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Abstract. We study ergodicity of cylinder flows (x, t)— (Tx, t+ ¢(x)), where T is a von
Neumann-Kakutani adding machine transformation on R/Z and ¢(x)=1,(x)— B, 4 an arc in
R /Z of length B.

Introduction

We shall be interested in cylinder flows of the following type. Let T: R /Z —
R/Z, x — Tx, be measure preserving and ergodic with respect to Lebesgue
measure A on R /Z, let G be either a closed subgroup of R or G = R /aZ with
ain R. Let 4 denote Haar measure on G and let ¢:R/Z — G be measurable
with [ dA=0.

The cylinder flow T (x, t) = (Tx, t + @(x)) acts on the measure theoretic
product space X =R /Z ® G and preserves the product measure A ® 4 on X.
We shall study ergodicity (with respect to A ® &) of the following class:

Example 1

Let T, be the cylinder flow where T:R/Z -»R/Z is a generalized von
Neumann-Kakutani adding machine transformation (definition in Part II of
this paper), and let ¢(x)=1,(x) — B, where 4 is an arc in R /Z of length B,
0 <B<1. Let G be the closed subgroup of R generated by 1 and 8. If B is
irrational, then G = R and 4 will denote Lebesgue measure. If 8=r/s, r and
s positive integers, (r, s)=1, then G=(1/s) Z and h will stand for the
counting measure.

The ergodicity of this class of cylinder flows is directly related to irregularities
in the distribution of generalized van-der-Corput sequences. For this reason,
necessary conditions for the ergodicity of 7, and hence for B follow from
results in [Hellekalek, 1984]. For the general background, in particular the
important coboundary theorem and its consequences, the reader is referred to
[Liardet, 1982, 1985].
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Results on ergodicity of cylinder flows date back to [Anzai, 1951] (T an
irrational rotation, G = R /Z). The following class is now well-known.

Example 2

Let T be the cylinder flow where T: R/Z > R/Z, x— x+a mod 1, «
irrational, and @(x) =1y (x) =B, 0 <B < 1. Let G be as in Example 1.

Ergodicity of Example 2 was studied by [Oren, 1983], completing an earlier
result of [Conze, 1980]. Oren has proved: T is ergodic if and only if B is
rational or 1, a« and B are linearly independent over Z.

Example 2 is also related to a class of sequences well-known in the theory
of uniform distribution modulo 1, the sequences (na), ., . Good references are
[Petersen, 1973] and, in particular, [Liardet, 1985].

I. Remarks

From now on it will be assumed that T, is the cylinder flow of Example 1,
although the following remarks can easily be generalized to cover Example 2
and a large class of other cylinder flows as well.

T, is ergodic if and only if, for every T, -invariant measurable subset B of
R/Z ® G, either B or its complement has measure zero. We study ergodicity
of T, by reducing the problem from the infinite case (i.e. T, on R/Z ® G) to

a finite case (i.e. T, onR/Z ® G/aZ; a€ G, a#0).

Definition: An element ¢ of G is called a period of T, if, for every T, -
invariant function 15, B a measurable subset of the product space R /Z ® G,
the equality 1,(x, t)=14(x, t+¢c) holds A® h — ae..

The set P, of periods of T, is a subgroup of G. [Schmidt, 1976] has extensively
studied what he calls ‘essential values’ of a cylinder flow. It follows from
Theorem 5.2. in [Schmidt, 1976] that essential values and periods are the same.

Remarks: it is not difficult to see that

))if p=g—ge°T A—ae, g R/Z — G measurable, then P, = {0};

i) if p=y+g—geT A—ae, ¢, g R/Z - G measurable, then P, =P,.
Let a be an element of G and let S, denote the cylinder flow 7, on
R/Z®G/aZ:

S,:R/Z®G/al >R/ ® G/al
S,(x,t)=(Tx, t+¢(x) mod a).

Ergodicity of T, and S, are related as follows. S, is a factor of T, hence
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ergodicity of T, implies ergodicity of S,. If a is a period of T, and if S, is
ergodic then T is ergodic. We shall use this observation later on.
Ergodicity of T, is associated with the following type of functional equa-
tion. Define
- I'={xe G: the functional equation 4 o T=x(p)h A — a.e. has a nontriv-
ial measurable solution A: R /Z — C}, and, for a in G,
- I,:=={x€(G/aZ)f: h o T=x(@)h A—ae. has a nontrivial measurable
solution #:R/Z — C}. The sets I" and T, are subgroups.

