COMPOSITIO MATHEMATICA

PETER HELLEKALEK Ergodicity of a class of cylinder flows related to irregularities of distribution

Compositio Mathematica, tome 61, nº 2 (1987), p. 129-136 <http://www.numdam.org/item?id=CM_1987__61_2_129_0>

© Foundation Compositio Mathematica, 1987, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Ergodicity of a class of cylinder flows related to irregularities of distribution

PETER HELLEKALEK

Institut für Mathematik, Universität Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria

Received 18 November 1985; accepted 10 March 1986

Abstract. We study ergodicity of cylinder flows $(x, t) \mapsto (Tx, t + \varphi(x))$, where T is a von Neumann-Kakutani adding machine transformation on \mathbb{R}/\mathbb{Z} and $\varphi(x) = 1_A(x) - \beta$, A an arc in \mathbb{R}/\mathbb{Z} of length β .

Introduction

We shall be interested in cylinder flows of the following type. Let $T: \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$, $x \mapsto Tx$, be measure preserving and ergodic with respect to Lebesgue measure λ on \mathbb{R}/\mathbb{Z} , let G be either a closed subgroup of \mathbb{R} or $G = \mathbb{R}/a\mathbb{Z}$ with a in \mathbb{R} . Let h denote Haar measure on G and let $\varphi: \mathbb{R}/\mathbb{Z} \to G$ be measurable with $(\varphi \ d\lambda = 0)$.

The cylinder flow $T_{\varphi}(x, t) = (Tx, t + \varphi(x))$ acts on the measure theoretic product space $X = \mathbb{R}/\mathbb{Z} \otimes G$ and preserves the product measure $\lambda \otimes h$ on X. We shall study ergodicity (with respect to $\lambda \otimes h$) of the following class:

Example 1

Let T_{φ} be the cylinder flow where $T: \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ is a generalized von Neumann-Kakutani adding machine transformation (definition in Part II of this paper), and let $\varphi(x) = 1_A(x) - \beta$, where A is an arc in \mathbb{R}/\mathbb{Z} of length β , $0 < \beta \leq 1$. Let G be the closed subgroup of \mathbb{R} generated by 1 and β . If β is irrational, then $G = \mathbb{R}$ and h will denote Lebesgue measure. If $\beta = r/s$, r and s positive integers, (r, s) = 1, then $G = (1/s) \mathbb{Z}$ and h will stand for the counting measure.

The ergodicity of this class of cylinder flows is directly related to irregularities in the distribution of generalized van-der-Corput sequences. For this reason, necessary conditions for the ergodicity of T_{φ} and hence for β follow from results in [Hellekalek, 1984]. For the general background, in particular the important coboundary theorem and its consequences, the reader is referred to [Liardet, 1982, 1985]. Results on ergodicity of cylinder flows date back to [Anzai, 1951] (*T* an irrational rotation, $G = \mathbb{R}/\mathbb{Z}$). The following class is now well-known.

Example 2

Let T_{φ} be the cylinder flow where $T: \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}, x \mapsto x + \alpha \mod 1, \alpha$ irrational, and $\varphi(x) = \mathbb{1}_{[0,\beta]}(x) - \beta, 0 < \beta \leq 1$. Let G be as in Example 1.

Ergodicity of Example 2 was studied by [Oren, 1983], completing an earlier result of [Conze, 1980]. Oren has proved: T_{φ} is ergodic if and only if β is rational or 1, α and β are linearly independent over \mathbb{Z} .

Example 2 is also related to a class of sequences well-known in the theory of uniform distribution modulo 1, the sequences $(n\alpha)_{n \ge 0}$. Good references are [Petersen, 1973] and, in particular, [Liardet, 1985].

I. Remarks

From now on it will be assumed that T_{φ} is the cylinder flow of Example 1, although the following remarks can easily be generalized to cover Example 2 and a large class of other cylinder flows as well.

