B(T) and that they both map to [ E : F]-1 ~ Q/Z =
H2(F, Gm) under the injection

obtained as a connecting homomorphism for the exact sequence

For ci this can be seen easily using the conimutative diagram

in which the horizontal arrows are Tate-Nakayama isomorphisms and the
vertical arrows are connecting isomorphisms coming from (2.7.3) and the
corresponding sequence of cocharacter groups.

It requires more work to handle c2. Let Eo be the largest field

between E and F such that Eo is unramified over F, and let eo = [E : E0].
Let N be the unique unramified extension of Eo in K such that
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[N : E0] = e0. Let 7r, be a uniformizing element of F. Since EN/E is

unramified of degree eo, and since 03C0F has normalized valuation eo in E,
there exists a uniformizing element "’EN of EN such that NmEN/E03C0EN =
’7F- From 2.5 we know that the image of the class of 03BCE under the

isomorphism

is the a-conjugacy class containing the element NmEN/N03BCE(03C0EN) ~ T(N);
we will use b to denote this element of T(N). The image of the class of 03BC
under the isomorphism X*(T)0393  B(T) is the a-conjugacy class of
/3(b). An easy calculation shows that NmN/Fb = v(03C0F), which means
that /3(b) gives us a 1-cocycle of the cyclic group Gal( N/F ) with values
in T( N). The class of this 1-cocycle in H1(F, T ) is c2. Of course we are
using the canonical generator of Gal( N/F ), namely the restriction of a
to N, to regard /3 ( b) as a 1-cocycle of Gal(N/F) in T(N). This choice of
generator determines isomorphisms

for any Gal( N/F )-module M and any i ~ Z. The equation NmN/Fb =
03BD(03C0F) has the further consequence that the image of c2 under (2.7.2) is
equal to the imge of the class of 03C0F under

namely the fundamental class of N/F. Since [N:F]=[E:F], this

completes the proof.
2.8. There is a functorial homomorphism B(T) ~ X*(T)0393 ~ Q de-

fined as follows. Let b ~ T(L). Then there exists a unique element
v E X*(T)0393~Q such that

for all 03BB ~ X*(T)0393, where val is the normalized valuation on L. The
element v depends only on the o-conjugacy class of b, and b H v induces
the desired homomorphism.

The composed map

is given by 03BC ~ [0393: 039303BC]-103A303C4~0393/0393u 03C403BC, where 039303BC denotes the stabilizer of 03BC
in r. This can be seen easily from 2.5. It now follows from 2.7 that the
sequence

is exact.



211

2.9. Suppose that T is an unramified F-torus. Then T splits over L,
and by tensoring the normalized valuation L  ~ Z with X*(T ) we get a
canonical surjection T(L) ~ X*(T). Applying the functor H1(~03C3~,) to
this surjection, we get a functorial homomorphism

We claim that (2.9.1) is the inverse of the isomorphism X*(T)0393 ~ B(T)
of 2.4. It is enough to show that the composition X*(T)0393 ~ B(T) ~
X*(T)0393 is the identity. This follows from the explicit version of X*(T)0393
~ B(T) given in 2.5 (take E to be unramified).

3. a-L-spaces

To understand B(G) for groups other than tori we need the following
definition. A u-L-space is a pair (V, 03A6) consisting of a finite dimensional
vector space V over L and a u-semilinear bijection 03A6: V- V. For
F = Q such a space is simply an isocrystal. The category of a-L-spaces
is equivalent to the category of pairs ( W, i ) where W is an isocrystal and
i is a homomorphism F - End( W ) of Qp-algebras.

The category of isocrystals is Tannakian over Q p. Its gerb 9 is bound
by the diagonalizable pro-algebraic group D over Qp whose character
group is Q. Giving such a gerb is the same as giving a homomorphism
Q = X*(D) - Br(Qp) = Q/Z. For our gerb the homomorphism is the
canonical projection Q ~ Q/Z [Sa].

The description of the category of a-L-spaces in terms of pairs ( W, i )
shows that this category is Tannakian over F and that its gerb is WF, the
gerb over F obtained from 9 by extending scalars from Q p to F. In
particular cg F is bound by DF and corresponds to the homomorphism
X*(D) - Br(F) obtained as the composition

which is simply the homomorphism Q - Q/Z that sends r ~ Q to the
class of [ F : Qp] · r mod Z.

