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1. Introduction

The aim of this article is prove that in some large and natural classes of
singular varieties a "good" moduli theory exists. It is well understood
that even for smooth surfaces one cannot expect a good moduli theory,
unless one endows the varieties with some projective data. It seems that
the concept of polarization (i.e. declaring some ample divisor dis-

tinguished) is the right concept to remedy the situation. A short discus-
sion is given in [M-F] Ch. 5 §1. Therefore in the sequel I shall consider
polarized varieties.

The main results will be that for certain classes of varieties a moduli

space exists which is a separated algebraic space of finite type. It is well
understood how to construct moduli spaces that are algebraic spaces. The
only problem is to guarantee that they are separated and of finite type.
These will follow once one can answer the following two geometric
questions:

Uniqueness of specializations: Given a family of varieties over the
punctured disc, under what restrictions will it have at most one extension
to a family over the disc?

Boundedness: Given a class of varieties, when can they be parame-
trized (not necessarily in a 1-1 way) by a scheme of finite type?

Chapter two is devoted to the question of boundedness. The main
result is that polarized surfaces with given Hilbert polynomial form a
bounded family (Theorem 2.1.2). For smooth surfaces this was proved by
Matsusaka-Mumford [M-M] and for normal ones by Matsusaka [M4].
The general result yields boundedness for normal polarized threefolds
(Theorem 2.1.3).

Uniqueness of specializations is considered in Chapter three. After
some general remarks three different cases are discussed: irregular varie-
ties (3.2), rational singularities (3.3) and "minimal" singularities (3.4): A
singularity is minimal if it is Cohen-Macaulay, its multiplicity is the
smallest possible, and the tangent cone is reduced. Their theory is

developed in greater detail than is strictly necessary for the applications
in Chapter four, but they seem to be of some independent interest.

The results of previous chapters are translated into statements about
moduli spaces in Chapter four. The Main Theorem (Theorem 4.2.1) is in
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fact seven separate theorems put together concerning existence of moduli
spaces under various conditions. For instance: normal, polarized, irregu-
lar, non-ruled surfaces have a moduli space which is a separated algebraic
space of finite type. It is interesting to remark that for regular surfaces
separatedness fails (examples 4.3.2-3). Another example shows that in
general our methods lead to honest algebraic spaces (i.e. not schemes).

The end (or lack) of a proof will be denoted by 0.

The present article is an essentially unchanged version of part one of
my doctoral dissertation completed under the supervision of Prof. T.
Matsusaka. 1 am deeply indebted to him for his guidance and support.

Financial assistance was provided by Brandeis University and by
IBM.

II. Boundedness of polarized surfaces

§2.1 Statement of the Main Theorem

DEFINITION 2.1.1: 

(i) By a surface we mean a reduced, purely 2-dimensional, projective
scheme over an algebraically closed field.

(ii) A pair (V, X) is called a polarized variety if V is a projective
variety and X an ample Cartier divisor on V. Then ~(s) = ~(V, X,
s ) = ~(V, sX) is called the Hilbert polynomial of ( h, X).

(iii) A family of polarized varieties «Vx, X03BB): 03BB~039B} is called

bounded, if there exists a map f : A - B between varieties and an

f ample Cartier divisor Y on A such that every (V03BB, Xx) is isomorphic to
some (f-1(b), Y|f-1(b)) for some b~B. If the Hilbert polynomials of
(V03BB, Xx) are all the same, this is equivalent to the statement that for
some fixed s OV03BB(sX03BB) is very ample on Vx for all À Fm A.

The aim of this chapter is to prove the following:

THEOREM 2.1.2: The family of polarized surfaces with fixed Hilbert poly-
nomial is bounded ( arbitrary characteristic).

In the last section we shall deduce the following two theorems as
corollaries:

THEOREM 2.1.3: The family of polarized normal 3-folds with fixed Hilbert
polynomial is bounded ( char. 0 only ). In fact it is sufficient to know the two
highest coefficients of the Hilbert polynomial.

