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Introduction

Let X be a variety over an algebraically closed field k. The study of
vector bundles on X can be divided into local and global aspects, the
local data coming from the singularities of X. For example, if X is a

curve, and f : Z - X is the normalization of X, then the long exact
cohomology sequence

associated to the short exact sheaf sequence

shows how the kernel of the surjection f*:Pic(X) ~ Pic(Z) can be
computed from the local invariant O*Z/O*X and the global invariant
H0(Z, O*Z). If X is complete, then the above sequence reduces to

which describes the difference between the Jacobian of Z and the

generalized Jacobian of X in terms of the local data O*Z/O*X.
Using higher K-theory, one can generalize the above to the case of

normal surfaces. If X is a normal surface with singular locus S, and
f:Z ~ X a resolution of singularities, we let X* denote Spec(OX,S), and
Z* the inverse image f- 1 ( X*). The Leray spectral sequence for the sheaf
f2 on Z has the five term exact sequence
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Letting F0K0(X) denote the subgroup of K0(X) generated by the
residue fields of smooth closed points of X, and similarly defining
F0K0(Z), there are natural maps

shown to be isomorphisms by Bloch [B] in the smooth case, and by
Collino [C] in the singular case. Since X is normal, the kernel of

f * : KO(X) - K0(Z) is a subgroup of F0K0(X), hence the above gives a
description of ker(f*) as

In contrast with the case of curves, however, the local invariant

H1(Z*, X2) is very difficult to compute. The local invariant O*Z/O*X is

easy to compute because it depends only on the analytic type of the
singularity; the group H1(Z*, )É2) is not a priori an analytic invariant,
and depends on the more subtle algebraic nature of the semi-local ring
OX,S.

M.P. Murthy and N. Mohan Kumar ([MK] and [MM]) have employed
a different approach to the problem of computing K0(X). They consider
the algebraic local ring of a normal singular point on a rational surface,
and attempt to classify all such rings in a given analytic isomorphism
class. From this analysis, they are able to show that F0K0(X) = 0 if X is
an affine rational surface with a rational double point of type An
(n ~ 7, 8) or Dn (n ~ 8). Using deformation theory and K-theory, Bloch
(unpublished) has shown that F0K0(X) = Z by length if X is a projec-
tive rational surface with only rational double points. In a joint work
with Srinivas [LS], we have analyzed the effect of a special type of
quotient singularity on singular elliptic surfaces, and have shown that the
map f * : K0(X) ~ K0(Z) is injective for these surfaces.

Another attack on the problem of computing K0(X) for singular X
comes from considering the category of sheaves of modules of finite
projective dimenson, supported in the singular locus S. We denote this
category by X,S. It turns out that the image of a portion of the
Grothendieck group K0(X,S) in K0(X) is exactly the kernel of

f * : K0(X) ~ K0(Z), where Z is a resolution of singularities of X. In
addition, K0(X,S) depends only on the analytic neighborhood of S in
X, hence this gives a description of the effect of the singularity S on
K0(X) in terms of the rough analytic nature of the singularity, rather
than the more subtle algebraic structure of the Zariski neighborhood of
S in X. For example, if X is the cone x2 + y2 = z2, then the knowledge
of K0(X,S) would give information of the effect of ordinary double
points on Ko ( Y ) for any surface Y with only this type of singularity.
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Except for curves, the group K0(X,S) has been computed for only a
very,few examples. Coombes and Srinivas [CS] have used results from
algebraic K-theory to show that length: K0(X,S) ~ Z is an isomor-

phism if X is a Zariski surface (inseparable degree p cover of the plane)
with a normal singular point. Srinivas [Sr 2] has computed K0(CX,S) if
(9x,s is a UFD; in particular, he shows that K0(X,S) is isomorphic to Z
by length if (X, S ) is an E8 singularity.

