MAREK LASSAK

Relative extreme subsets

Compositio Mathematica, tome 56, n° 2 (1985), p. 233-236

<http://www.numdam.org/item?id=CM_1985__56_2_233_0>
RELATIVE EXTREME SUBSETS

Marek Lassak

Generalizing the notion of extreme point of a set in the real linear space L, Klee [2] introduced the following definition of relative extreme point. Let $B \subseteq L$ and $C \subseteq L$. If a point of B does not belong to any open segment $(b, c) = \{(1 - \lambda)b + \lambda c; 0 < \lambda < 1\}$ determined by distinct points $b \in B$ and $c \in C$, then it is called an extreme point in B relative to C.

Observe that the known notion of extreme subset can be generalized analogously:

Definition: Let $A \subseteq B \subseteq L$ and $C \subseteq L$. We say that A is an extreme subset of B relative to C if, together with any point $a \in A$, the set A contains every point $b \in B$ such that $a \in (b, c)$ for some $c \in C$.

Let us note that the definition can be expressed more geometrically using the notion of the penumbra ([5], p. 22) of A with respect to C. Namely, a subset A of $B \subseteq L$ is an extreme subset of B relative to a non-empty set $C \subseteq L$ if and only if

$$P_C(A) \cap B = A.$$

Obviously in the case $A = \{a\}$ of our definition we get the notion of extreme point a in B relative to C and in the case $B = C$ we obtain the usual notion of extreme subset A of B. On the other hand, the above definition is a special case of the notion (presented as Remark in [3]) of Φ-extreme subset, where $\Phi : \mathcal{D} \to 2^L$ is a function such that \mathcal{D} consists of all one-point subsets of L and $\Phi(\{b\}) = \bigcup_{c \in C}(b, c)$. Let us observe also a connection of our definition with the notion of semi-extreme subset.

Remember that a subset A of a convex set $B \subseteq L$ is called a semi-extreme subset of B if $B \setminus A$ is convex (comp. [1], p. 32). As in [6], pp. 186–187, this notion of semi-extreme subset can be extended to arbitrary (i.e. not necessary convex) set B: if $A \subseteq B$ and $A \cap \text{conv}(B \setminus A) = \emptyset$, then we call A a semi-extreme subset of B. The above mentioned connection is expressed by the following easily provable:
PROPOSITION: If \(A \) is a semi-extreme subset of \(B \), then \(A \) is an extreme subset of \(B \) relative to \(B \setminus A \). When \(B \) is convex, the inverse implication also holds.

The reader can without difficulty verify six properties of relative extreme subsets presented in Theorem 1, the first five of which generalize well-known properties of extreme subsets in the usual sense.

THEOREM 1: Relative extreme subsets have the following properties

(a) Any intersection of extreme subsets of \(B \) relative to \(C \) is an extreme subset of \(B \) relative to \(C \).

(b) Any union of extreme subsets of \(B \) relative to \(C \) is an extreme subset of \(B \) relative to \(C \).

(c) If \(A \) is an extreme subset of \(B \) relative to \(C \) and if \(A_1 \) is an extreme subset of \(A \) relative to \(C \), then \(A_1 \) is an extreme subset of \(B \) relative to \(C \).

(d) If \(A \subset B_1 \subset B_2 \) and if \(A \) is an extreme subset of \(B_2 \) relative to \(C \), then \(A \) is an extreme subset of \(B_1 \) relative to \(C \).

(e) Sets \(B \) and \(\emptyset \) are extreme subsets of \(B \) relative to any set \(C \).

(f) If \(C_1 \subset C_2 \) and if \(A \) is an extreme subset of \(B \) relative to \(C_2 \), then \(A \) is an extreme subset of \(B \) relative to \(C_1 \). Any subset of \(B \) is extreme in \(B \) relative to empty set.

The notion of the usual extreme subset of a set \(B \) is considered mainly in the case when \(B \) is convex. Also the notion of extreme point of \(B \) relative to \(C \) plays an important part in the case when \(B \) is convex and \(C \subset B \) (comp. [2] and [4]). This is why we now consider extreme subsets of a convex set \(B \) relative to a subset of \(B \).

THEOREM 2: Let \(B \) be a convex set of a real linear space \(L \) and let \(A \subset B \), \(C \subset B \). The set \(A \) is an extreme subset of \(B \) relative to \(C \) if and only if \(A \) is an extreme subset of \(B \) relative to the convex hull \(\text{conv } C \).