LEMMA 0: Let a€ G, a+ 0. Then S, is ergodic if and only if T, is trivial.
Proof: This result is classical, see [Anzai, 1951]. O
THEOREM 1 If c€E P, then I' =T,.

Proof: Clearly T, is a subset of I'. Let x be an arbitrary element of I" and let
h be a nontrivial measurable solution of the equation 4 o T=x(p)h A — a.e..
The measurable function f(x, t)=h(x)x(¢) is invariant under T, hence
f(x,t+c)=h(x)x(t)x(c)=f(x, t)A® h— a.e.. This implies x(c) =1, thus x
belongs to I',. O

COROLLARY: The following are equivalent:

i) T, is ergodic; A

ii) P,# {0} and T is the trivial subgroup of G.

We shall now study example 1. We ask under which conditions for B and vy will
T, be trivial (hence S, ergodic) and 1 be a period of T, =T (B, v).

IL. A class of cylinder flows

We shall consider the following generalization of the von Neumann-Kakutani
adding machine transformation on R/Z. Let g=(q,),,, be a bounded
sequence of integers ¢;, 2 < ¢; < K for all i, with some positive constant K.

If A(g) denotes the compact Abelian group of g-adic integers, then the
transformation z — z + 1 on A(q) is uniquely ergodic with respect to normal-
ized Haar-measure on A(q) (see [Hewitt and Ross, 1963] for details on A(q)).

Consider next the one-dimensional torus R/Z with Haar measure A. We
shall write

plk)=q,-...-q,, k=1,2,...
p(0)=
If

o0
z=Y z;p(i), z;€{0,1,...,q,.;—1}
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is an element of A(g), then

(o]

®(z)=Y z,/p(i+1) mod1
i=0

belongs to R/Z. The map ®: A(q) — R /Z is measure-preserving and injec-
tive on A(gq) except on a subset of Haar measure zero.
The g-adic representation of an element x of R /Z,

x=Y x/p(i+1), x,€{0,1,...,q9,,,—1},

i

1

is unique under the condition x, # ¢,,, — 1 for infinitely many i. We shall call
x non-q-adic if x has infinitely many nonzero digits x,. The uniqueness
condition for the representation ensures that the following transformation 7
R/Z — R /Z is well-defined:

Tx=®(z+1), wherez=2z(x)= Y x,p(i).
i=0

T is ergodic with respect to A and 7 o ®(z) = ®(z + 1) for almost all z. For
further properties of T see [Hellekalek, 1984]. T may be called a (generalized)
von Neumann-Kakutani adding machine transformation (see [Petersen, 1983]).
A rational number 8 in |0, 1[, 8 =r/s, r and s positive integers, (r, s) =1,
is called strictly non-g-adic if k/s is non-g-adic for all k, 1<k<s—1;
equivalently, if no prime divisor of s divides an element of the sequence gq.

THEOREM 2: Let T be the g-adic transformation defined above and let ¢(x) =
Lo p(x)— B, 0<B<1. Let T, be the cylinder flow defined in Example 1.

Then the following are equivalent:
1) T, is ergodic;
il) B is irrational or strictly non-g-adic.

We can generalize this result to:

THEOREM 3: Let T be as in Theorem 2 and let (x) =1 ,(x) — B, where A is an

arcin R/Z of length B,0< B <1, A=v+[0, B[ mod 1 with 0 <y <1. Define

T, as in Example 1. Then

i) T, ergodic implies B irrational or strictly non-g-adic;

it) B irrational implies T, ergodic, for all v;

iii) B strictly non-g-adic and vy g-adic (i.e. y=a/p(g) with nonnegative
integers a and g, a < p(g)) imply T, ergodic;

) q,=q>2 foralli, and B strictly non-g-adic imply T ergodic for almost all
Y.
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The proof of these two theorems will be given by Lemmata 1 to 6 and their
corollaries. In Lemma 6 we will prove a stronger result than iv) of Theorem 3.

In the sequel we shall write ¢, for the sum @+ @ o T+ --- +@ o T,
n=1,2... Lemma 1 below indicates how to obtain periods. The idea is due to
[Oren, 1983] (Proposition 1).

LEMMA 1: Let (k,)X_, be a subsequence of (n)y_, and let (A, D= a
sequence of measurable subsets of R/Z such that

) @y, IS constant on A,

i) hm (pp(k (A ) exzsts "and

iii) 1nf }\(A )>0.
Then ¢ = lim Ppk,)(Ay,) will be a period of T,,.
n— o0

Proof: Let 1, be an arbitrary T -invariant measurable function on R/Z ® G.
The set M = {x €R/Z such that 15(x, t)=1g(x, t +c) for almost all ¢ in
G} is invariant under T, thus of measure 0 or 1. We shall find a subset of M
of positive measure. This will prove the lemma.