In this paper, we consider the problem of computing K0(X,S) when
(X, S ) is a normal surface singularity. We refine the technique employed
by Coombes and Srinivas to relate K0(X,S) to certain K-theoretic
invariants of a resolution of singularities of X. More precisely, let X be a
semi-local normal surface with singular locus S, and let f : Z ~ X be a
resolution of singularities of X with exceptional divisor E = U El. Let
SK’0(E) be the kernel of the map rank: K’0(E) ~ Z, and let N be the
subgroup of H1(Z, K2) coming from SK’1(E). Then we have an exact
sequence (Theorem 2.1)

As an application, we show that the map length: K0(X,S) ~ Z is an
isomorphism when (X, S ) is a quotient singularity.
We also consider the relationship between Ko(rcx,s) and K0(X). Let

SK0(X,S) be the kernel of the map f * : K0(X,S) ~ SK’0(E) above. We
show (Proposition 4.1) that the image of SK0(X,S) in K0(X) is the
kernel of f * : K0(X) ~ K0(Z), if X is a normal quasi-projective surface
with resolution f : Z - X. We also generalize the exact sequence de-
scribed above for curves to yield an exact sequence

describing the kernel of f * in terms of the local analytic invariant
SK0(X,S), and the global invariant H1(Z, Y2). This shows, for exam-
ple, that f * is injective if X has only quotient singularities.

The main technical tool is a new localization sequence in algebraic
K-theory which generalizes the localization sequence for projective mod-
ules [G]. The construction of this sequence occupies the first part of the
paper. We apply this to the computation of K0(X,S) in section two, and
compute K0(X,S) for a number of examples in section three. In the
fourth section, we relate K0(X) and K0(X,S), and we use this machin-
ery to compute K0(X) for several types of singular rational surfaces.
We fix at the outset an algebraically closed field k. Except for section

one, we assume that all schemes and morphisms are over k.
Upon completion of this work, the author received a manuscript from

V. Srinivas, in which he also computes K0(X,S), for quotient singulari-



24

ties (X, S). The method is essentially that of showing that every such
singularity has an algebraic model that is a UFD, and then applying the
methods of [Sr 2]. Finally, 1 would like to thank Srinivas for discussing
his work in K-theory with me, and suggesting how one should link up
the K-theory of the resolution of (X, S ) with the K-theory of %x@s.

Section 1

Let X be a noetherian scheme, such that every coherent (2 x module
admits a surjection from a locally free (2 x module. Let Y be a closed
subscheme of X of pure codimension d. We assume that, for each y in
Y,

We refer to the above property by saying that Y has pure projective
dimension d over X. We fix an affine open subset U of Y, and let C
denote the (set-theoretic) complement. We suppose that C is locally
set-theoretically principal on Y, i.e., there is a closed subscheme Z of Y
with supp(Z) = C, such that the sheaf of ideals z~OY is locally
principal, and locally generated by a non-zero divisor of O y. Let i : Y - X,
j : U - Y be the inclusions.
We now define some subcategories of M*X (quasi-coherent sheaves on

X). We describe only the objects; the categories will be full subcategories
of M*X and will be given the admissible monomorphisms and epimor-
phisms to make them into exact categories in the usual way. That these
actually form exact categories is an easy exercise in homological algebra:

-9 Y: the category of coherent, locally free OY module
PU: the category of coherent, locally free Wu modules

(r  d) Pr(Y): the category of (9y modules of projective dimen-
sion at most r over (9x.

Pr(Y, U): the subcategory of Pr(y) of modules M such
that j*(M) is in 9u, and M has no associated
primes supported in C

rC(Y): the subcategory of Pr(y) consisting of modules
M with support contained in C.

The object of this section is to prove the following theorem:

THEOREM 1.1: There is a natural long exact localization sequence (i  0):

In addition, the sequence (*) is compatible with the localization sequence
for j : U - Y, i.e., the inclusions PY d(Y, U), HC d+1C(Y) (here
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HC is the category of hereditary r2y modules supported on C) induce a
commutative diagram:

The formal details of the proof of Theorem 1.1 are essentially the
same as in Grayson’s article [G], and we will indicate here only the
necessary modifications. We will use freely the notations and construc-
tions developed in that paper.