 T_{φ} is ergodic if and only if, for every T_{φ} -invariant measurable subset B of $\mathbb{R}/\mathbb{Z} \otimes G$, either B or its complement has measure zero. We study ergodicity of T_{φ} by reducing the problem from the infinite case (i.e. T_{φ} on $\mathbb{R}/\mathbb{Z} \otimes G$) to a finite case (i.e. T_{φ} on $\mathbb{R}/\mathbb{Z} \otimes G/a\mathbb{Z}$; $a \in G$, $a \neq 0$).

Definition: An element c of G is called a period of T_{φ} if, for every T_{φ} - invariant function 1_B , B a measurable subset of the product space $\mathbb{R}/\mathbb{Z} \otimes G$, the equality $1_B(x, t) = 1_B(x, t+c)$ holds $\lambda \otimes h - a.e.$.

The set P_{φ} of periods of T_{φ} is a subgroup of G. [Schmidt, 1976] has extensively studied what he calls 'essential values' of a cylinder flow. It follows from Theorem 5.2. in [Schmidt, 1976] that essential values and periods are the same.

Remarks: it is not difficult to see that

- i) if $\varphi = g g \circ T \ \lambda a.e., g: \mathbb{R}/\mathbb{Z} \to G$ measurable, then $P_{\varphi} = \{0\}$;
- ii) if $\varphi = \psi + g g \circ T \ \lambda a.e., \ \psi, \ g: \mathbb{R}/\mathbb{Z} \to G$ measurable, then $P_{\varphi} = P_{\psi}$. Let a be an element of G and let S_a denote the cylinder flow T_{φ} on $\mathbb{R}/\mathbb{Z} \otimes G/a\mathbb{Z}$:

$$S_a: \mathbb{R}/\mathbb{Z} \otimes G/a\mathbb{Z} \to \mathbb{R}/\mathbb{Z} \otimes G/a\mathbb{Z}$$

$$S_a(x, t) = (Tx, t + \varphi(x) \mod a).$$

Ergodicity of T_{ω} and S_a are related as follows. S_a is a factor of T_{ω} , hence

ergodicity of T_{φ} implies ergodicity of S_a . If a is a period of T_{φ} and if S_a is ergodic then T_{φ} is ergodic. We shall use this observation later on.

Ergodicity of T_{φ} is associated with the following type of functional equation. Define

- $\Gamma := \{ \chi \in \hat{G} : \text{ the functional equation } h \circ T = \chi(\varphi)h \lambda \text{ a.e. has a nontriv$ $ial measurable solution } h: \mathbb{R}/\mathbb{Z} \to \mathbb{C} \}, \text{ and, for } a \text{ in } G,$
- $\Gamma_a := \{\chi \in (G/a\mathbb{Z}): h \circ T = \chi(\varphi)h \ \lambda a.e. \text{ has a nontrivial measurable solution } h : \mathbb{R}/\mathbb{Z} \to \mathbb{C}\}.$ The sets Γ and Γ_a are subgroups.

LEMMA 0: Let $a \in G$, $a \neq 0$. Then S_a is ergodic if and only if Γ_a is trivial.

Proof: This result is classical, see [Anzai, 1951].

THEOREM 1 If $c \in P_{m}$, then $\Gamma = \Gamma_{c}$.

Proof: Clearly Γ_c is a subset of Γ . Let χ be an arbitrary element of Γ and let h be a nontrivial measurable solution of the equation $h \circ T = \chi(\varphi)h \lambda - \text{a.e.}$. The measurable function $f(x, t) = h(x)\overline{\chi}(t)$ is invariant under T_{φ} , hence $f(x,t+c) = h(x)\overline{\chi}(t)\overline{\chi}(c) = f(x, t)\lambda \otimes h - \text{a.e.}$. This implies $\chi(c) = 1$, thus χ belongs to Γ_c . \Box

COROLLARY: The following are equivalent: i) T_{φ} is ergodic; ii) $P_{\varphi} \neq \{0\}$ and Γ is the trivial subgroup of \hat{G} . We shall now study example 1. We ask under which conditions for β and γ will Γ_1 be trivial (hence S_1 ergodic) and 1 be a period of $T_{\varphi} = T_{\varphi}(\beta, \gamma)$.