To formulate our result in characteristic p we need a definition:

DEFINITION 2.1.4: Let {(V03BB, X03BB): 03BB~039B} be a family of polarized
varieties. A subset 1 c A is called a connected component of A, if it is
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closed under generalization and specialization over local rings and
minimal among subsets satisfying this property (we exclude 03A3 = ~).

THEOREM 2.1.5: In the family of non-singular polarized 3-folds every
connected component is bounded.

Our starting point is the following result of Matsusaka:

THEOREM 2.1.6: [M4] Let (V, X) be a normal polarized variety. Assume
that h0(sX)  ( X n/n ! ) s n - C sn-l. Then there is an so depending only on
X n and C that for s  s0 1 sX | contains a reduced, irreducible divisor W.

This allows one to reduce the problem to lower dimensions, but W
need not be normal. Still this allowed Matsusaka to conclude:

THEOREM 2.1.7: [M4] The family of normal polarized surfaces with fixed
Hilbert polynomial is bounded ( arbitrary characteristic). 0

Our method of proving Theorem 2.1.2 will be to normalize the surface
and analyze the conductor sufficiently to conclude boundedness. This
will be carried out in section 5. In the preceeding sections auxiliary
results will be discussed, some of which are probably well known, but we
don’t know of any convenient reference. Finally in the last section we
derive the corollaries.

REMARK: 2.1.8: There is one unpleasant feature of polarization for

singular varieties. Namely, if (V, X) is a polarized variety and V - % a
specialization of V, then X might not specialize to a Cartier divisor Xo.
But it can happen that mX specializes to an ample Cartier divisor mXo
on Va. It would be natural to include these limits in the moduli space. As
a first step one would need boundedness. In general we might run into
trouble: Let (V, X) be a normal polarized surface, q(V) = 0. Let ~m:
V - p N be the embedding given by |mX| ( m » 0). We can deform V to
a cone over a hyperplane section, to get a ruled surface Vm, with a
singular vertex. mX will specialize to a Cartier divisor on Tlm (the
hyperplane section), but the Vm clearly form a non-bounded family.

There are some indications that such bad behaviour does not occur in

general. For instance it cannot happen for normal subvarieties of Abelian
varieties.

Note 2.1.9: Since this article has been written, Matsusaka succeeded in
generalizing his results considerably. The full scope of this is not yet
clear, but our Theorem 2.1.3 appears to be a special case of his results. So
the original simple proof of Theorem 2.1.7 will probably never appear.
Using the (rather easy) fact that irreducible curves with fixed pa from a
bounded family one can get it along the lines of section 2.6.
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§2.2 Conductors of S2 rings

Our standard reference to commulative algebra is the book of Matsumura
[M.H], which can be consulted for all definitions.

CONVENTION 2.2.1: In this section all rings are supposed to have the
following properties:

(i) reduced, noetherian;
(ii) the normalization is a finitely generated module.
Actually we could get along with non-reduced rings in most cases, but

in the applications these conditions will be satisfied.

DEFINITION 2.2.2: (i) A ring R is called seminormal [Tr] if whenever
R c S is an overring such that

(a) the induced map Spec S - Spec R is a homeomorphism and
(b) R/p n R c S/p is an equality for all p E Spec S

then in fact R = S. 
_

(ii) Let R be a ring, R ~ R its normalization. The S2-ification of R,
denoted by A is the smallest ring between R and R which is S2. The
seminormalization denoted by + R is the smallest ring between R and R
which is seminormal. It always exists by [Tr].

(iii) Let R~S be a ring extension. The conductor of S over R,
Cond( S/R ) is the annihilator of the R-module S/R. One can see that it
is an ideal in R and S as well, and it is the largest such ideal.

The following lemma is very simple, but will be used repeatedly.

LEMMA 2.2.3: Let 0 - N - M - T - 0 be an exact sequence of modules.
Assume that N is S2 and codim(supp T)  2. Then the sequence splits.

