COMPOSITIO MATHEMATICA ### PETER HELLEKALEK # Ergodicity of a class of cylinder flows related to irregularities of distribution Compositio Mathematica, tome 61, nº 2 (1987), p. 129-136 http://www.numdam.org/item?id=CM 1987 61 2 129 0> © Foundation Compositio Mathematica, 1987, tous droits réservés. L'accès aux archives de la revue « Compositio Mathematica » (http://http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ ## Ergodicity of a class of cylinder flows related to irregularities of distribution #### PETER HELLEKALEK Institut für Mathematik, Universität Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria Received 18 November 1985; accepted 10 March 1986 **Abstract.** We study ergodicity of cylinder flows $(x, t) \mapsto (Tx, t + \varphi(x))$, where T is a von Neumann-Kakutani adding machine transformation on \mathbb{R}/\mathbb{Z} and $\varphi(x) = 1_A(x) - \beta$, A an arc in \mathbb{R}/\mathbb{Z} of length β . #### Introduction We shall be interested in cylinder flows of the following type. Let $T: \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$, $x \mapsto Tx$, be measure preserving and ergodic with respect to Lebesgue measure λ on \mathbb{R}/\mathbb{Z} , let G be either a closed subgroup of \mathbb{R} or $G = \mathbb{R}/a\mathbb{Z}$ with a in \mathbb{R} . Let h denote Haar measure on G and let $\varphi: \mathbb{R}/\mathbb{Z} \to G$ be measurable with $f \circ d\lambda = 0$. The cylinder flow $T_{\varphi}(x, t) = (Tx, t + \varphi(x))$ acts on the measure theoretic product space $X = \mathbb{R}/\mathbb{Z} \otimes G$ and preserves the product measure $\lambda \otimes h$ on X. We shall study ergodicity (with respect to $\lambda \otimes h$) of the following class: #### Example 1 Let T_{φ} be the cylinder flow where $T: \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ is a generalized von Neumann-Kakutani adding machine transformation (definition in Part II of this paper), and let $\varphi(x) = 1_A(x) - \beta$, where A is an arc in \mathbb{R}/\mathbb{Z} of length β , $0 < \beta \le 1$. Let G be the closed subgroup of \mathbb{R} generated by 1 and β . If β is irrational, then $G = \mathbb{R}$ and h will denote Lebesgue measure. If $\beta = r/s$, r and s positive integers, (r, s) = 1, then $G = (1/s) \mathbb{Z}$ and h will stand for the counting measure. The ergodicity of this class of cylinder flows is directly related to irregularities in the distribution of generalized van-der-Corput sequences. For this reason, necessary conditions for the ergodicity of T_{φ} and hence for β follow from results in [Hellekalek, 1984]. For the general background, in particular the important coboundary theorem and its consequences, the reader is referred to [Liardet, 1982, 1985]. Results on ergodicity of cylinder flows date back to [Anzai, 1951] (T an irrational rotation, $G = \mathbb{R}/\mathbb{Z}$). The following class is now well-known. #### Example 2 Let T_{φ} be the cylinder flow where $T: \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}, x \mapsto x + \alpha \mod 1, \alpha$ irrational, and $\varphi(x) = 