Let V be the exact subcategory of PU consisting of coherent sheaves
of the form j*(M) for M in Pd(Y, U). Let 3= Iso(V), L=
Iso(Pd(Y, U)). To spare the notation, we will write Pd for Pd(Y, U),
d+1C for d+1C(Y)

Let é be the extension construction over Qr:

Over an injective arrow M’ - M in QV, we allow the pull-back diagram

Over a surjective arrow M’  M in QV, we allow the diagram

We also allow isomorphisms

We define the category F to be the pull-back of lff over j* : QPd ~
QY’, i.e., an object of JF is a pair (B, Z  j*B), with B in Pd, Z in j/,
and arrows are component-wise. Let W be the category whose objects are
surjections L  B ~ M, with L and B in .9 d, and M in f!JJ¿+1. Arrows
are defined by giving an arrow from say B’ to B in QPd, an arrow from
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M’ to M in QPd+1C and completing to a diagram of the form

with the right-hand square a pull-back diagram. We identify two such
diagrams if they differ by an isomorphism of the middle column.

Putting all these categories together, we obtain a diagram

where

The maps h, g, p, and q are fibered. We also have the following

LEMMA 1.2: Let M be in g;d. Then M ~ j*j*(M) is injective, and

j*j*(M) = UnF-nZM, where Z is the locally principal subscheme of Y with
supp(Z) = C.

PROOF: Since M has no associated primes along C, sections of 5z act as
non-zero divisors on M. The lemma is an easy consequence of this. D

The monoidal category Y acts on e by

and similarly on F and 9. We note that the map j* : 5°- 1 is co-final,
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so g-1e is homotopy equivalent to !y-le. The following facts are

proven exactly as in Grayson, and we omit the proof:
(1) g-1e is contractible, and

is homotopy cartesian. g-1e ~ Or is a fibration.
(2) h : g ~ QPd+1C is a homotopy equivalence.
(3) f : g ~ F is a homotopy equivalence. Since Y acts trivially on

QPd+1C, g acts invertibly on 9 and 397, so g-1f: g-1g~g-1F is a
homotopy equivalence.

is homotopy cartesian.

(5) BQPd+1C ~ BQPd ~ BQV has the homotopy type of a fibra-
tion. As Y’ is cofinal in .9u, and exact sequences in Y’ and (!/Ju split, we
have Kl(QV) ~ Ki(QPU) is an isomorphism for i  1, and injective for
i = 0. This gives the desired long exact sequence (*).

The compatibility of the above construction with the original con-
struction in [G] shows that the localization sequence (*) is compatible
with the localization sequence

as claimed. This completes the proof of Theorem 1.1. 0

Note: Let Y’ be a closed subscheme of X, containing Y, and let C’ be a
closed subset of Y’. We assume that Y’ is of pure codimension d, and
pure projective dimension d over X, and that C’ is locally set-theoreti-
cally principal on Y’. Let U’ be the complement Y’ - C’. We also assume
that U’ is affine, that C’ contains C, and that Uln U is both open and
closed in U’. Let i : Y - Y’, j : U’n U - U, and h : Uln U - Li’ denote
the inclusions.

The maps i, j, and h induce exact functors



28

We claim that these induce a commutative diagram

Indeed, let F’, F’, G’, V’, and J’ be categories constructed as above,
only for the primed subschemes Y’, U’. One easily checks that the maps
i, j, and h map the diagram on the left to that on the right, in a
commutative fashion:

This proves our claim.

Section 2

We now give an application of the localization sequence (*) to the study
of the category of modules of finite length, and finite projective dimen-
sion on a normal, two dimensional semi-local ring. We first recall some
basic fact about the K-theory of smooth k-schemes; we refer the reader
the Quillen’s article [Q] for details.

