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Abstract. New simple proofs are given for the classification theorems of projective k-folds X
(k  6) with defect 03B4 &#x3E; 0. Moreover 7-folds with 8 &#x3E; 1 and those with 8 =1 and Kx (&#x26; Ox (5)
spanned are classified. The section of the 10-dimensional spinor variety of P15 by 3 general
hyperplanes and Grassmann fibrations over a smooth curve belong to this last class.
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0. Introduction

Recently many results on projective manifolds with small dual varieties have
been found by [Ein, 1985]. In the first part of this paper (sections 1 and 2) we
approach this subject from a topological-adjunction theoretic point of view.
The topological basic facts are a formula due to [Landman, 1976] and some
results from [Lanteri and Struppa, 1986]. In particular we provide new (and
very short) proofs for the classification theorems of projective manifolds with
degenerate dual varieties of dimensions 3, 4 and 6, and we partially classify
those of dimension 7. In particular we completely classify 7-folds with defect
8 = 3 : they are scrolls of (FD5,s over a smooth surface. An immediate extension
of this result to k-folds X (k  7) is: 8 &#x3E; k - 6 iff X is a scroll of P(k+03B4)/2’s
over a (k - 03B4)/2-fold. This gives an altemate proof of a weaker form of a
result of Ein. In the second part of the paper (section 3) we deal with the case
8 = 1 and we find a new class of 7-folds with degenerate dual varieties.
Actually, under the extra assumption that KX ~ Ox(5) is spanned by global
sections, we prove that, besides Mukai 7-folds and scrolls of P4’s over a
3-fold, X can be a fibration of grassmannians G (1, 4) (of lines of P4) over a
smooth curve. All these cases really occur: indeed the section of the 10-dimen-
sional spinor variety S c P15 by three general hyperplanes is an example of
Mukai 7-fold with 8 = 1; all scrolls as above have 8 = 1 and finally all
Grassmann fibrations over a smooth curve have 03B4 = 1. This follows from

Proposition 3.5, which we owe to the referee. In an earlier version of the paper
we only proved this result for Grassmann bundles; our proof consisted of a
detailed topological argument taking advantage of the bundle structure and of
the homology of Grassmannians.

Both authors are members of the G.N.S.A.G.A. of the Italian C.N.R.
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1. Known results (new proofs)

Let X ~ PN be a complex connected projective algebraic manifold of dimen-
sion dim X = k. We always assume that X is not contained in any hyperplane
unless X itself is a hyperplane. We are mainly concerned with the class of
projective manifolds with degenerate dual varieties:

Here X * ~ PN* denotes the dual variety of X. As is known dim X *  N - 1,
with equality in the general case. Since the class 03BC(X) of X is the number of
points that a general line of PN* cuts out on X*, we have 03BC(X) = 0 iff
X E Ak-

Let Xl be the section of X with a general hyperplane and consider the class

where bi(X) is the i-th Betti number of X. Many properties of Yk are

discussed in [Lanteri and Struppa, 1986]. In particular we recall that ([Lanteri
and Struppa, 1986], Prop. 3.3)

0394k ~ Lk with equality for k odd. (1.0)

Finally we denote by 03A3(r, s ) the class of ( r, s )-scrolls ( r + s = k ); we say that
X ~ PN is a (r, s )-scroll if i) X = P(E), E a rank-( r + 1) holomorphic vector
bundle over some projective manifold of dimension s, ii) the fibers of X are
linear spaces and iü) r is the maximum integer with these properties.
Many results on Ak are known and are mostly due to [Ein, 1985]. Here we

reprove some of them using a topological-adjunction theoretic approach. Let
~(X) be the Euler-Poincaré characteristic of X and let Xi denote the section
of X with i general hyperplanes. The class formula ([Lamotke, 1981], p. 25)

is the main ingredient in the proof of the following unpublished result of
[Landman, 1976], see ([Kleiman, 1986] (II.3.18))

The three summands in (1.1) are nonnegative numbers due to the strong and
the weak Lefschetz theorems. Hence the characteristic condition for X to have

degenerate dual variety is
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This immediately shows that 03942 = {P2}, since for a surface X E 03942 the third
equality in (1.2) implies b0(X2) = 1, i.e. that X has degree one.

The following result was first proved by ([Griffiths and Harris, 1979] (3.26))
using differential geometric techniques. Recently ([Ein, 1985], I. Th. 3.3) gave
a different proof. Now we deduce it simply from (1.2).