Let a;, =@,,(4, ) and put g, (x, 1) = [15(T?%x, t+a, )= 1p(x, t +
¢)|. Let X,=R/Z X[—N, N], N a positive integer. We note that | T7®)x —
x| <1 /p(k) for all x and all positive integers k, hence

lim [ g, dA®h=0 forall N.

n—o0 Y x,

Therefore, by diagonalization, we can find a subsequence (k/)_; of (k,)>_
such that lim g,.(x, 1)=0ae. onR/Z ® G. Let 4 = lim supA4,,. The set A

n— o0
has positive measure (condition iii)) and almost all elements of A belong toM

(conditions i) and ii)). O

LEMMA 2: Ergodicity of T, implies that B is either irrational or strictly
non-q-adic.

Proof: 1f T, is ergodic, so is the compact factor S;, S;(x, t) = (Tx, (t + ¢(x))
mod 1). For every character x of G/Z x(p(x))=x(— ) is constant. There-
fore I is trivial (hence S, ergodic) if and only if there are no eigenfunctions of
T to the eigenvaue x(— B). The eigenvalues of T are known to be of the form
exp(27ia), a g-adic. O

LeMMA 3: If B is non-g-adic and v is g-adic, then 1 is a period of T,.

[e ]
Proof: The g-adic representation of B is given by 8= ) B./p(i+1) with
i=0
digits B,€{0,1,...,4,,, — 1), infinitely many B,#g,,, — 1. Define B(k)
k-1

= Y B/p(i+1), k=1,2,3 ... Then 0<B—B(k)<1/p(k) for all k. If
i=0
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y= Y v/p(i+1), then y(k) =y for all k sufficiently large. T is a bijection

almc;sto everywhere and maps elementary g-adic intervals [a/p(k), (a+
1)/p(k)[, 0 <a<p(k)—1,into elementary g-adic intervals of length 1/p(k).
For any x in R /Z exactly one point T’x, 0 <j < p(k) — 1, belongs to a given
elementary g-adic interval. For sufficiently large k the function ¢, takes
only two values on R/Z, ¢, (x) € {B(k)p(k)— Bp(k), 1+ B(k)p(k)—
Bp(k)}. Let Ay ={x:@,4)(x)=(B(k)—B)p(k)} and let B, denote its
complement. The integral of the function ¢, is zero, hence A(4,)=1—(B
— B(k))p(k) and A(B,)=(B— ,B(k))p(k) B has infinitely many nonzero
digits B;, hence there is subsequence (i,);_; such that 0<B, and B, ,, <

q; +, — 1. This implies 1/K < (B— ,B(z ))p(z y<1-1/K2 Therefore we can
find a subsequence (k,)>_; of (i,)%_; such that 0 < hm (B—B(k,)p(k,) <

1. We apply lemma 1 to the sequences of sets (Ak”)‘,’f’=l and (B, )y_; and
obtain that 1 is a period of 7,. O

COROLLARY: If B is strictly non-q-adic then T, is ergodic for all g-adic y.

LEMMA 4: If B is non-q-adic then the set {1, 2} contains a period of T, for every
Y.

Proof: Let A=vy+][0, B[ mod 1,0 <y <1, and ¢(x)=1,(x)— B. In view of
Lemma 3 we are only interested in non-g-adic y. Let § =y + 8 mod 1. We
shall assume that § is non-g-adic, otherwise Lemma 3 applies. Let

y= Y v/p(i+1), 8= 8/p(i+1),
i=0 i=0

infinitely many digits y,# ¢,,; — 1, infinitely many 8,# ¢,,; — 1. We shall
denote by y(k) and 8(k) the representations truncated at k& (see Lemma 3).
Elementary calculations as in Lemma 3 show that for all x, ¢, ,,(x) € { ¥4, ¥
—1, y,+1}, where y,=(y—v(k)p(k)— (8 =8(k)p(k), y,€{(B(k)—
Bp(k), 1+(B(k)=B)p(k)}. Let A, ={xER/Z: @, (x)=y}, By=
{x: Ppiky =V~ 1} and C, = {x: Py =V T+ 1}. As the integral of ¢ is zero,
the relation A(B,) =y, + A(C,) holds. We shall check if conditions ii) and iii)
of Lemma 1 can be satisfied.
— Condition ii): it is clear from the proof of Lemma 3 that there is a sequence
(k)3 suchthat0<’ lim yk ’<1
— Condition iii): due to the above relation between A(B,) and A(C,) we can
always find a suitable subsequence (k})%_; of (k,)%_, such that condition
iii) holds for (4,,);_; and one of (B,,);_; or (Cy, )°°_1 (which implies that
1 is a period) or (Bk, ., and (C;,)y_; (which 1mp11es that 2 is a period).
a