Let Z be a smooth scheme, essentially of finite type over k. Let -1t"
denote the sheaf (for the Zariski topology) defined by

where Kp(OZ,z) is the pth (Quillen) K-group of OZ,z. The sheaf MJ has
an acyclic resolution (Z’ = set of codimension i points of Z)

called the Gersten resolution. From this follows Bloch’s formula

where CHp(Z) is the free abelian group of codimension p cycles on Z,
modulo divisors of functions on codimension p - 1 subvarieties of Z.
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One can give similar descriptions of the other cohomology groups
Hp(Z, $’q) as well; for instance, if Z is a surface, q = 2, then the above
sequence shows that HP(Z, $’2) is the pth cohomology group of the
complex

where T is the tame symbol map, and div is the divisor map. In

particular, each element of H1(Z, K2) is represented by a collection
{(fl, Cl)}, where the CI are curves on Z, fl is in k(Cl)*, and 03A3 div(f,)
= 0 as a zero-cycle on Z.

Let R be the semi-local ring of a finite set S of normal points on a
surface X over k. For brevity, we denote the category Wx,s by LR. Let
X* = Spec( R ), let f : Z* ~ X* be a resolution of singularities of X*, and
let E be the reduced exceptional divisor of f. We write E as a union of
irreducible components, E = U Ei. Let N be the subgroup of

H1(Z*, K2) generated by collections {(fi Ei)}, fl ~ k(Ei)*, with

L div(fi) = 0. Let SKÓ(E) denote the kernel of the map rank : K’0(E) ~

~ ZE,. We will prove the following theorem.
i

THEOREM 2.1: There is an exact sequence

In the next section, we will use this result to compute K0(LR) for
several types of singular local rings. Before we proceed to the proof of
the Theorem, we first prove the following lemma.

LEMMA 2.2: Let A be a normal domain containing k, with fraction field F.
Then K2(F) is generated by symbols (a, b} with a, b in A, and with
div( a ), div( b ) reduced and having no common components.

PROOF: In [M], Milnor gives an argument of Tate which shows that
K2 ( F ) is generated by symbols {a, b}, with a, b in A, and with div( a )
and div(b) having no components in common, in case A is a Dedekind
domain. The same proof works for any domain A which is regular in
codimension one, as the reader can easily verify. Let now a be an

arbitrary element of A, and T a finite set of height one primes of A
prime to div(a). Let p1,...,ps be the primes in div(a). By the Chinese
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remainder theorem, we can find an element c of A which vanishes with

multiplicity one at each pl and prime to T. By Bertini’s theorem, we can
find such a c such that div( c) is reduced. Let ql, ... , qr be the primes of
div( c) not amoung the p,. Arguing as above, we can find an element d of
A with reduced divisor, vanishing at each qJ, and prime to T and the p,.
Since A is normal, c divides a · d, a· d/c = e, and multiplicity of e at
each prime of div( e ) is strictly less than max( vp¡ (a), 2). By induction, we
have proved the following fact:

Let T be a finite set of height one primes of A, a an element of A
with div( a ) prime to T. Then we can express a as

where c,, d, are in A, div(c,), div(dl) are prime to T, and div(c,), div(dl)
are reduced.

The lemma is now immediate from the bilinearity of {a, b}. D

Let now Y be a reduced, principal subscheme of X*, and let U be the
affine open subset Y - S. Since S is set-theoretically principal on Y, we
may apply the results of section one to obtain the localization sequences:

Let 1 be the direct limit of the P1(Y, U ) over reduced, principal Y,
and let P2 be the direct limit of the 2S(Y), We claim that f?JJ 2 is just
LR. Indeed, y2 is clearly a subcategory of LR. On the other hand, if M
is a module of finite length, and finite projective dimension over R, then
M is supported on S, and proj dim R(M) = 2. In addition, we may find
an element t of R, with reduced divisor, such that tM = 0. Letting Y be
subscheme of X* defined by t, we see that M is in 2S(Y), are desired.
As K-theory commutes with direct limits, we obtain the exact sequence

We recall that the sequence (2.1) is compatible with the localization
sequence

If f is an element of R with reduced divisor, and g an element of R such
that ( f , g) is a regular sequence, then 03B4Y(g, R/(f)) is the class of
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R/(f, g) in K0(HS(Y)), where we take Y = Spec(R/(f)). Thus

a ( g, R/(f)) is the class of R/(f, g) in K0(LR). As K0(LR) is gener-
ated by such modules (see [CS] for an argument by Mohan Kumar. The
result is originally due to Hochster), this implies that a is surjective.
Similarly, using Lemma 2.2, we see that a is zero on the subgroup of