1_{[0,\beta]}(x) - \beta, 0 < \beta \le 1$. Let G be as in Example 1. Ergodicity of Example 2 was studied by [Oren, 1983], completing an earlier result of [Conze, 1980]. Oren has proved: T_{φ} is ergodic if and only if β is rational or 1, α and β are linearly independent over \mathbb{Z} . Example 2 is also related to a class of sequences well-known in the theory of uniform distribution modulo 1, the sequences $(n\alpha)_{n \ge 0}$. Good references are [Petersen, 1973] and, in particular, [Liardet, 1985]. #### I. Remarks From now on it will be assumed that T_{φ} is the cylinder flow of Example 1, although the following remarks can easily be generalized to cover Example 2 and a large class of other cylinder flows as well. T_{φ} is ergodic if and only if, for every T_{φ} -invariant measurable subset B of $\mathbb{R}/\mathbb{Z}\otimes G$, either B or its complement has measure zero. We study ergodicity of T_{φ} by reducing the problem from the infinite case (i.e. T_{φ} on $\mathbb{R}/\mathbb{Z}\otimes G$) to a finite case (i.e. T_{φ} on $\mathbb{R}/\mathbb{Z}\otimes G/a\mathbb{Z}$; $a\in G,\ a\neq 0$). Definition: An element c of G is called a *period* of T_{φ} if, for every T_{φ} – invariant function 1_B , B a measurable subset of the product space $\mathbb{R}/\mathbb{Z}\otimes G$, the equality $1_B(x, t) = 1_B(x, t + c)$ holds $\lambda\otimes h$ – a.e.. The set P_{φ} of periods of T_{φ} is a subgroup of G. [Schmidt, 1976] has extensively studied what he calls 'essential values' of a cylinder flow. It follows from Theorem 5.2. in [Schmidt, 1976] that essential values and periods are the same. Remarks: it is not difficult to see that - i) if $\varphi = g g \circ T \ \lambda$ a.e., $g: \mathbb{R}/\mathbb{Z} \to G$ measurable, then $P_{\varphi} = \{0\}$; - ii) if $\varphi = \psi + g g \circ T$ $\lambda \text{a.e.}$, ψ , $g \colon \mathbb{R}/\mathbb{Z} \to G$ measurable, then $P_{\varphi} = P_{\psi}$. Let a be an element of G and let S_a denote the cylinder flow T_{φ} on $\mathbb{R}/\mathbb{Z} \otimes G/a\mathbb{Z}$: $$S_a : \mathbb{R}/\mathbb{Z} \otimes G/a\mathbb{Z} \to \mathbb{R}/\mathbb{Z} \otimes G/a\mathbb{Z}$$ $$S_a(x, t) = (Tx, t + \varphi(x) \bmod a).$$ Ergodicity of T_{φ} and S_a are related as follows. S_a is a factor of T_{φ} , hence ergodicity of T_{φ} implies ergodicity of S_a . If a is a period of T_{φ} and if S_a is ergodic then T_{φ} is ergodic. We shall use this observation later on. Ergodicity of T_{φ} is associated with the following type of functional equation. Define - $\Gamma := \{ \chi \in \hat{G} : \text{ the functional equation } h \circ T = \chi(\varphi)h \ \lambda \text{ a.e. has a nontrivial measurable solution } h : \mathbb{R}/\mathbb{Z} \to \mathbb{C} \}$, and, for a in G, - Γ_a := { $\chi \in (G/a\mathbb{Z})$: $h \circ T = \chi(\varphi)h$ λ a.e. has a nontrivial measurable solution $h: \mathbb{R}/\mathbb{Z} \to \mathbb{C}$ }. The sets Γ and Γ_a are subgroups. LEMMA 0: Let $a \in G$, $a \neq 0$. Then S_a is ergodic if and only if Γ_a is trivial. *Proof:* This result is classical, see [Anzai, 1951]. □ Theorem 1 If $c \in P_{\varphi}$, then $\Gamma = \Gamma_c$. *Proof:* Clearly Γ_c is a subset of Γ . Let χ be an arbitrary element of Γ and let h be a nontrivial measurable solution of the equation $h \circ T = \chi(\varphi)h \ \lambda$ – a.e.. The measurable function $f(x, t) = h(x)\bar{\chi}(t)$ is invariant under T_{φ} , hence $f(x, t + c) = h(x)\bar{\chi}(t)\bar{\chi}(c) = f(x, t)\lambda \otimes h$ – a.e.. This implies $\chi(c) = 1$, thus χ belongs to Γ_c . \square COROLLARY: The following are equivalent: - i) T_{φ} is ergodic; - ii) $P_{\infty}^{r} \neq \{0\}$ and Γ is the trivial subgroup of \hat{G} . We shall now study example 1. We ask under which conditions for β and γ will Γ_1 be trivial (hence S_1 ergodic) and 1 be a period of $T_{\varphi} = T_{\varphi}(\beta, \gamma)$. #### II. A class of cylinder flows We shall consider the following generalization of the von Neumann-Kakutani adding machine transformation on \mathbb{R}/\mathbb{Z} . Let $q = (q_i)_{i \ge 1}$ be a bounded sequence of integers q_i , $2 \le q_i \le K$ for all i, with some positive constant K. If A(q) denotes the compact Abelian group of q-adic integers, then the transformation $z \mapsto z + 1$ on A(q) is uniquely ergodic with respect to normalized Haar-measure on A(q) (see [Hewitt and Ross, 1963] for details on A(q)). Consider next the one-dimensional torus \mathbb{R}/\mathbb{Z} with Haar measure λ . We shall write $$p(k) = q_1 \cdot \dots \cdot q_k, \quad k = 1, 2, \dots$$ $p(0) := 1.$ If $$z = \sum_{i=0}^{\infty} z_i p(i), \quad z_i \in \{0, 1, \dots, q_{i+1} - 1\}$$ is an element of A(q), then $$\Phi(z) = \sum_{i=0}^{\infty} z_i / p(i+1) \mod 1$$ belongs to \mathbb{R}/\mathbb{Z} . The map Φ : $\mathbb{A}(q) \to \mathbb{R}/\mathbb{Z}$ is measure-preserving and injective on $\mathbb{A}(q)$ except on a subset of Haar measure zero. The q-adic representation of an element x of \mathbb{R}/\mathbb{Z} , $$x = \sum_{i=0}^{\infty} x_i / p(i+1), \quad x_i \in \{0, 1, \dots, q_{i+1} - 1\},$$ is unique under the condition $x_i \neq q_{i+1} - 1$ for infinitely many i. We shall call x non-q-adic if x has infinitely many nonzero digits x_i . The uniqueness condition for the representation ensures that the following transformation T: $\mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ is well-defined: $$Tx := \Phi(z+1)$$, where $z = z(x) = \sum_{i=0}^{\infty} x_i p(i)$. T is ergodic with respect to λ and $T \circ \Phi(z) = \Phi(z+1)$ for almost all z. For further properties of T see [Hellekalek, 1984]. T may be called a (generalized) von Neumann-Kakutani adding machine transformation (see [Petersen, 1983]). A rational number β in]0, 1[, $\beta = r/s$, r and s positive integers, (r, s) = 1, is called *strictly non-q-adic* if k/s is non-q-adic for all k, $1 \le k \le s - 1$; equivalently, if no prime divisor of s divides an element of the sequence q. THEOREM 2: Let T be the q-adic transformation defined above and let $\varphi(x) = 1_{[0,\beta]}(x) - \beta$, $0 < \beta \le 1$. Let T_{φ} be the cylinder flow defined in Example 1. Then the following are equivalent: - i) T_{∞} is