II. A class of cylinder flows

We shall consider the following generalization of the von Neumann-Kakutani adding machine transformation on \mathbb{R}/\mathbb{Z} . Let $q = (q_i)_{i \ge 1}$ be a bounded sequence of integers $q_i, 2 \le q_i \le K$ for all *i*, with some positive constant *K*.

If A(q) denotes the compact Abelian group of q-adic integers, then the transformation $z \mapsto z + 1$ on A(q) is uniquely ergodic with respect to normalized Haar-measure on A(q) (see [Hewitt and Ross, 1963] for details on A(q)).

Consider next the one-dimensional torus \mathbb{R}/\mathbb{Z} with Haar measure λ . We shall write

$$p(k) = q_1 \cdot \ldots \cdot q_k, \quad k = 1, 2, \ldots$$
$$p(0) \coloneqq 1.$$

If

$$z = \sum_{i=0}^{\infty} z_i p(i), \quad z_i \in \{0, 1, \dots, q_{i+1} - 1\}$$

is an element of A(q), then

$$\Phi(z) = \sum_{i=0}^{\infty} z_i / p(i+1) \mod 1$$

belongs to \mathbb{R}/\mathbb{Z} . The map $\Phi: \mathbb{A}(q) \to \mathbb{R}/\mathbb{Z}$ is measure-preserving and injective on $\mathbb{A}(q)$ except on a subset of Haar measure zero.

The q-adic representation of an element x of \mathbb{R}/\mathbb{Z} ,

$$x = \sum_{i=0}^{\infty} x_i / p(i+1), \quad x_i \in \{0, 1, \dots, q_{i+1} - 1\},\$$

is unique under the condition $x_i \neq q_{i+1} - 1$ for infinitely many *i*. We shall call x non-q-adic if x has infinitely many nonzero digits x_i . The uniqueness condition for the representation ensures that the following transformation T: $\mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ is well-defined:

$$Tx := \Phi(z+1)$$
, where $z = z(x) = \sum_{i=0}^{\infty} x_i p(i)$.

T is ergodic with respect to λ and $T \circ \Phi(z) = \Phi(z+1)$ for almost all z. For further properties of T see [Hellekalek, 1984]. T may be called a (generalized) von Neumann-Kakutani adding machine transformation (see [Petersen, 1983]).

A rational number β in]0, 1[, $\beta = r/s$, r and s positive integers, (r, s) = 1, is called *strictly non-q-adic* if k/s is non-q-adic for all k, $1 \le k \le s - 1$; equivalently, if no prime divisor of s divides an element of the sequence q.

THEOREM 2: Let T be the q-adic transformation defined above and let $\varphi(x) = 1_{[0,\beta]}(x) - \beta$, $0 < \beta \leq 1$. Let T_{φ} be the cylinder flow defined in Example 1.

Then the following are equivalent:

- i) T_{∞} is ergodic;
- ii) β is irrational or strictly non-q-adic.

We can generalize this result to:

THEOREM 3: Let T be as in Theorem 2 and let $\varphi(x) = 1_A(x) - \beta$, where A is an arc in \mathbb{R}/\mathbb{Z} of length β , $0 < \beta \leq 1$, $A = \gamma + [0, \beta[\mod 1 \text{ with } 0 \leq \gamma < 1]$. Define T_{φ} as in Example 1. Then

- i) T_{φ} ergodic implies β irrational or strictly non-q-adic;
- ii) β irrational implies T_{ω} ergodic, for all γ ;
- iii) β strictly non-q-adic and γ q-adic (i.e. $\gamma = a/p(g)$ with nonnegative integers a and g, a < p(g)) imply T_{ω} ergodic;
- iv) $q_i = q \ge 2$ for all *i*, and β strictly non-q-adic imply T_{φ} ergodic for almost all γ .

The proof of these two theorems will be given by Lemmata 1 to 6 and their corollaries. In Lemma 6 we will prove a stronger result than iv) of Theorem 3.