From [Sa] we see that the category of o-L-spaces is semisimple, that
the simple objects are parameterized by rational numbers, and that the
endomorphism ring of the simple object corresponding to r E Q is the
division algebra with center F and invariant [F:Qp]·r. By using the
number [ F : Op] to renormalize the parameterization (in other words, by
renormalizing the isomorphism between D and the band of GF), we
obtain a parametrization for which End(V,) has invariant r, where V, is a
simple object corresponding to r ~ Q. We refer to r as the slope of Tlr
(just as for isocrystals).
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Let 77- be a uniformizing element for F. Suppose that V is a a-L-space
which is isotypic of slope r. Write r = m/n with m, n ~ Z. Let E be the
fixed field of non L. Then the E-vector space V03C0-m,03A6n (the elements of
Tl fixed by 03C0-m03A6n) generates V over L; in other words,

More generally, let V be any a-L-space and let n be a non-zero integer
such that nr E 7L for every slope r of V. Let v : D ~ GL(V) be the
homomorphism (defined over L ) corresponding to the slope decomposi-
tion of V. Then nv factors through D ~ G m (dual to Z - Q), yielding
v’: Gn - GL(V). Again let E be the fixed field of Qn on L. Then we
have

4. Construction of v in general

In this section G is a connected linear algebraic group over F. In 2.8 we
constructed a functorial homomorphism B(T) ~ X*(T)0393 ~ Q. We now
wish to generalize this construction.

4.1. The generalization is best stated in terms of the diagonalizable
group D of §3. The usual inclusion Z c Q corresponds to an F-homo-
morphism D ~ Gm, which gives us an inclusion HomF(Gm, G) ~
HomF(D, G). Furthermore, for any v E HomF(D, G) there exists a

positive integer n such that n03BD ~ HomF(Gm, G). For an F-torus T we
have HomF(D T ) = X*(T)0393 ~ Q.

4.2. The generalization of B(T) ~ X*(T)0393~ Q is a mapping b H v
from G(L) to HomL(D, G). To get v from b, we start by noticing that b
turns representations of G into a-L-spaces: for any representation p:
G - GL ( ) of G on a finite dimensional vector space V over F, the pair
(VL, 4Y ) is a u-L-space, where hL = V 0 FL and 4Y = p(b) 0 (idV ~ 03C3). The
slope decomposition of (VL, 0) gives us an element 03BD03C1 ~
HomL(D, GL(V)) (for each r ~ Q the group D acts on the correspond-
ing subspace of VL by the character r ~ Q = X*(D)). Let R be an
L-algebra and let x E D(R). We write Rep(G) for the category of finite
dimensional representations p: G ~ GL(V). Then the elements 03BD03C1(x)
( p E Rep( G )) give an automorphism of the standard fiber functor of
Rep( G ), and therefore there exists a unique element y E G(R) such that
p ( y ) = 03BD03C1(x) for all p. The homomorphism x H y is functorial in R and
thus defines an element v E HomL(D, G ) such that p 0 v = vP for all p.
This completes the construction of b H v.
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4.3. The element v obtained from b E G ( L ) can also be characterized
in a way that avoids any reference to a-L-spaces. It is the unique element
v E HomL(D, G) for which there exist an integer n &#x3E; 0, an element
c G G(L) and a uniformizing element v of F such that the following
three conditions hold:

Int( c) 0 (n v ) is defined over the fixed field of (J n on L.

Here, as in the rest of the paper, Int(c) denotes the inner automor-
phism x - cxc -’ . The equality in (4.3.3) is between elements of G(L) 
~03C3~, as in 1.7.

Let v be the element of HomL(D, G) constructed in 4.2. We need to
show that there exist n, c, 7r such that (4.3.1)-(4.3.3) hold. For 03C0 we take
any uniformizing element of F. As a first choice for n we take any
positive integer such that n v E HomL(Gm, G ). We write v’ for n v and E
for the fixed field of 03C3n on L. For any (p, V) ~ Rep( G ) the a-L-space VL
has the property that nr E Z for any slope of VL. From the discussion at
the end of §3 we see that

where x = 03BD’(03C0)-1(b03C3)n ~ G(L)  ~03C3~ (we have extended VL to a repre-
sentation of G(L)  ~03C3~ in the obvious way). We now have two fiber
functors for Rep( G ) with values in E-vector spaces: 03C91 : V ~ VE and Ú)2:
V ~ V03C1(x)L. The difference between w and w2 is measured by an E-torsor
X under G for the f.p.q.c. topology on Spec(E). Since GE is an affine
scheme of finite type over E, the same is true for X. Therefore X has a
point over a finite extension E’ of E, and the difference between W, and
w2 can be measured by an element of the Galois cohomology set

H1(E, G). Since G is connected and linear, the result of Steinberg used
in 1.8 implies that wl and w2 become isomorphic over a finite extension
E’ of E in L. Let m = [ E’ : E]. Then the inclusion V03C1(x)L ~ V03C1(x)mL
induces an isomorphism

Thus, replacing our original n by nm, we may assume that the fiber
functors w 1 and w2 are isomorphic over E. Choose an isomorphism a:
mi + W2 over E. By extending scalars from E to L we get an isomor-
phism aL : 03C91 ~ w2 over L. But over L we also have the obvious

isomorphism 03B2: 03C92 ~ 03C91 given by