ergodic; - ii) β is irrational or strictly non-q-adic. We can generalize this result to: THEOREM 3: Let T be as in Theorem 2 and let $\varphi(x) = 1_A(x) - \beta$, where A is an arc in \mathbb{R}/\mathbb{Z} of length β , $0 < \beta \le 1$, $A = \gamma + [0, \beta[\mod 1 \text{ with } 0 \le \gamma < 1. Define <math>T_{\varphi}$ as in Example 1. Then - i) T_{φ} ergodic implies β irrational or strictly non-q-adic; - ii) β irrational implies T_{∞} ergodic, for all γ ; - iii) β strictly non-q-adic and γ q-adic (i.e. $\gamma = a/p(g)$ with nonnegative integers a and g, a < p(g)) imply T_{∞} ergodic; - iv) $q_i = q \ge 2$ for all i, and β strictly non-q-adic imply T_{φ} ergodic for almost all γ . The proof of these two theorems will be given by Lemmata 1 to 6 and their corollaries. In Lemma 6 we will prove a stronger result than iv) of Theorem 3. In the sequel we shall write φ_n for the sum $\varphi + \varphi \circ T + \cdots + \varphi \circ T^{n-1}$, n = 1, 2... Lemma 1 below indicates how to obtain periods. The idea is due to [Oren, 1983] (Proposition 1). LEMMA 1: Let $(k_n)_{n=1}^{\infty}$ be a subsequence of $(n)_{n=1}^{\infty}$ and let $(A_{k_n})_{n=1}^{\infty}$ be a sequence of measurable subsets of \mathbb{R}/\mathbb{Z} such that - i) $\varphi_{p(k_n)}$ is constant on A_{k_n} ii) $\lim \varphi_{p(k_n)}(A_{k_n})$ exists and - $iii) \inf^{n \to \infty} \lambda(A_{k_n}) > 0.$ Then $c = \lim_{n \to \infty} \varphi_{p(k_n)}(A_{k_n})$ will be a period of T_{φ} . *Proof:* Let 1_B be an arbitrary T_{φ} -invariant measurable function on $\mathbb{R}/\mathbb{Z}\otimes G$. The set $M = \{x \in \mathbb{R} / \mathbb{Z} \text{ such that } 1_R(x, t) = 1_R(x, t+c) \text{ for almost all } t \text{ in } t \in \mathbb{R} \}$ G is invariant under T, thus of measure 0 or 1. We shall find a subset of M of positive measure. This will prove the lemma. Let $a_{k_n} = \varphi_{p(k_n)}(A_{k_n})$ and put $g_{k_n}(x, t) = |1_B(T^{p(k_n)}x, t + a_{k_n}) - 1_B(x, t + c)|$. Let $X_N = \mathbb{R}/\mathbb{Z} \times [-N, N]$, N a positive integer. We note that $|T^{p(k)}x - T^{p(k)}x|$ $x \mid <1/p(k)$ for all x and all positive integers k, hence $$\lim_{n\to\infty} \int_{X_N} g_{k_n} \, \mathrm{d}\lambda \otimes h = 0 \quad \text{for all } N.$$ Therefore, by diagonalization, we can find a subsequence $(k'_n)_{n=1}^{\infty}$ of $(k_n)_{n=1}^{\infty}$ such that $\lim_{n\to\infty} g_{k'_n}(x, t) = 0$ a.e. on $\mathbb{R}/\mathbb{Z} \otimes G$. Let $A = \limsup_{n\to\infty} A_{k'_n}$. The set Ahas positive measure (condition iii)) and almost all elements of A belong to M (conditions i) and ii)). Lemma 2: Ergodicity of T_{ω} implies that β is either irrational or strictly non-q-adic. *Proof:* If T_{φ} is ergodic, so is the compact factor S_1 , $S_1(x, t) = (Tx, (t + \varphi(x)))$ mod 1). For every character χ of G/\mathbb{Z} $\chi(\varphi(x)) = \chi(-\beta)$ is constant. Therefore Γ_1 is trivial (hence S_1 ergodic) if and only if there are no eigenfunctions of T to the eigenvalue $\chi(-\beta)$. The eigenvalues of T are known to be of the form $\exp(2\pi i\alpha)$, α q-adic. \square