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Let K be a finite algebraic extension of Q, R the ring of integers of K and
{v} the set of finite places of K. For v € {v} let | |, be the non-archimedian
absolute value on K and K, the completion of K with respect to this absolute
value. Let R, be the ring of integers of K, P, the unique maximal ideal of R,
and k,=R,/P,. Then k, is a finite field and we let g,=card k,. Let
f(x)=f(xq,...,x,) € K[x4,...,x,] be a homogeneous polynomial of degree
m. Then for any v we can consider

z(0) = [ N F() 12141,

where s € C, Re(s) >0 and 7= gq,°. This has been shown to be a rational
function of ¢ by Igusa in [Igusa, 1977]. Writing Z(¢) = P(t)/Q(t) we define
deg Z(t)=deg P(t) — deg Q(¢). Igusa has conjectured in [Igusa, 1984], p
1027, and [Igusa, 1986], that for almost all v, i.e. except for a finite number of
v, one has deg Z(¢) = —m. In this paper Igusa gives many examples where f
satisfies the additional property that it is the single invariant polynomial for a
connected irreducible simple linear algebraic group.

In this paper we show this conjecture is true if f is non-degenerate with
respect to its Newton Polyhedron. This establishes the conjecture for “generic”
homogeneous polynomials in a sense to be described below.

§1. The Newton polyhedron of f and its associated toroidal modification

We first recall some of the terminology and basic properties of the Newton
polyhedron of an arbitrary polynomial. Other references for this include
[Danilov, 1978; Kouchnirenko, 1976; Lichtin, 1981 Varchenko, 1977].

Let f€K[x,,...,x,]. We write f= Z a,x where I=(iy,...,i,) and

x'=xi .- xin Let Supp(f)={I€N" |a,#= 0}. Let S(f) denote the convex
hull of U ,ESupp(f)(I + R"%). Let I' _(f) be the union of all faces of S(f). Let
I'(f) be the union of compact faces only. I',(f) is called the Newton
polyhedron of f and I'(f) is called the Newton diagram. We will denote a
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fixed Newton polyhedron and diagram by I', and T respectively. Given a

Newton polyhedron I', and its associated Newton diagram I' we define

Qr ={g€K[x},..., x ]|P+(g) I,}.1f geQr, and v is a face of T, we

define g, to be Z b xlif g= Y byx'+ Y b,x Then we define non-de-
Iey Iey Iey

generacy as in [Kouchnirenko, 1976].

Definition: f is non-degenerate with respect to its Newton polyhedron if for
any face y of T',(f) the functions (x,-3f/dx;), have no common zero in
(K —{0})", where K denotes the algebraic closure of K.

Fix m and n. Identify homogeneous polynomials of degree m in n

variables with P2, where N=(m+"_1 —1. For T', a fixed Newton

m
polyhedron X ={f|T,(f)=T,} is a Zariski subset of Py. Let

Yy, = { f| f is non-degenerate with respect to I',, }.

Then in a completely analogous manner to the proof of Theorem 6.1 in
[Kouchnirenko, 1976] we have the following result which shows the non-de-
generacy condition is generic.

PROPOSITION 1: Y is a Zariski open, dense subset of Xr .

Let K be a finite algebraic extension of Q, {v} the finite places of X, and K,
R,, P, and k, as defined in the introduction. Let U, = R, — P, be the units of
R,. We first recall some definitions concerning the reduction of varieties
modulo P,.

For g € R[x,,...,x,], v a finite place of K, let g, denote the polynomial in
k,[xy,...,x,] obtained by reducing the coefficients of g modulo P,. We shall
abbreviate this to g when v is understood and use the same notation when g
is a constant in R Let V' be an algebraic set defined over K, ie.,, V= {x €
K" |f,(x) =0, 1 <i<r}, where f;(x) € K[x,,...,x,].

Let I(V) be the ideal of V,ie, (V)= {f€ K[xl,...,x_g] [fx)=0 vxe V}.
Then we define the reduction of ¥ modulo P,, denoted ¥, by

V,={xekl|f,(x)=0 VfeI(V)OR,[x,,...,x,]}.

If f€R[x,,...,x,] then for any finite place v of K we can consider the
non-degeneracy of f,. We have:

PROPOSITION 2: Let f€ R[x,,...,x,] be non-degenerate with respect to its
Newton polyhedron. Then for almost all v

a) T+ (f)=T,(f)

b) f, is non-degenerate with respect to its Newton polyhedron.

Proof. Let S = {v]all coefficients of f are in U,}. Then for ve S, T',(f,)=
I',.(f) and a) follows since almost all v are in S.
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Let 7 be a face of I'(f), and write f,={, ,,..., f,, where each f , is
absolutely irreducible. Let V., be the variety defined by f,,=0, Y, the
hyperplane defined by x; =0, and Y =U/_,Y,. The condition that f is non-de-
generate is equivalent to the condition that for any face 7 of I'(f), and V,, as
above, the singular points of each V, ; are contained in Y and for any i, j,i #j
we have V, ., NV, ,CY.

Let L be a finite extension of K such that the coefficients of f, ; for any 7,
i are in L. To each place of v of K let v’ be any place of L dividing v. As a
straightforward consequence of Hilbert s Nullstellensatz, for any 7, i, j we
have (V, ), N(V, ;) C Y, for all v, v’. As a consequence of Proposition 30
in [Smmura 1955] (V..), is absolutely 1rreduc1ble and its singularities are
contained in Y, for almost all places v” of L. Let S be the set of vE S
satisfying the above property for all 7, i and all v’ | v. Then almost every place
of K isin S and f, is non-degenerate for all v € S. Q.E.D.