LEMMA 5: If B is irrational, then T, is ergodic for all .
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Proof: We only have to show that S, is ergodic, i.e. that T’, is trivial. Let x be
an arbitrary element of I', and let /4 be a nontrivial measurable solution of the
functional equation 4 o T=x (@) h a.e.. Then h? o T=x%(¢) h?, hence x>
belongs to T'. S is ergodic for irrational B and thus the latter group is trivial.
Hence x is the trivial character of R /2Z. O

The argument employed in Lemma 5 is not valid for strictly non-g-adic B: for
a nontrivial character x in G/2Z, x? can be trivial in G/Z. It is not difficult
to see that I, would be trivial if the functional equation h-T=®h ae,
®(x)=1o0n A4 and ®(x)= —1 on the complement R /Z-A4, had no nontrivial
measurable solution A.

LEMMA 6: Let B be rational and non-q-adic. If there is a strictly increasing
sequence (i,)y_, such that, for all n, B; #0, B, ., <gq, ,,—1,i,,4—i,<L
with a constant L, then 1 is a period of T, for almost all vy in R/Z.

n

Proof: We shall take as basis the proof of Lemma 4. Hence we assume that y
and § =8(y)=v+ B mod 1 are non-g-adic. It will be shown that for almost
every y there is a subsequence (k, )%, of (i,)2°_; such that conditions ii) and
iii) of Lemma 1 are satisfied. It is then easy to deduce from Lemma 4 that 1 is
a period of T, = T (B, v)-

Let I be an elementary g-adic interval of length 1/p(k), I=[a/p(k),
(a+1)/p(k),0<a<p(k)—1. Choose i and j, 0<i, j<p(k)—1 such
that A(T'IA[y(k), y(k)+ 1/p(K)) =0, A(T/IA[8(k), 8(k)+1/p(k)])=0.
We write D, = T"']y(k), yv[, E,=T7']6(k), 8. D, and E, are subsets of [/
and the following relations hold:

A,NI=I-DAE,, B,NI=D,—E, CNI=E —D,.

Therefore A(A, NI)=1/p(k)+2A(D,NE;)—A(D;)—A(E,). Let a, and
b, be those integers with ®(a,)=7v(k) and ®(b,)=206(k). Then 0<aq,,
b, <p(k)—1 for sufficiently large k and a,,,=a,+ v, p(k), b, . =b,+
0,p(k). Let a be an arbitrary integer such that 0 <a <min(a,, b,). If we
consider the elementary interval I =1(a)=[®(a), ®(a)+1/p(k)[, then the
condition a < min(a,, b,) implies that D, and E, are intervals, D, =]®(a),
®(a)+y—v(k), E,=1®(a), ®(a)+ 38— 6(k)[. This yields the following
estimate for A(A,):

A(A,) = (1= |y |) min(a,, b,)/p(k).

Itis1/K><1—|y, | <1—-1/K? thus only min(a,, b, )/p(i,) requires fur-
ther study. We see that a,  /p(i,,,)>Y, /K" and b, /p(i,,,)>8 /K"
We study F={y inR/Z: v, §, #0 for infinitely many n}. If y belongs" to F,
then there is a subsequenée (k,)>_, of (i,)%_,; such that infA(A4 k)=
1/K**L > 0. Hence condition iii) of Lemma 1 is satisfied. Condition ii) will
hold for a suitable subsequence.
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It is elementary to show that the set F is invariant under 7. Thus A(F) is
either zero or one. One calculates A({y: v, 8, #0})>1/3if ¢, ., >3 and that
it is equal to (8 — B(i,))p(i,) —1/2if q, ,; = 2. One deduces that A(F)=1.
O

COROLLARY: With the additional assumption that B be strictly non-q-adic
Lemma 6 implies that T, is ergodic for almost all .

COROLLARY: Suppose that q,=q>2 for all i, q an integer. If B is strictly
non-q-adic then T, is ergodic for almost all .

Proof: The g-adic representation of rational numbers is periodic. As 8 is
strictly non-g-adic, S, is ergodic and further there is a sequence (i,,)%_; which
satisfies the conditions of Lemma 6. O
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