LEMMA 3: If β is non-q-adic and γ is q-adic, then 1 is a period of T_{∞} . *Proof:* The q-adic representation of β is given by $\beta = \sum_{i=1}^{\infty} \beta_i / p(i+1)$ with digits $\beta_i \in \{0, 1, ..., q_{i+1} - 1\}$, infinitely many $\beta_i \neq q_{i+1} - 1$. Define $\beta(k) = \sum_{i=0}^{k} \beta_i / p(i+1)$, k = 1, 2, 3 ... Then $0 < \beta - \beta(k) < 1/p(k)$ for all k. If $\gamma = \sum_{i=0}^{\infty} \gamma_i/p(i+1), \text{ then } \gamma(k) = \gamma \text{ for all } k \text{ sufficiently large. } T \text{ is a bijection almost everywhere and maps elementary } q\text{-adic intervals } [a/p(k), (a+1)/p(k)], \ 0 \leqslant a \leqslant p(k)-1, \text{ into elementary } q\text{-adic intervals of length } 1/p(k).$ For any x in \mathbb{R}/\mathbb{Z} exactly one point T^jx , $0 \leqslant j \leqslant p(k)-1$, belongs to a given elementary q-adic interval. For sufficiently large k the function $\varphi_{p(k)}$ takes only two values on \mathbb{R}/\mathbb{Z} , $\varphi_{p(k)}(x) \in \{\beta(k)p(k)-\beta p(k), 1+\beta(k)p(k)-\beta p(k)\}$. Let $A_k = \{x: \varphi_{p(k)}(x) = (\beta(k)-\beta)p(k)\}$ and let B_k denote its complement. The integral of the function $\varphi_{p(k)}$ is zero, hence $\lambda(A_k) = 1-(\beta-\beta(k))p(k)$ and $\lambda(B_k) = (\beta-\beta(k))p(k)$. β has infinitely many nonzero digits β_i , hence there is subsequence $(i_n)_{n=1}^{\infty}$ such that $0 < \beta_{i_n}$ and $\beta_{i_n+1} < q_{i_n+2}-1$. This implies $1/K < (\beta-\beta(i_n))p(i_n) \leqslant 1-1/K^2$. Therefore we can find a subsequence $(k_n)_{n=1}^{\infty}$ of $(i_n)_{n=1}^{\infty}$ such that $0 < \lim_{n \to \infty} (\beta-\beta(k_n))p(k_n) < 1$. We apply lemma 1 to the sequences of sets $(A_{k_n})_{n=1}^{\infty}$ and $(B_{k_n})_{n=1}^{\infty}$ and obtain that 1 is a period of T_{φ} . \square Corollary: If β is strictly non-q-adic then T_{ω} is ergodic for all q-adic γ . Lemma 4: If β is non-q-adic then the set $\{1,2\}$ contains a period of T_{φ} for every γ . *Proof:* Let $A = \gamma + [0, \beta[\mod 1, 0 < \gamma < 1, \text{ and } \varphi(x) = 1_A(x) - \beta$. In view of Lemma 3 we are only interested in non-q-adic γ . Let $\delta = \gamma + \beta \mod 1$. We shall assume that δ is non-q-adic, otherwise Lemma 3 applies. Let $$\gamma = \sum_{i=0}^{\infty} \gamma_i / p(i+1), \quad \delta = \sum_{i=0}^{\infty} \delta_i / p(i+1),$$ infinitely many digits $\gamma_i \neq q_{i+1} - 1$, infinitely many $\delta_i \neq q_{i+1} - 1$. We shall denote by $\gamma(k)$ and $\delta(k)$ the representations truncated at k (see Lemma 3). Elementary calculations as in Lemma 3 show that for all x, $\varphi_{p(k)}(x) \in \{y_k, y_k - 1, y_k + 1\}$, where $y_k = (\gamma - \gamma(k))p(k) - (\delta - \delta(k))p(k)$, $y_k \in \{(\beta(k) - \beta)p(k), 1 + (\beta(k) - \beta)p(k)\}$. Let $A_k = \{x \in \mathbb{R}/\mathbb{Z}: \varphi_{p(k)}(x) = y_k\}$, $B_k = \{x: \varphi_{p(k)} = y_k - 1\}$ and $C_k = \{x: \varphi_{p(k)} = y_k + 1\}$. As the integral of φ is zero, the relation $\lambda(B_k) = y_k + \lambda(C_k)$ holds. We shall check if conditions ii) and