In the sequel we shall write φ_n for the sum $\varphi + \varphi \circ T + \cdots + \varphi \circ T^{n-1}$, n = 1, 2... Lemma 1 below indicates how to obtain periods. The idea is due to [Oren, 1983] (Proposition 1).

LEMMA 1: Let $(k_n)_{n=1}^{\infty}$ be a subsequence of $(n)_{n=1}^{\infty}$ and let $(A_{k_n})_{n=1}^{\infty}$ be a sequence of measurable subsets of \mathbb{R}/\mathbb{Z} such that

i) $\varphi_{p(k_n)}$ is constant on A_{k_n} ii) $\lim_{n \to \infty} \varphi_{p(k_n)}(A_{k_n})$ exists and iii) $\inf_{n \to \infty} \lambda(A_{k_n}) > 0$. Then $c = \lim_{n \to \infty} \varphi_{p(k_n)}(A_{k_n})$ will be a period of T_{φ} .

Proof: Let 1_B be an arbitrary T_{φ} -invariant measurable function on $\mathbb{R}/\mathbb{Z} \otimes G$. The set $M = \{x \in \mathbb{R}/\mathbb{Z} \text{ such that } 1_B(x, t) = 1_B(x, t+c) \text{ for almost all } t \text{ in } G\}$ is invariant under T, thus of measure 0 or 1. We shall find a subset of M of positive measure. This will prove the lemma.

Let $a_{k_n} = \varphi_{p(k_n)}(A_{k_n})$ and put $g_{k_n}(x, t) = |1_B(T^{p(k_n)}x, t + a_{k_n}) - 1_B(x, t + c)|$. Let $X_N = \mathbb{R}/\mathbb{Z} \times [-N, N]$, N a positive integer. We note that $|T^{p(k)}x - x| < 1/p(k)$ for all x and all positive integers k, hence

 $\lim_{n\to\infty}\int_{X_N}g_{k_n}\,\mathrm{d}\lambda\otimes h=0\quad\text{for all }N.$

Therefore, by diagonalization, we can find a subsequence $(k'_n)_{n=1}^{\infty}$ of $(k_n)_{n=1}^{\infty}$ such that $\lim_{n \to \infty} g_{k'_n}(x, t) = 0$ a.e. on $\mathbb{R}/\mathbb{Z} \otimes G$. Let $A = \limsup_{n \to \infty} A_{k'_n}$. The set A has positive measure (condition iii)) and almost all elements of A belong to M (conditions i) and ii)). \Box

LEMMA 2: Ergodicity of T_{φ} implies that β is either irrational or strictly non-q-adic.

Proof: If T_{φ} is ergodic, so is the compact factor S_1 , $S_1(x, t) = (Tx, (t + \varphi(x)) \mod 1)$. For every character χ of G/\mathbb{Z} $\chi(\varphi(x)) = \chi(-\beta)$ is constant. Therefore Γ_1 is trivial (hence S_1 ergodic) if and only if there are no eigenfunctions of T to the eigenvaue $\chi(-\beta)$. The eigenvalues of T are known to be of the form $\exp(2\pi i\alpha)$, α q-adic. \Box

LEMMA 3: If β is non-q-adic and γ is q-adic, then 1 is a period of T_{m} .

Proof: The q-adic representation of β is given by $\beta = \sum_{i=0}^{\infty} \beta_i / p(i+1)$ with digits $\beta_i \in \{0, 1, \dots, q_{i+1} - 1\}$, infinitely many $\beta_i \neq q_{i+1} - 1$. Define $\beta(k) = \sum_{i=0}^{k-1} \beta_i / p(i+1), \ k = 1, 2, 3 \dots$ Then $0 < \beta - \beta(k) < 1/p(k)$ for all k. If