Et) k(x)* generated by tame symbols from K2(k(X*)).
x in X*1

Let f : Z* ~ X* be a resolution of singularities of X*, with excep-
tional divisor E = U El. If M is a module in Pl, then we have an exact

sequence

hence we have

As M is a torsion module, T is generically an isomorphism, hence
ker(f*(T)) is a torsion module, hence zero. Thus f * : P1 ~ 1Z* is an
exact functor, where -4Y§* is the category of torsion (9z* modules. We
therefore have the commutative diagram

where the bottom row is part of the localization sequence

The map div: El) k(x)* ~ K’0(E) therefore induces a homomor-

phism f * : K0(LR) ~ K’0(E). As the image of div is SK§(E ), we get a
surjection f * : K0(LR) ~ SK’0(E). In addition, from the localization

sequence

we see that, if z is in E9 k(x)*, then
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if and only if there are fl in k(El)* such that div(z) +1;, div(fl) = 0 as a
cycle on E. Thus there is an element w

restricting to z on X*. As a (tame symbols) = 0, the projection

induces a surjection H’(Z*, K2) ~ ker(f*). The subgroup N of

H1(Z*, Y2) generated by {(fl, El)}, with /, in k(E,)*, and L dive/’)
i

= 0 clearly goes to zero under this map.
To conclude the proof, it suffices to show that 03B1(K1(P1)) is contained

in the group of tame symbols from K2(k(X*». We have the localization
sequence

and a commutative triangle

so it suffices to show that f*(K,(P1)) goes to zero in K1(Z*). As
K1(P1) ~ K1(Z*) factors through K1(R), it suffices to show that

K1(P1) ~ Kl ( R ) is zero. Let P be the category of torsion R modules of
finite projection dimension. Then the map K1(P1) ~ K1(R) factors

through K1(H). We have the localization sequence

K1(H) ~ K1(R) ~ K1(k(X*))
Ili ~
R*  k(X*)*

hence K1(H) ~ K1(R) is zero. This completes the proof of Theorem
2.1. n

For later use, we will denote the kernel of f * by SK0(LR).
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Note: In an earlier version of this work, a weaker form of Theorem 2.1
was proved, which did not show that H1(Z*, K2)/N ~ K0(LR) is
injective. The argument above showing injectivity was communicated to
the auther by V. Srinivas.

Section 3

We now use Theorem 2.1 to compute K0(LR) for a number of examples.
The main trick is the following:

As every M in LR is killed by a power of the maximal ideal m or R,
we have LR = L ( R = m-adic completion of R ), so LR depends only on
the analytic type of R. On the other hand, for particular choices of R
with a given analytic type, H1(Z*, X2) is relatively easy to compute.
For example, we have

PROPOSITION 3.1: Let X be a projective ruled surface, smooth outside a
single normal singularity 0. Let f : Z ~ X be a resolution of singularities of
X, X* = Spec(OX,0), Z* = f-1(X*). Suppose f*: K0(X) ~ K0(Z) is in-

jective. Then

is surjective.

PROOF: For a scheme Y, we let F0K0(Y) denote the subgroup of K0(Y)
generated by the residue fields of smooth closed points of Y. We have

isomorphisms (proved by Collino [C] for X, Bloch [B] for Z):

The Leray spectral sequence Hp(X, Rqf*(K2)) ~ Hp+1(Z, 1"2) has the
five term exact sequence

As f is an isomorphism away from 0, H2(X, f*K2) = H2(X, K2).
Since Z is ruled, H1(Z, Y2) is generated by Pic(Z) ~ k*. As f * is

injective, H1(Z*, K2) is therefore generated by Pic(Z) ~ k*. Finally,
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the commutativity of the diagram

completes the proof. 0

We say that a two dimensional local ring R is a quotient singularity if
there is a finite group G acting linearly on A k such that the local ring of
the origin 0 of A2/G has completion isomorphic to the completion of R
(both completions taken with respect to the maximal ideals), and in
addition, R is a rational singularity. In characteristic zero, the second
condition is superfluous. We now compute K0(LR) for quotient singular-
ities.