iii) of Lemma 1 can be satisfied. - Condition ii): it is clear from the proof of Lemma 3 that there is a sequence $(k_n)_{n=1}^{\infty}$ such that $0 < \Big| \lim_{n \to \infty} y_{k_n} \Big| < 1$; Condition iii): due to the above relation between $\lambda(B_k)$ and $\lambda(C_k)$ we can - Condition iii): due to the above relation between $\lambda(B_k)$ and $\lambda(C_k)$ we can always find a suitable subsequence $(k'_n)_{n=1}^{\infty}$ of $(k_n)_{n=1}^{\infty}$ such that condition iii) holds for $(A_{k'_n})_{n=1}^{\infty}$ and one of $(B_{k'_n})_{n=1}^{\infty}$ or $(C_{k'_n})_{n=1}^{\infty}$ (which implies that 1 is a period) or $(B_{k'_n})_{n=1}^{\infty}$ and $(C_{k'_n})_{n=1}^{\infty}$ (which implies that 2 is a period). Lemma 5: If β is irrational, then T_{φ} is ergodic for all γ . *Proof:* We only have to show that S_2 is ergodic, i.e. that Γ_2 is trivial. Let χ be an arbitrary element of Γ_2 and let h be a nontrivial measurable solution of the functional equation $h \circ T = \chi(\varphi) \ h$ a.e.. Then $h^2 \circ T = \chi^2(\varphi) \ h^2$, hence χ^2 belongs to Γ_1 . S_1 is ergodic for irrational β and thus the latter group is trivial. Hence χ is the trivial character of $\mathbb{R}/2\mathbb{Z}$. \square The argument employed in Lemma 5 is not valid for strictly non-q-adic β : for a nontrivial character χ in $G/2\mathbb{Z}$, χ^2 can be trivial in G/\mathbb{Z} . It is not difficult to see that Γ_2 would be trivial if the functional equation $h \cdot T = \Phi h$ a.e., $\Phi(x) = 1$ on A and $\Phi(x) = -1$ on the complement $\mathbb{R}/\mathbb{Z}-A$, had no nontrivial measurable solution h. LEMMA 6: Let β be rational and non-q-adic. If there is a strictly increasing sequence $(i_n)_{n=1}^{\infty}$ such that, for all n, $\beta_{i_n} \neq 0$, $\beta_{i_n+1} < q_{i_n+2} - 1$, $i_{n+1} - i_n \leq L$ with a constant L, then 1 is a period of T_{φ} for almost all γ in \mathbb{R}/\mathbb{Z} . *Proof:* We shall take as basis the proof of Lemma 4. Hence we assume that γ and $\delta = \delta(\gamma) = \gamma + \beta \mod 1$ are non-q-adic. It will be shown that for almost every γ there is a subsequence $(k_n)_{n=1}^{\infty}$ of $(i_n)_{n=1}^{\infty}$ such that conditions ii) and iii) of Lemma 1 are satisfied. It is then easy to deduce from Lemma 4 that 1 is a period of $T_{\varphi} = T_{\varphi}(\beta, \gamma)$. Let I be an elementary q-adic interval of length 1/p(k), I = [a/p(k), (a+1)/p(k)], $0 \le a \le p(k) - 1$. Choose i and j, $0 \le i$, $j \le p(k) - 1$ such that $\lambda(T^iI\Delta[\gamma(k), \gamma(k) + 1/p(k)]) = 0$, $\lambda(T^iI\Delta[\delta(k), \delta(k) + 1/p(k)]) = 0$. We write $D_I = T^{-i}]\gamma(k)$, $\gamma[$, $E_I = T^{-j}]\delta(k)$, $\delta[$. D_I and E_I are subsets of I and the following relations hold: $$A_k \cap I = I - D_I \Delta E_I, \quad B_k \cap I = D_I - E_I, \quad C_k \cap I = E_I - D_I.