134 P. Hellekalek

 $\gamma = \sum \gamma_i / p(i+1)$, then $\gamma(k) = \gamma$ for all k sufficiently large. T is a bijection almost everywhere and maps elementary q-adic intervals [a/p(k), (a + $1)/p(k)[, 0 \le a \le p(k) - 1$, into elementary q-adic intervals of length 1/p(k). For any x in \mathbb{R}/\mathbb{Z} exactly one point $T^{j}x$, $0 \leq j \leq p(k) - 1$, belongs to a given elementary q-adic interval. For sufficiently large k the function $\varphi_{n(k)}$ takes only two values on \mathbb{R}/\mathbb{Z} , $\varphi_{p(k)}(x) \in \{\beta(k)p(k) - \beta p(k), 1 + \beta(k)p(k) - \beta p(k) -$ $\beta p(k)$. Let $A_k = \{x : \varphi_{p(k)}(x) = (\beta(k) - \beta)p(k)\}$ and let B_k denote its complement. The integral of the function $\varphi_{p(k)}$ is zero, hence $\lambda(A_k) = 1 - (\beta$ $(-\beta(k))p(k)$ and $\lambda(B_k) = (\beta - \beta(k))p(k)$. β has infinitely many nonzero digits β_i , hence there is subsequence $(i_n)_{n=1}^{\infty}$ such that $0 < \beta_{i_n}$ and $\beta_{i_n+1} < q_{i_n+2} - 1$. This implies $1/K < (\beta - \beta(i_n))p(i_n) \le 1 - 1/K^2$. Therefore we can find a subsequence $(k_n)_{n=1}^{\infty}$ of $(i_n)_{n=1}^{\infty}$ such that $0 < \lim_{n \to \infty} (\beta - \beta(k_n))p(k_n) < 1 - 1/K^2$. 1. We apply lemma 1 to the sequences of sets $(A_{k_n}^{n \to \infty})_{n=1}^{\infty}$ and $(B_{k_n})_{n=1}^{\infty}$ and obtain that 1 is a period of T_{∞} . \Box

COROLLARY: If β is strictly non-q-adic then T_{ω} is ergodic for all q-adic γ .

LEMMA 4: If β is non-q-adic then the set $\{1, 2\}$ contains a period of T_{ω} for every γ.

Proof: Let $A = \gamma + [0, \beta[\mod 1, 0 < \gamma < 1, \text{ and } \varphi(x) = 1_A(x) - \beta$. In view of Lemma 3 we are only interested in non-q-adic γ . Let $\delta = \gamma + \beta \mod 1$. We shall assume that δ is non-q-adic, otherwise Lemma 3 applies. Let

$$\gamma = \sum_{i=0}^{\infty} \gamma_i / p(i+1), \quad \delta = \sum_{i=0}^{\infty} \delta_i / p(i+1),$$

infinitely many digits $\gamma_i \neq q_{i+1} - 1$, infinitely many $\delta_i \neq q_{i+1} - 1$. We shall denote by $\gamma(k)$ and $\delta(k)$ the representations truncated at k (see Lemma 3). Elementary calculations as in Lemma 3 show that for all x, $\varphi_{p(k)}(x) \in \{y_k, y_k\}$ -1, $y_k + 1$ }, where $y_k = (\gamma - \gamma(k))p(k) - (\delta - \delta(k))p(k)$, $y_k \in \{(\beta(k) - \beta)p(k), 1 + (\beta(k) - \beta)p(k)\}$. Let $A_k = \{x \in \mathbb{R}/\mathbb{Z}: \varphi_{p(k)}(x) = y_k\}, B_k = \{x \in \mathbb{R}/\mathbb{Z}: \varphi_{p(k)}(x) = y_k\}$ $\{x: \varphi_{p(k)} = y_k - 1\}$ and $C_k = \{x: \varphi_{p(k)} = y_k + 1\}$. As the integral of φ is zero, the relation $\lambda(B_k) = y_k + \lambda(C_k)$ holds. We shall check if conditions ii) and iii) of Lemma 1 can be satisfied.