THEOREM 3.2: Let R be the local ring of a surface singularity. Suppose that
R is a quotient singularity. Then the map length: K0(LR) ~ Z is an

isomorphism.

PROOF: Let G be a finite group acting on A2 as above. Since K0(LR) =
K0(L), we may assume that R is the local ring of 0 in A2/G = X. Let p
be a point of X, with q a point of A2 lying over p. If p is not 0, there is a
line L in A2 passing through q and avoiding (0, 0), hence the image of L
in X is a rational curve passing through p and missing 0. From this one
sees easily that F0K0(X) = 0. In particular, if f : Z - X is a resolution
of singularities, then f*: K0(X) ~ K0(Z) is injective. Since the map
A2 ~ X is generically etalé, X is a rational suface by the criterion of
Castelnuovo. Using the notation of proposition 3.1, we see that

H1(Z*, K2) is generated by Pic(Z*) ~ k*. As the class group of (9x,o is

finite, and k* is divisible, we have that Pic(Z*) ~ k* is generated by
03A3 El ~ k *, where the E, are the irreducible components of E = f-1(0).
From Theorem 2.1, this implies that f*: K0(LR) ~ SK’0(E) is an iso-
morphism. The group SK’0(E) is just the group of zero-cycles on E
modulo divisors of rational functions, hence, as 0 is a rational singularity,
SK§ ( E ) is isomorphic to Z by degree. The commutativity of the diagram,
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and the fact that a (Rlf, g) = R/(f, g), shows that deg 0 f * = length,
which proves the theorem. 0

A similar argument shows that K0(LR) ~ Z by length if R is a

rational singularity, and if there exists a rational surface X with sole
singularity 0, such that (9x@,o = R, and with f*: K0(X) ~ K0(Z) injective
for a resolution of singularities f : Z - X. As an illustration, we prove
the following complement to the previous theorem.

THEOREM 3.3: Suppose R is the local ring of a rational surface singularity
in characteristic zero. Suppose further that the fundamental cycle on a
minimal resolution of Spec(R) is reduced. Then length : K0(CR) ~ Z is an
isomorphism.

PROOF: As in Theorem 3.2, we will exhibit a surface X with isolated
singularity analytically isomorphic to R, such that X is covered by
rational curves which do not pass through the singular point.

Let Xo be a surface having Spec( R ) as local ring at a point 0. We
assume that k = C, and let X* be a small neighborhood of 0 on Xo in
the complex topology. Let f : Z* ~ X* be a minimal resolution, and W
the fundamental cycle. Write the exceptional divisor E of f as a sum of

s

irreducible divisors, E Ei, and set n = -deg(W · E,). Let U be the

blow up of a small disk about (0, 0) in C2, and let F be the exceptional
curve. For each i, choose n distinct points, plj, on E, - U Ek, and for

each pij glue a copy of U onto Z* so that F intersects E, transversely at
pil and at no other point of E. Call the resulting surface Y, and let E’ be
the divisor on Y gotten by adding all the new F’s to E. Then E’ is

reduced, has arithmetic genus zero, and satisfies E’ · E/ = 0 for each
irreducible component El of E’.

By deformation theory, there is a one parameter family of deforma-
tions of E’ in Y, with generic member a smooth rational curve disjoint
from E’. Since E’ has only nodes, the versal deformation space of E’ is
smooth, hence by Artin approximation, there is a smooth algebraic
surface Y’ containing E’, in which E’ smooths to a rational curve

disjoint from E’. Blow down E in Y’ to yield a singular surface X. If Y’
approximates Y to a sufficiently high infinite smal neighborhood of E,
then a neighborhood of the singular point p on X is isomorphic to X*
(as complex analytic spaces) so the local ring of p on X is analytically
isomorphic to R. In addition, the deformations of E’ in Y’ give rise to a
family of rational curves on x, the generic member of which misses p.
Arguing as in Theorem 3.2 completes the proof. D

We now consider the computation of K0(LR) where R is the local

ring of certain non-rational singularities. Let C be a smooth complete