1.3. PROPOSITION: 03943 = {P3} ~ 03A3(2, 1).

Proof. We only prove the inclusion c , the other one being easy. Let X E 03943;
then b1(X2) = b1(X), by (1.2), and the assertion follows from ([Lanteri and
Palleschi, 1984], Th. 3.2), observing that the quadric threefold does not fulfill
b2(X1) = b2(X). ¶

As to dimension 4, the following result has been proved by ([Ein, 1985], 1, Th.
3.3) and independently by the authors ([Lanteri and Struppa, 1984], (3.3)).
Here we provide a third proof stemming from (1.2).

1.4. PROPOSITION: 0 4 = {P4} ~ 03A3(3, 1).

Proof. As before, we only prove the inclusion c . Let X ~ 03944; then Xl E L3
by (1.2) and then Xl is as in (1.3), in view of (1.0). Then either X = P4, or
X E 1(3, 1) in view of a known result (e.g. see [Bâdescu, 1981], §2). ¶

Unfortunately, due to the lack of knowledge of Y4 [Lanteri and Struppa,
1986], (1.2) is not sufficient to recover the following result of Ein:

1.5. PROPOSITION: ([Ein, 1985], II, Th. 5.1) A, consists of P 5, 03A3(4, 1), 03A3(3, 2)
and of any nonsingular hyperplane section of the grassmannian G of lines of p 4
embedded in P9 via the Plücker embedding.

In order to deal with higher dimensions we need the following result

essentially contained in a paper of [Sommese, 1976].

1.6. PROPOSITION: Assume X1 ~ 03A3(r, s), r &#x3E; 2. Then X ~ 03A3(r + 1, s ); in par-
ticular r  s - 1.

Proof. Let p : X1 ~ B be the projection morphism onto the base B of Xl; since
r &#x3E; 2 and by ([Sommese, 1976], Prop. III), p extends to a morphism p : X - B.
Let F be a fiber of p; then f = X1· F is a fiber of p and is an ample divisor in
F, since Xl is ample. But f ~ Pr and OX1(1) ~ Of = OPr(1). Then F ~ Pr+1
and tPx(1) ~ OF = OPr+1(1) (e.g. see [Sommese, 1976], p. 67). This implies that
X ~ 03A3(r + 1, s). Furthermore, since p is a surjection and p = |X1 makes Xl
into a P-bundle over B, it has to be r  s - 1 ([Sommese, 1976], Prop. V]. ¶

In the context of very ample divisors (1.6) extends the above quoted results
of Bâdescu on ample divisors which are P-bundles over a smooth curve.
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Notice also that (1.6) can be viewed as a converse to Proposition 2.2. in

[Lanteri and Struppa, 1986].
First of all we use (1.6) jointly with (1.2) to give an alternate proof of a

result of ([Ein, 1985], II, Th. 5.2).

1.7. PROPOSITION: 03946 consists of (?6, 03A3(5, 1), 03A3(4, 2) and of the grassmannian
G.

Proof. That the above classes of manifolds belong to A6 is easily seen (e.g. see
[Lanteri and Struppa, 1986]). Now let X E 03946. Once again by (1.2) this implies
that Xl ~ L5 and therefore XI is as in (1.5), in view of (1.0). Firstly assume
that Xl is isomorphic to a hyperplane section of G. Let KX be the canonical
bundle of X ; since KXl = OX1(-4), by adjunction we get

and then KX = OX(-5), as Pic(X) ~ Pic(X1) ~ Z. So X is a 6-dimensional
Del Pezzo manifold in the sense of Fujita and therefore X = G in view of
Fujita’s classification ([Fujita, 1982], (6.3)). Now, if X1 ~ 03A3(4, 1) ~ 03A3(3, 2),
then X belongs to 03A3(5, 1) ~ 03A3(4, 2), by (1.6). Finally, if X1 = P5, then

X = p6, trivially. 1

2. Dimension 7: defects 3 and 5

Just as for às, the topological-adjunction theoretic method used before does
not yield a complete description of d7.

To study the class 03947 we need the notion of defect. Recall that the defect of
a nonlinear X ~ PN is the integer

We put also 03B4(Pk) = k; this is consistent with our general assumption on X.
We will need the following facts.

An independent proof of (2.2) will follow from (3.5). Moreover (1.1) implies,
by induction,
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In view of the parity of k - 8 ([Landman, 1976]; see also [Ein, 1985], 1, Th.
2.4), if X E 03947 then either X = Pk, or 03B4(X) = 1, 3, 5.

The case 03B4(X) = 5 is settled by the following.