- Condition ii): it is clear from the proof of Lemma 3 that there is a sequence
- $(k_n)_{n=1}^{\infty}$ such that $0 < \left| \lim_{n \to \infty} y_{k_n} \right| < 1;$ Condition iii): due to the above relation between $\lambda(B_k)$ and $\lambda(C_k)$ we can always find a suitable subsequence $(k'_n)_{n=1}^{\infty}$ of $(k_n)_{n=1}^{\infty}$ such that condition iii) holds for $(A_{k'_n})_{n=1}^{\infty}$ and one of $(B_{k'_n})_{n=1}^{\infty}$ or $(C_{k'_n})_{n=1}^{\infty}$ (which implies that 1 is a period) or $(B_{k'_n})_{n=1}^{\infty}$ and $(C_{k'_n})_{n=1}^{\infty}$ (which implies that 2 is a period).

LEMMA 5: If β is irrational, then T_{φ} is ergodic for all γ .

Proof: We only have to show that S_2 is ergodic, i.e. that Γ_2 is trivial. Let χ be an arbitrary element of Γ_2 and let h be a nontrivial measurable solution of the functional equation $h \circ T = \chi(\varphi) h$ a.e.. Then $h^2 \circ T = \chi^2(\varphi) h^2$, hence χ^2 belongs to Γ_1 . S_1 is ergodic for irrational β and thus the latter group is trivial. Hence χ is the trivial character of $\mathbb{R}/2\mathbb{Z}$. \Box

The argument employed in Lemma 5 is not valid for strictly non-q-adic β : for a nontrivial character χ in $\widehat{G/2\mathbb{Z}}$, χ^2 can be trivial in $\widehat{G/\mathbb{Z}}$. It is not difficult to see that Γ_2 would be trivial if the functional equation $h \cdot T = \Phi h$ a.e., $\Phi(x) = 1$ on A and $\Phi(x) = -1$ on the complement \mathbb{R}/\mathbb{Z} -A, had no nontrivial measurable solution h.

LEMMA 6: Let β be rational and non-q-adic. If there is a strictly increasing sequence $(i_n)_{n=1}^{\infty}$ such that, for all n, $\beta_{i_n} \neq 0$, $\beta_{i_n+1} < q_{i_n+2} - 1$, $i_{n+1} - i_n \leq L$ with a constant L, then 1 is a period of T_{∞} for almost all γ in \mathbb{R}/\mathbb{Z} .

Proof: We shall take as basis the proof of Lemma 4. Hence we assume that γ and $\delta = \delta(\gamma) = \gamma + \beta \mod 1$ are non-q-adic. It will be shown that for almost every γ there is a subsequence $(k_n)_{n=1}^{\infty}$ of $(i_n)_{n=1}^{\infty}$ such that conditions ii) and iii) of Lemma 1 are satisfied. It is then easy to deduce from Lemma 4 that 1 is a period of $T_{\varphi} = T_{\varphi}(\beta, \gamma)$.

Let I be an elementary q-adic interval of length 1/p(k), I = [a/p(k), (a+1)/p(k)], $0 \le a \le p(k) - 1$. Choose *i* and *j*, $0 \le i$, $j \le p(k) - 1$ such that $\lambda(T'I\Delta[\gamma(k), \gamma(k) + 1/p(k)]) = 0$, $\lambda(T'I\Delta[\delta(k), \delta(k) + 1/p(k)]) = 0$. We write $D_I = T^{-i} \gamma(k)$, $\gamma[$, $E_I = T^{-j} \delta(k)$, $\delta[$. D_I and E_I are subsets of I and the following relations hold:

$$A_k \cap I = I - D_I \Delta E_I, \quad B_k \cap I = D_I - E_I, \quad C_k \cap I = E_I - D_I.$$