PROOF: Extl(T, N) = 0 by [M.H] Theorem 28. 0

LEMMA 2.2.4: The S2-ification of a ring exists and is just  = ~htp=1 R p .

PROOF: It is just [EGA] IV.5.10.16 and 17 put together. D

LEMMA 2.2.5: Let R be an S2 ring, T an SI overring of R. Then all
associated primes of TIR and of Cond(T/R) in R have height  1.

PROOF: Let ht p  2. Then

is exact. The second term is zero by assumption, the last one by [M.H]
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Thm 28.So Hom( R/p, T/R) = 0, which proves the first statement.
Let p E Ass Cond(T/R) = Ass Ann(T/R). Then

Hom( R/p , R/Cond(T/R)) ~ 0, so Hom( R/p , T/R) ~ 0.

Hence p is contained in an associated prime of T/R, and ht p  1. ~

COROLLARY 2.2.6: With the above assumptions if R c T c R then TIR is
unmixed of height 1, Cond(T/R) is unmixed of height 1 in R and T as
well.

PROOF: Clearly neither TIR nor Cond( T/R ) can have height zero
associated primes.

Let q ~ AssT Cond( T/R ). Let p = R ~ q. So we have a monomor-
phism R /p - T/q - T/Cond(T/R). Hence p~ AssRs2.2.8Cond(T/R).
So ht p  1, and therefore ht q  1. 0

PROPOSITION 2.2.7: Let R and T as in Corollary 2.2.6 and assume that R
is seminormal. Then Cond(T/R) is reduced of pure height 1 in R and in T
as well.

PROOF: It is of pure height 1 by Corollary 2.2.6 and reduced by [Tr]
Lemma 1.3. 0

PROPOSITION 2.2.8: Let R be S2, I = Cond(R/R), p E AssR(I). Then
2 lengthRp (R/I)  lengthR p (R/I).

PROOF: We can localize everything at p and then this is just the classical
2(nQ - 03B4Q)  nQ inequality of Dedekind. (see e.g. [S] IV §11). D

COROLLARY 2.2.9 : Let R be S2, J = Cond(+R/R), p~ AssR(J). Then

2 lengthRp(R/J)  lengthRp(+R/J) + k - 1,

where k is the number of branches of R p. 0

PROPOSITION 2.2.10: Let R be a local ring, R c S an overring such that the
inclusion is an isomorphism outside the maximal ideal. Let I = Cond(S/R).
Then lengthR(R/I)  lengthR(S/R)2.

PROOF: Let t1, ..., tg be a minimal generating set for S/R. Then

I = ~ Ann(~ti~),
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and

lengthR (Rj Ann( (ti ») = lengthR(~tl~) lengthR(S/R).

Since g  length R (SIR) we get

lengthR(R/I) lengthR(S/R)2. D

PROPOSITION 2.2.11: Let R be a finitely generated, 2-dimensional reduced
S2 algebra over an algebraically closed field. Then its seminormalization

+ R is S2 again.

PROOF: Let S be the S2-ification of + R . Then +R ~ S is an isomorphism
in codim 1, and since at closed points no residue field extension can
occur, either + R = S, or Spec S - Spec + R is not a homeomorphism; i.e.
two closed points are "pinched together". But Spec R and Spec + Rare
homeomorphic, and an S2 surface can not have closed points "pinched
together" by a result of Hartshorne [H]. D

REMARK 2.2.12: (i) In fact for seminormal surfaces S2 is equivalent to not
having points "pinched together".

(ii) It is reasonable to ask if the seminormalization of an S2 ring is S2
or not. The problem is that in char p seminormality is not a topological
notion. Therefore an argument as above will not work.

Acknowledgement 2.2.13: My original version of this section was more
complicated and less general. The present form was worked out following
suggestions of D. Eisenbud. The proofs of 2.2.5 and 2.2.6 are due to him.

§2.3 Sheaves with many sections

DEFINITION 2.3.1: Let X be a quasiprojective scheme, U ~ X an open
set, 59:’ a sheaf on X. We say that F has many sections over U iff the

following two conditions hold:
(i) For any two distinct closed points p, q E U

(ii) For any closed p e U

We shall say that 5?7 has many sections if it has many sections over
U = X.
The following lemma lists basic properties of the notion.