$$ Therefore $\lambda(A_k \cap I) = 1/p(k) + 2\lambda(D_I \cap E_I) - \lambda(D_I) - \lambda(E_I)$. Let a_k and b_k be those integers with $\Phi(a_k) = \gamma(k)$ and $\Phi(b_k) = \delta(k)$. Then $0 < a_k$, $b_k \le p(k) - 1$ for sufficiently large k and $a_{k+1} = a_k + \gamma_k p(k)$, $b_{k+1} = b_k + \delta_k p(k)$. Let a be an arbitrary integer such that $0 \le a \le \min(a_k, b_k)$. If we consider the elementary interval $I = I(a) = [\Phi(a), \Phi(a) + 1/p(k)]$, then the condition $a \le \min(a_k, b_k)$ implies that D_I and E_I are intervals, $D_I =]\Phi(a)$, $\Phi(a) + \gamma - \gamma(k)[$, $E_I =]\Phi(a)$, $\Phi(a) + \delta - \delta(k)[$. This yields the following estimate for $\lambda(A_k)$: $$\lambda(A_k) \geqslant (1 - |y_k|) \min(a_k, b_k) / p(k).$$ It is $1/K^2 \leqslant 1 - |y_{i_n}| \leqslant 1 - 1/K^2$ thus only $\min(a_{i_n}, b_{i_n})/p(i_n)$ requires further study. We see that $a_{i_{n+1}}/p(i_{n+1}) \geqslant \gamma_{i_n}/K^L$ and $b_{i_{n+1}}/p(i_{n+1}) \geqslant \delta_{i_n}/K^L$. We study $F = \{\gamma \text{ in } \mathbb{R}/\mathbb{Z} : \gamma_{i_n} \delta_{i_n} \neq 0 \text{ for infinitely many } n\}$. If γ belongs to F, then there is a subsequence $(k_n)_{n=1}^{\infty}$ of $(i_n)_{n=1}^{\infty}$ such that $\inf \lambda(A_{k_n}) \geqslant 1/K^{2+L} > 0$. Hence condition iii) of Lemma 1 is satisfied. Condition ii) will hold for a suitable subsequence. It is elementary to show that the set F is invariant under T. Thus $\lambda(F)$ is either zero or one. One calculates $\lambda(\{\gamma:\gamma_{i_n}\delta_{i_n}\neq 0\})\geqslant 1/3$ if $q_{i_n+1}\geqslant 3$ and that it is equal to $(\beta-\beta(i_n))p(i_n)-1/2$ if $q_{i_n+1}=2$. One deduces that $\lambda(F)=1$. COROLLARY: With the additional assumption that β be strictly non-q-adic Lemma 6 implies that T_{∞} is ergodic for almost all γ . COROLLARY: Suppose that $q_i = q \ge 2$ for all i, q an integer. If β is strictly non-q-adic then T_{∞} is ergodic for almost all γ . *Proof:* The q-adic representation of rational numbers is periodic. As β is strictly non-q-adic, S_1 is ergodic and further there is a sequence $(i_n)_{n=1}^{\infty}$ which satisfies the conditions of Lemma 6. \square #### References Anzai, H.: Ergodic skew product transformations on the torus. Osaka Math. J. 3 (1951) 83–99. Conze, J.P.: Ergodicité d'une transformation cylindrique. Bull. Soc. Math. France 108 (1980) 441–456. Hellekalek, P.: Regularities in the distribution of special sequences. J. Number Th. 18 (1984) 41-55. Hewitt, E. and Ross, K.A.: Abstract Harmonic Analysis, Volume I. Springer-Verlag, Heidelberg-New York-Berlin (1963). Liardet, P.: Résultats et problèmes de régularité de distributions. In: Théorie élémentaire et analytique des nombres. Journées Mathématiques SMF-CNRS. Valenciennes (1982). Liardet, P.: Regularities of distribution. To appear in Comp. Math. Oren, I.: Ergodicity of cylinder flows arising from irregularities of distribution. *Israel J. Math.* 44 (1983) 127–138. Petersen, K.: On a series of cosecants related to a problem in ergodic theory. Comp. Math. 26 (1973) 313-317. Petersen, K.: Ergodic Theory. Cambridge University Press, Cambridge, England (1983). Schmidt, K.: Lectures on cocycles of ergodic transformation groups. Preprint, University of Warwick, Conventry, England (1976).