PROOF: Suppose that \(A \) is an extreme subset of \(B \) relative to \(C \). To verify if \(A \) is an extreme subset of \(B \) relative to \(\text{conv } C \) we shall show that for any \(a \in A, b \in B \) and \(c \in \text{conv } C \) such that \(a \in (b, c) \) we have \(b \in A \).

As an element of \(\text{conv } C \), the point \(c \) belongs to the convex hull of a finite number of points of \(C \). Consequently, there exists a minimal finite collection of points \(c_1, \ldots, c_k \in C \) such that

\[c \in \text{conv}\{b, c_1, \ldots, c_k\}. \]

In other words

\[c = \alpha_0 b + \alpha_1 c_1 + \ldots + \alpha_k c_k, \]

where \(\alpha_0 \geq 0, \alpha_1 > 0, \ldots, \alpha_k > 0 \) and \(\alpha_0 + \alpha_1 + \ldots + \alpha_k = 1 \). Since \(a = \beta b + \gamma c \) for some \(\beta > 0 \) and \(\gamma > 0 \) such that \(\beta + \gamma = 1 \), we have

\[
a = (1 - \delta_1 - \ldots - \delta_k) b + \delta_1 c_1 + \ldots + \delta_k c_k,
\]

where \(\delta_1 = \gamma \alpha_1 > 0, \ldots, \delta_k = \gamma \alpha_k > 0 \) and \(1 - \delta_1 - \ldots - \delta_k = 1 - \gamma(\alpha_1 + \ldots + \alpha_k) = 1 - \gamma(1 - \alpha_0) = \beta + \gamma \alpha_0 > 0 \).

Now, we recurrently define points \(b_k, b_{k-1}, \ldots, b_1 \) as follows

\[
b_k = b,
\]

\[
b_i = \frac{\delta_{i+1}}{1 - \delta_1 - \ldots - \delta_i} c_{i+1} + \frac{1 - \delta_1 - \ldots - \delta_{i+1}}{1 - \delta_1 - \ldots - \delta_i} b_{i+1}, \quad i = k - 1, \ldots, 1.
\]

Since the coefficients

\[
\delta_{i+1}/(1 - \delta_1 - \ldots - \delta_i), (1 - \delta_1 - \ldots - \delta_{i+1})/(1 - \delta_1 - \ldots - \delta_i)
\]

are positive and since the sum of them is equal to 1, the definition of \(b_i \) implies that

\[
b_i \in (c_{i+1}, b_{i+1}), \quad i = 1, \ldots, k - 1.
\]

(1)

By the definition of \(b_i \), the equality

\[
\delta_{i+1} c_{i+1} + (1 - \delta_1 - \ldots - \delta_{i+1}) b_{i+1} = (1 - \delta_1 - \ldots - \delta_i) b_i
\]

holds for \(i = k - 1, \ldots, 1 \) and consequently

\[
a = \delta_1 c_1 + \ldots + \delta_k c_k + (1 - \delta_1 - \ldots - \delta_k) b_k
\]

\[
= \delta_1 c_1 + \ldots + \delta_{k-1} c_{k-1} + [\delta_k c_k + (1 - \delta_1 - \ldots - \delta_k) b_k]
\]

\[
= \delta_1 c_1 + \ldots + \delta_{k-1} c_{k-1} + (1 - \delta_1 - \ldots - \delta_{k-1}) b_{k-1}
\]

\[
= \ldots = \delta_1 c_1 + (1 - \delta_1) b_1.
\]

Thus in virtue of \(\delta_1 > 0 \) and \(1 - \delta_1 > 0 \) we have

\[
a \in (c_1, b_1).
\]

(2)

Since \(B \) is convex, from \(b_k \in B \) and \(c_k, \ldots, c_1 \in B \) and also from \(b_i \in (c_{i+1}, b_{i+1}) \) for \(i = k - 1, \ldots, 1 \) we get in turn that \(b_i \in B \) for \(i = k - 1, \ldots, 1 \).

Since \(A \) is an extreme subset of \(B \) relative to \(C \) and since \(a \in A \), \(b_i \in B \) and \(c_i \in C \) for \(i = 1, \ldots, k \), we first obtain from (2) that \(b_1 \in A \) and next (if \(k \geq 2 \)), applying \((k - 1)\)-times (1) we get in turn that
$b_2 \in A, \ldots, b_k \in A$. Thus $b = b_k \in A$. Hence A is an extreme subset of B relative to C.

The inverse implication of our theorem results immediately from the inclusion $C \subset \text{conv } C$ and from property (f) of Theorem 1.

References

(Oblatum 28-X-1983)

Instytut Matematyki i Fizyki ATR
ul. Kaliskiego 7
85-790 Bydgoszcz
Poland