LEMMA 2.3.2: (i) Let Z c X a closed subscheme, U c X open, 397 a sheaf
on Z. Then F has many sections over U (as a sheaf over X) iff F has
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many sections over U ~ Z. So the statement "has many sections " makes
sense without specifying which scheme we have in mind.

(ii) A linebundle on a reduced scheme has many sections iff it is very

ample.
(iii) If 0 ~ F ~ J ~ X ~ 0 is exact, F and Yt have many sections

and H1(F) = 0 then 9 has many sections as well.
(iv) Let X be a scheme, 1 an ideal sheaf. Let J be another ideal sheaf

such that J c I 2 and suppOX/I = suppOX/J = Z. Finally, let 2 be a

locally free sheaf on X. If J 0 Y has many sections over U = X - Z,
(0X/J) ~J has many sections and H1(X, J 0 2) = 0, then 2 has many
sections.

PROOF: Straightforward and easy. We remark that in (iv) J c I2 is

necessary to assure that the second order behavior of 2 at Z is

controlled by (OX/J)~J alone, since we don’t know much about

sections of J 0 Y at Z. ~

LEMMA 2.3.3: Let «Vx, Xx, F03BB): 03BB E 039B} be a bounded family of
polarized varieties and a sheaf on them. There exists an so, such that for
s  SO, F03BB ~ (9(sXx) has many sections and H1(VÀ, F03BB ~ (9(sXx» = 0 for
all 03BB ~ 039B. 1:1

The following lemma will allow us to get down from the normalization
to the variety in some cases.

LEMMA 2.3.4: Let 7r: V - U a finite, birational map, I c OV an ideal
sheaf such that I c Cond(V/U) (so I is an ideal sheaf on U as well). Let
,5z’u be a coherent sheaf on U, Fv = 03C0*Fu. Then

Hi(U, I~UFu)~Hi(V, I~VFv).

PROOF: Let {Ui} be an affine cover of U, {Vi = 17 U, 1 be that of V. We
compute the Cech complex of the sheaves. For Vl we get

(since Iv = Iul) and this is just the corresponding group over U. So the
Cech complexes are the same, hence the cohomologies agree. 1:1

The following theorem is the cornerstone of the proof in this chapter.
It will be referred to as the "Conductor Principle".

THEOREM 2.3.5 : Let {(U03BB, Xx): À E 039B} be a family of polarized varieties.
Assume that for each À E 039B we have a variety Vx, a finite birational map
03C003BB: V03BB ~ UÀ, an ideal sheaf JÀ c (9 v,, such that J’A c Cond(VÀ/UÀ). Let
CÀ = Spec«9ulJx), DÀ = Spec«(9vÀ/JÀ). Assume furthermore that «Vx,
03C0*03BB XÀ, Jx): À E 039B} is a bounded family and either
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( i ) {(C03BB; X03BB): 03BB~039B} is a bounded family; or
(ii) J03BB ~ Cond(V03BB/U03BB)2 and OC03BB~OU03BB(sX03BB) has many sections for

s  so, so independent 01 03BB.
Then {(U03BB, X03BB): 03BB~039B} is a bounded family.

PROOF: To have simpler notations we omit the index À, and denote all
pull-backs of X by X again.

First we prove that condition (i) implies (ii) if we replace the ideals J
by their squares.

Clearly (V, X, J2v) moves in a bounded family as well. Let OE = OU/J2u.
We have a sequence 0 ~ Ju/J2u ~ OE ~ OC ~ 0. Now J2u = J2v, so Jul Ju2 =
’TT *( Jvl Jv2 ). Since Jv moves in a bounded family and C moves in a
bounded family, the ac modules JulJu2 move in a bounded family. So by
Lemma 2.3.3 for some so, if s  s0 then OC(sX) and (Ju/J2u) ~ OC(sX)
have many sections. Thus by (iii) of Lemma 2.3.2 OE(sX) has many
sections, and this is just condition (ii).
Now we prove that (ii) implies the required statement. We have a

sequence

We would like to apply (iv) of Lemma 2.3.2. By Lemma 2.3.4 H1(U,
Ju ~ OU(sX))=H1(V, Jv ~ Ov(sX)) and since (V, X, lu) moves in a
bounded family this group is zero for s a so.