2.4. PROPOSITION: Let k  3. Then 03B4(X) = k - 2 iff X ~ 03A3(k - 1, 1).

Proof. If X ~ 03A3(k - 1, 1), then 03B4(X) = k - 2 (e.g. see [Kleiman, 1977], p. 363).
Assume 03B4(X) = k - 2; then (2.3) gives b1(Xk-1) = b1(X) and the assertion
follows now by ([Lanteri and Palleschi, 1984], Th. 3.2). Notice that quadrics
are hypersurfaces, hence 8 = 0, fl

Different proofs of (2.4) have already been given by ([Ein, 1985], 1. Th. 3.2 and
II. Th. 3.1) and by the authors ([Lanteri and Struppa, 1984], Cor. 3.4). More
generally ([Ein, 1985], II, Th. 4.1) has proved that if 03B4(X)  k/2, then

X ~ 03A3((k + 03B4)/2, ( k - 03B4)/2). Unfortunately for k = 7 and 8 = 3 this result
does not apply; in spite of this we can prove by our method that X belongs
indeed to 03A3(5, 2).

2.5. PROPOSITION : Let X E 03947 with 03B4(X) = 3. Then X ~ 03A3(5, 2).

Proof. We have 03B4(X1) &#x3E; 0, by (2.1), i.e. Xl E 06. However it cannot be that
Xl = G, since the grassmannian G cannot be an ample divisor ([Fujita, 1981],
(5.2)). Then the assertion follows from (1.6), (1.7). ¶

An obvious inductive step based on (1.6), (2.3) and (2.5) shows that:

2.6. PROPOSITION : Let k  7; then 03B4(X) = k - 4 iff X ~ 03A3(k - 2, 2).

For k  8, (2.6) is absorbed in the more general result of Ein quoted before.

In higher dimensions a new interesting manifold arises: the 10-dimensional
spinor variety S ~ P15, which parametrizes each one of the two disjoint
families of 4-planes lying on a smooth 8-dimensional hyperquadric ([Lazars-
feld and Van de Ven, 1984], p. 16). Such a manifold is known to be self-dual,
i.e. S = S * ; hence 03B4(S) = 4. Therefore S2, the section of S by two general
hyperplanes has dimension k = 8 and defect 8 = 2. Since ~ 03A3(7, 3) it follows
from (1.6) that S2 ~ 03A3(5, 3); this shows that a result like (2.4) or (2.6) cannot
hold for 8 = k - 6.

3. Dimension 7: def ect 1

We finally look at the case 03B4(X) = 1. We first note that 03A3(4, 3) does not
exhaust the class of 7-folds with 03B4(X) = 1. Indeed S3, the section of the spinor
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variety S by three general hyperplanes, is such a manifold, by (2.1). In order to
extend an argument of Ein, we confine ourselves to the class Da’7 = {X ~
Da7: 03B4(X) = 1 and KX ~ OX(5) is spanned by global sections}.
To determine 0394’7 we need some preliminary discussion. First of all, if X E A’7,
the linear system |KX ~ PX(5)| defines a morphism f : X ~ (X). Now we
use two results of Ein:

through a general point p E X there passes a 3-dimensional family

of lines {l}, ([Ein, 1985], 1, Th. 2.3); (3.1)

KX|~ = O~(-5) for every ~ ~ {~}, ([Ein, 1985], I, Th. 2.4). (3.2)

Therefore by (3.2) the cone spanned by {~} is contracted by f and since
dim(f-1(f(p)))  4 in view of (3.1), we conclude that

r = dim f(X)  3.

Let r = 0; then, since Kx ~ OX(5) is spanned, we have Kx = OX( - 5), i.e. X is
a Mukai 7-fold [Mukai, 1985].

Assume now that r &#x3E; 0 and consider the Stein factorization

x 1 B - f( x)

of f. The general fibre D of g is a (7-r )-fold, by generic smoothness and its
normal bundle ND|X is trivial. Hence

KD=KX|D’

by adjunction; moreover, since f is constant on D by (3.2), this implies

KD = OD(-5).

Hence D is a Fano (7-r )-fold of index 5 for r = 2, 3 and a Del Pezzo 6-fold in
the sense of Fujita, for r = 1. Let 039B = ~D~ be the linear space spanned by D
in PN. Then we have only the following possibilities for D ~ A, according to
the values of r.

i) Let r = 3; then D = A = (FD.4, in view of [Ochiai and Kobayashi, 1973];
thus X is a p 4-bundle over B and X ~ 03A3(4, 3), since the fibres are

embedded linearly.
ii) Let r = 2; then D ~ 039B is a quadric hypersurface of p 6, by [Ochiai and

Kobayashi, 1973].
iü) Let r = 1 ; then the Fujita classification of Del Pezzo manifolds ([Fujita,

1982] (6.3)) implies that D ~ 039B is either
a) a cubic hypersurface of P7,
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b) a complete intersection of type (2,2) of P8,
c) the grassmannian G embedded in P9 via the Plücker embedding.