Therefore $\lambda(A_k \cap I) = 1/p(k) + 2\lambda(D_I \cap E_I) - \lambda(D_I) - \lambda(E_I)$. Let a_k and b_k be those integers with $\Phi(a_k) = \gamma(k)$ and $\Phi(b_k) = \delta(k)$. Then $0 < a_k$, $b_k \leq p(k) - 1$ for sufficiently large k and $a_{k+1} = a_k + \gamma_k p(k)$, $b_{k+1} = b_k + \delta_k p(k)$. Let a be an arbitrary integer such that $0 \leq a \leq \min(a_k, b_k)$. If we consider the elementary interval $I = I(a) = [\Phi(a), \Phi(a) + 1/p(k)]$, then the condition $a \leq \min(a_k, b_k)$ implies that D_I and E_I are intervals, $D_I =]\Phi(a)$, $\Phi(a) + \gamma - \gamma(k)[$, $E_I =]\Phi(a), \Phi(a) + \delta - \delta(k)[$. This yields the following estimate for $\lambda(A_k)$:

$$\lambda(A_k) \ge (1 - |y_k|) \min(a_k, b_k) / p(k).$$

It is $1/K^2 \leq 1 - |y_{i_n}| \leq 1 - 1/K^2$ thus only $\min(a_{i_n}, b_{i_n})/p(i_n)$ requires further study. We see that $a_{i_{n+1}}/p(i_{n+1}) \geq \gamma_{i_n}/K^L$ and $b_{i_{n+1}}/p(i_{n+1}) \geq \delta_{i_n}/K^L$. We study $F = \{\gamma \text{ in } \mathbb{R}/\mathbb{Z} : \gamma_{i_n}\delta_{i_n} \neq 0 \text{ for infinitely many } n\}$. If γ belongs to F, then there is a subsequence $(k_n)_{n=1}^{\infty}$ of $(i_n)_{n=1}^{\infty}$ such that $\inf \lambda(A_{k_n}) \geq 1/K^{2+L} > 0$. Hence condition iii) of Lemma 1 is satisfied. Condition ii) will hold for a suitable subsequence.

136 P. Hellekalek

It is elementary to show that the set F is invariant under T. Thus $\lambda(F)$ is either zero or one. One calculates $\lambda(\{\gamma: \gamma_{i_n}\delta_{i_n} \neq 0\}) \ge 1/3$ if $q_{i_n+1} \ge 3$ and that it is equal to $(\beta - \beta(i_n))p(i_n) - 1/2$ if $q_{i_n+1} = 2$. One deduces that $\lambda(F) = 1$.

COROLLARY: With the additional assumption that β be strictly non-q-adic Lemma 6 implies that T_{φ} is ergodic for almost all γ .

COROLLARY: Suppose that $q_i = q \ge 2$ for all *i*, *q* an integer. If β is strictly non-q-adic then T_{φ} is ergodic for almost all γ .

Proof: The q-adic representation of rational numbers is periodic. As β is strictly non-q-adic, S_1 is ergodic and further there is a sequence $(i_n)_{n=1}^{\infty}$ which satisfies the conditions of Lemma 6. \Box

References

- Anzai, H.: Ergodic skew product transformations on the torus. Osaka Math. J. 3 (1951) 83-99.
- Conze, J.P.: Ergodicité d'une transformation cylindrique. Bull. Soc. Math. France 108 (1980) 441-456.
- Hellekalek, P.: Regularities in the distribution of special sequences. J. Number Th. 18 (1984) 41-55.
- Hewitt, E. and Ross, K.A.: Abstract Harmonic Analysis, Volume I. Springer-Verlag, Heidelberg-New York-Berlin (1963).
- Liardet, P.: Résultats et problèmes de régularité de distributions. In: Théorie élémentaire et analytique des nombres. Journées Mathématiques SMF-CNRS. Valenciennes (1982).
- Liardet, P.: Regularities of distribution. To appear in Comp. Math.
- Oren, I.: Ergodicity of cylinder flows arising from irregularities of distribution. *Israel J. Math.* 44 (1983) 127–138.
- Petersen, K.: On a series of cosecants related to a problem in ergodic theory. Comp. Math. 26 (1973) 313-317.
- Petersen, K.: Ergodic Theory. Cambridge University Press, Cambridge, England (1983).
- Schmidt, K.: Lectures on cocycles of ergodic transformation groups. Preprint, University of Warwick, Conventry, England (1976).