By the same reasoning

and if p E U - C then qr is a local isomorphism around 03C0-1(p). So the
map

is the same as

Hence if Jv 0 OV(sX) has many sections over V - D, then Ju ~ OU(sX)
has many sections over U - C. But the former moves in a bounded

family; therefore Ju~OU(sX) has many sections over U - C for s 
some so.

Oc 0 tPu(sX) has many sections for s  so by assumption, so (iv) of
Lemma 2.3.2 applies and we get that Ou(sX) has many sections for some
s  so. Thus by (ii) of Lemma 2.3.2 it is very ample.
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Since h0(U, OU(sX))h0(V, OV(sX)) the dimensions are uniformly
bounded, so |sX| embedds U into a fixed projective space P ’. If
h = dim U then the degree of the image can be bounded by shxi + h + 1
(see e.g. [L-M]) which is equal to shXhV + h + 1, so is bounded. Hence the
Ux’s are parametrized by a bounded part of the Hilbert scheme of PN,
and this was to be proved. D

§2.4 Some remarks on quot schemes

DEFINITION 2.4.2: (i) In this section all sheaves will be coherent over a
fixed projective space P.

(ii) If H = {X03BB: 03BB~039B}, F={F03BC: 03BC~M} are two families of
sheaves we say that F is a family of quotients of H if every t3§ is the

quotient of some X03BB.
(iii) For a sheaf W, ~(X)=~(X, s)=~(X~O(s)) will be called

the Hilbert polynomial of W. The coefficient of s’ will be denoted by
aj(X) or simply aj.

(iv) A family of sheaves H = {X03BB: 03BB~ 039B} will be called bounded, if
there is a quasi-projective scheme X and a sheaf Je on X X P such that
each Ax is isomorphic to some X~ OPx, where Px denotes the fibre of
pr2 over x E X. 

(v) a family of sheaves F={F03BC: 03BC~M} is called x-bounded if

{~(F03BC): 03BC~M} is a finite set of polynomials.
The following is just a re-formulation of a theorem of Grothendieck:

THEOREM 2.4.2: [G1] Let H be a bounded family of sheaves, F be a
X-bounded family of quotients. Then F is bounded. ~

Now we shall prove two statements that follow easily from the results
and methods of [Gl] but are not mentioned there.

CONVENTION 2.4.3: ~(a, b, ... ) will stand for some function which

depends only on the variables explicity listed. Whenever we write 0 in a
statement it means that there is a function for which the statement is
true.

LEMMA 2.4.4: Let H be a bounded family, F the family of quotients, F~ F,
~(F)= 03A3aisi. Then aj~(aN,..., aj+1, H).

PROOF : By taking generic hyperplane sections we can reduce the problem
to proving a0  0(aN, .... a,, H). We prove this by induction on
dim(supp F). If it is zero, then ao à 0.

Let 0 ~ F(-1)~F~J~0. Then ai(J)=~(aN,...,a1), so if we
fix aN, ... , a1, J moves in a bounded family. Hence for s  ~(aN, ..., ai ,
H) we have Hi(J(s)) = 0, i &#x3E; 0 and so Hi(F(s)) = 0 for i &#x3E; 1.
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On the other hand, let I be the family of kernels 0 ~ 03BB03BC ~ X03BB ~ F03BC
~ 0. By doing the same induction on 1 we get Hl((s)) = 0 for

s &#x3E; ~(aN,...,a1, H) and i &#x3E; 1. from Hi(X03BB(s)) ~ H1(F03BC(s)) -
H2(03BB03BC(s)) we get that H1(F(s)) = 0 for s &#x3E; ~(aN,..., a,, H). So
x(fF, s)=H0(F(s))0; hence a0-03A3N1 aisi, which is the desired
bound. 1--l

THEOREM 2.4.5: Let H be a bounded family, F be a family of quotients.
Assume that every 3P’EE F is unmixed of pure dimension n, and an(F)  c
for some constant c. Then there exists a bounded family G of quotients of H,
such that each ge G is unmixed of pure dimension n and each F is the
quotient of some 9 for which supp 9= supp 597’.