We can now state the main result of this section:

3.3. THEOREM: Let X E 0394’7. Then, either X is a Mukai 7-fold, X ~ 03A3(4, 3), or
there exists a morphism g : X ~ B over a smooth curve B, whose general fibre is
the grassmannian G, and C9x(l) embeds it into a p9 via the Plücker embedding.

This latter case will be referred to as a G-fibration.

Proof. In view of the previous discussion, it clearly suffices to show that cases
ii) and iii) a), b) cannot occur. To deal with cases iü), take a general point p of
D and a general hyperplane II tangent to X at p. As 8( X) = 1, we know from
[Kleiman, 1986] that II is tangent to X along a line ~0 on which g is constant
by (3.2); On the other hand, 039B = ~D~ cannot be contained in II since

otherwise one would have D c II n X: this would imply that D is a compo-
nent of n ’ X ; then, since II is general, D would coincide with 03A0 · X and

hence D would be singular at p, contradiction. So A OE II, and, by restricting
to A, we conclude that II ~ 039B is a hyperplane of A tangent to D along ~0; but
this excludes a) and b) since in those cases any tangent hyperplane is tangent
at a single point. As far as case ii) is concerned, the proof runs as above if we
know that 039B ~ II; this however cannot be proven with the argument used

before, since now codim D = 2. So we have only to consider the following
case.

3.4. ASSUMPTION: Every hyperplane tangent to X at a general point x E X
contains the linear span (D) of the fibre D of g through x.
We show that this leads to a contradiction. To do this consider the

correspondence

The second projection gives S the structure of a PN-7-bundle over the grass
mannian G(6, N) of 6-planes of PN. Of course we have dim~Db~ = 6 for
every b E B. So there is an inj ection j : B - G (6, N ), defined by j(b) = ~Db~.
Let ofB be the pull-back of Y via j and identify



336

with its image projected isomorphically into PN* X B,

Now let II be a hyperplane tangent to X at a general point x. As before, since
03B4(X) = 1, II is tangent to X along a line ~0 c X which, by (3.2), is contained
in a single fibre Db of g; moreover, 03A0 ~ ~Db~, by (3.4). Then letting
~(03A0) = (03A0, b ) one defines a rational map ~: X* ~ Y*B, which is birational
between X* and ~(X*). Hence

But this implies 03B4(X)  4, contradiction. ¶

Manifolds as in (3.3) really occur in 0394’7. To prove it we recall that a complete
classification of Mukai manifolds is not yet known; anyway, for k = 7, in
addition to the quartic hypersurfaces and to the complete intersections of type
(2, 3) and (2, 2, 2), which however are not in A 7, this class contains the section
S3 of the spinor variety S ~ P15 by three general hyperplanes. Actually, since
Ks = OS( - 8), we have, by adjunction, KS3 = OS3( - 5). Moreover 03B4(S3) = 1, by
(2.1). As to the class 03A3(4, 3) there is nothing to say in view of (2.2).
We conclude the paper by showing that all G-fibrations over a smooth

curve are in 0394’7. Let g : X ~ B be such a fibration. First of all notice that

KX ~ OX(5) is spanned by global sections. This follows from the fact that the
rational map V associated with |KX ~ (9x (5) | factors through g and dim B =
1; indeed, by adjunction, 03A6 is constant along the fibres of g.

Now, in view of (2.4), (2.5) it is enough to show that 03B4(X)  1. This follows
immediately from the following general proposition, which we owe to the
referee.

3.5. PROPOSITION: Let Xc pN be a projective k-fold such that through its

general point there passes a submanifold Y of dimension h and defect 03B8. Then

03B4(X)  03B8 - k + h (i.e. dim X + 03B4(X)  dim Y+ &#x26;(Y».

Proof. Let II be a hyperplane tangent to X at a general point x E X. Then,
since the defect is the dimension of the contact locus, 03A0 is tangent to Y along
a subvariety Z containing x and of dimension 0. Let f = 0 be a local equation
for II at x. In a neighbourhood U of x in X, the differential df annihilates the
tangent spaces TX,x and TY,z for every z E Z n U. Hence df defines on Z a
’co-section’ of the rank-( k - h ) bundle (TX/TY)Z, vanishing at x. But then a
local computation shows that on (TX/TY)Z~ U this co-section vanishes on the
zero locus of k - h functions and therefore 03A0 is tangent to X along a
subvariety of Z of codimension less than or equal to k - h. This means that
03B4(X)  03B8 - (k-h). ¶
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