REMARK 2.4.6: It is of course not true that 5P’ is a bounded family. The
example one should keep in mind: the family of double lines in p 3 is not
bounded, but they are all contained in one of the simplest triple lines,
given locally by ( x 2, Y2).

PROOF OF THE THEOREM: Let (F) be the ideal sheaf of supp 57. Then
OPN/(F) is reduced of pure dimension n, and deg(OPN/(F))  n! . c,
so by the theory of Chow forms ([G1]L.25), {(F): F~F} is a

bounded family. If q: X~F is a quotient map then it factors through
X~X/(F)c·X. The family {X/(F)c Je: F~ F, X~ H ) is a
bounded family, it satisfies all requirements except that these sheaves
might not be unmixed. But from [G1] Theorem 2.2 it follows that if we
take the quotient by the subsheaf generated by local sections whose
support has dimension  n, then we get a bounded family again. This is
our family G. 0

§2.5 Proof of the Main Theorem

2.5.1 Step 1 : General set-up
The local notions introduced in §2.2 (seminormalization, conductor, etc.)
glue together to global ones. So for a surface V let F, (+ V, Tl) be the
S2-ification (seminormalization, normalization). For simplicity all

pull-backs of the ample divisor X will be denoted by X again. For
geometric reasons the coefficients of ~(V, X) will be denoted by
d/2s2 - 03BE/2s + X , that of xCV, ) by /2s2 - /2s + X etc.

LEMMA 2.5.2: (i) d==+d=d.

PROOF: (i) is clear, and so is (ii) except the last inequality, which follows
from [K-M] Lemma 2.1.
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As for (iii) ~(O)=~(OV)+~(O/OV)=~(OV)+length O/OV. If
W is an S2-surface then ~(OW)h0(03C9W)+h0(OW)2+(X·K)2+1
by [L-M] Lemma 2.1.

If V’ - h is a desingularization then ~(OV’)~(OV) from the Leray
spectral sequence, and on V’ we can use [K-M] Lemma 5.2 to estimate
~(OV’) from below. D

2.5.3 Step 2 : (V, X, C) is bounded.
(V, X) is a normal surface with Hilbert polynomial d/2s2 - 03BE/2s + ~.
From Lemma 2.5.2 we see that we can bound all coefficients in terms of
(d, e, ~), so we have only finitely many possibilities for ~(V, X). We
could apply Theorem 2.1.7 of Matsusaka to conclude that ( h, X) moves
in a bounded family, but V is not necessarily irreducible. But if V = U Vi,
di, e,, X l the corresponding quantities then 03A3dl=d so we have only
finitely many possibilities. le, = e and 03BEl- 3dl  - 3d by Lemma
2.5.2 so this is again finite in number. Finally 3 + 03BE2i  ~i  ~(dl, e’) is

bounded, so the irreducible components move in a bounded family and
so does (V, X). 

_ _

Now let OC=OV/Cond(V/+V), O+C=O+V/Cond(V/+V). Using
the sequences

we get I(+C, X)-/(C, X)=(03BE-+03BE)/2, where I( , )_denotes the
intersection number. Furhermore we have I(+C, X)  I(C, X) (this is
just a global version of Proposition 2.2.8), so I(C, X)  +03BE-03BE03BE + 3d.

By Proposition 2.2.7 C is reduced, hence by the theory of Chow forms
(see e.g. [Gl] ] Lemma 2.4) the triplets (V, X, C) move in a bounded
family,. D

2.5.4 Step 3 : (+V, X) is bounded.
Using our earlier notation we again look at the sequence 0 ~ O+C ~ (9c
~ X ~ 0. Here + C and C are reduced curves by Proposition 2.2.7 and X
is unmixed of pure dimension 1 by Corollary 2.2.6. So if (9+C (resp. me)
denotes the coordinate ring of the normalization of + C (resp. C), then
O+C/O+C~OC/OC is an injection. So the singularities of + C are " not
worse" than the " sum" of the singularities of C lying above the given
point. Since C moves in a bounded family, we can estimate Pa(+ C) and
the number of components; hence + C moves in a bounded family. (This
is an easy and well-known fact, but 1 don’t know of any references. It is
of course an easy special case of the Conductor Principle: Theorem
2.3.5.)
Now we can use (i) of the Conductor Principle to conclude the

boundedness of (+V, X). D
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As a preparation for the next step, let E = 2 aiAi be a cycle on ’ V
where Ai are the multiple curves of ’ V and ai = mult( A; ) -1. It is easy
to see that the triplets (+V, X, E) move in a bounded family as well.

2.5.5 Step 4: ( v, X) is bounded.
This is the most complicated step and the higher dimensional generaliza-
tions broke down here.

Let O+D=O+V/Cond(+V/), O=OV/Cond(+V/). By Corollary
2.2.6 these are unmixed of pure dimension one. As in Step 2 we get I(,
X) - I(+D, X) = (+03BE-)/2 and Corollary 2.2.9 gives 2/(D, X)  I(+D,
X)+I(E, X). Therefore I(+D, X)03BE=3d+2I(E, X) and so it is
bounded. Now in general + D is not reduced, so we cannot conclude that
+ D moves in a bounded family, but by Theorem 2.4.5 there is a family of
curves D’, such that the triplets (+ V, X, D’) move in a bounded family
and + D is a closed subscheme of D’, satisfying supp + D = supp D’. Let
D be the image of D’ in v. Here we get 0 ~ (2D -+ (9D’ ~ O+ V/O ~ 0. In
this sequence X«9D’, X) and ~(C+V/O, X) are known up to finite
ambiguity, so X«9D, X) is bounded.

(2 D’ has a natural filtration by successive socles so let grOD’ be the
corresponding Ored D’ module. If we look at (2 D’ as an (2 D module, then
this is a filtering of aD modules so we get a sequence of Urea D modules
0 - gr (9D - gr (9D’ ~ gr 9 - 0. (gr =2 is just the quotient filtering on
O+V/OV.)
Since +V~ is a homeomorphism, red D’ - red D is an isomor-

phism at the generic points (but not necessarily an isomorphism, see
Example 2.5.7).

Let F be the ared D’ submodule of gr (9D’ generated by gr OD. Since
(2red D and (9red D, are generically equal, F/gr OD has finite length; let
this be l  0. So ~(gr OD’/F) = ~(gr O)-l = ax + b - 1. But gr (2D’
moves in a bounded family of area D’ modules and gr OD’/F is a family
of quotients, so by Lemma 2.4.4 b - 1 is bounded from below. Thus 1 is
bounded from above. Hence JF moves in a bounded family of (9red D’
modules.
Now length(Ore D’/Ored D)l, so the Conductor Principle applied to

red D shows that red D moves in a bounded family. Since length (F/gr
OD) = 1 and fF moves in a bounded family of (2red D modules as well, we
conclude that gr (9D moves in a bounded family of Ored D modules.
Now by Lemma 2.3.3 gr (9D 0 ared D(sX) has many sections for s  so,

and its H-1 is zero. So the same holds if we look at it as an (9D module by
(i) of Lemma 2.3.2. Thus a successive application of (iii) Lemma 2.3.2
gives that OD(sX) has many sections for s &#x3E; so. (Note that we can not
claim yet that (9D moves in a bounded family.)

At last we are in the situation (ii) of the Conductor Principle, so we get
that (, ) moves in a bounded family. D