We next describe a toroidal modification of K, that we shall use to prove the
conjecture for homogeneous f that are non-degenerate with respect to their
Newton polyhedron. The modification we use is not the one utilized in
[Lichtin, 1981] or [Lichtin and Meuser, 1985], which gives a nonsingular
variety Y, and a morphism %:Y,— K such that foh=0 is a divisor with
normal crossings, but a weaker modification that has also been used by Denef
in [Denef, not yet published].

Let (R™ )* =R"—0. Let d',...,a’' be vectors in R" and o= {a;a'
+ -+ +aa'|e;€R,,1<i<!}. o is called a closed cone which we denote
by <a1,..., a'y. o={eja'+ --- +a,a'|a;>0,1<i<!} is called an open
cone. The dimension of any cone is the dimension of the smallest vector
subspace of R” containing it. o, or o) is called a simplicial cone if a',..., a’
are linearly independent over R. If ¢ is a closed cone spanned by integral
vectors, then we have the following well known result on 6 N Z} which we
shall later use.

LEMMA 1. Let 0 = (al, .., a ) be a closed cone in R"., where each a’, 1 <i<|,

is an integral vector. There are a finite number of integral vectors w',. .., w" such

that

r 1
oNZr= ]_[{w“l— Y ajaj|ajEZ+}.

i=1 j=1

Proof: Tt is well known that ¢ has a partition into closed simplicial cones

where each such cone is spanned by a subset of {a,..., a’}. Thus we can

assume o is simplicial. We form the parallelotope P, = { Y ajaf 0<a;< 1}.
\Jj=1

Let w',..., w" be the points in P, Z". Then these w' satisfy the statement

of the lemma. Q.ED.
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Associated to any Newton polyhedron I', we have a partition of (R%)* into
open cones. For a € (R",)* we let m(a) = 1nf {a-y}and ,={yeTl, |y-

a= m(a)} ’T is called the meet locus of a. We define an equivalence relation

~by a' ~a? if 7, =r1.. This equivalence relation satisfies the following

properties:

1) If ae(R)*, 1,isafaceof T,.

ii) Let 7 be a face of T',. Let Fi,.. F be the facets of I', containing 7. Let
a' denote a vector dual to F, 1 < r. Then

(ae ()" =7) = {ma' + -+ a0l >0},

We denote the cone in the above formula by §,. Then its closure o, satisfies
o,={a€(R)*|7,21}. A vector a=(a,,...,a,)in Z} — 0 is called primi-
tive if the greatest common divisor of the a;, 1 <j < n, is one. For each facet
of T', there is a unique primitive integral vector dual to that facet. The above
properties imply each equivalence class under ~ is an open cone spanned by
a subset of primitive integral vectors dual to facets.

If f is a homogeneous polynomial of degree m in n variables note that all
I € Supp(f) lie on the hyperplane I - x =m, where I =(1,...,1). Let F be a
face of T'(f). It is straightforward to see that if P is an exposed point of F
then P = I for some I € Supp(f). Hence I'(f) is a single face with supporting
hyperplane 1-x=m. Let E(T',) be the exposed points of I',. Every P €
E(T,) liesin T hence I € oP. We can partition o » into simplicial cones of the
form {aja' + -+ +a,a" |, €R, a;> 0} where we may assume a' = I, and
a?,...,a" are primitive integral vectors dual to noncompact facets of T,
containing P.

Let o=(a',...,a") be the closure of one of the maximum dimension
cones corresponding to P € E(T',). Write a’ = (a;;,..., a,;,) and let M = [a;;]
Then M determines a morphism 6: K — K, defined by 6(y,,..., y,)=
(x4,...,x,) where

Xp=p o Y (1)

Let dx be the differential dx;...dx, and 8*(dx) its pullback under §. Then
for f€ R[x,,..., x,], I',, and @ as above we have the following result.

PROPOSITION 3: .
a) (fo0)(y)=yy" I—[y,«’"‘“')fa(y) where f() € R[ Yy, ..., Yul, f5(0) #O.

b) 6*(dx) = (det M)y~ 11_[y"" 'dy where |a'| = Ea
Jj=1
¢) Let S={v|T.(f)= +( f ), f, non-degenerate with respect of T,, and
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(det M), +0}. Then for v € S, (f;),(0) # 0, and if b € k] satisfies ( f5),(b)
=0 then

(fo) (b)?ﬁo

YT

for some 2 <j<n

Proof: a) and b) are just specializations of Varchenko’s result, Lemma 10.2 in
[Varchenko, 1977]. We write f=a pxP + ) with P as in the discussion above

A A I
and ,f‘I = x{' - -+ x/». Then under the map # the monomial x’ is transformed
to Y. y/“. For a) we denote that /€ T'(f) implies I-a'=m and I-a'>

m(clz")1 for 2 <i < n. Furthermore P-a’'=m(a’) for all i, and P is the only
point of T'(f) having this property, so this gives the above factorization of
(f°0)(y). The formula 6*(dx) is a straightforward consequence of (1).

For c), we first observe that for v € S we have (a,), # 0, hence ( f),(0) # 0.
The proof of the rest of c) is identical to Lichtin’s proof of Proposition 2.3 in
[Lichtin, 1981]. Q.E.D.

Let K, be the completion of K corresponding to any finite place v of K.
Using the same notation as in the introduction, for every such place we fix
7, € P,— P?. Let U,=R,— P,. For x € K* we can write x =7 *u where

ue U,. Let R =R, X --- XR, (n times) with a similar meaning for U™,
P
(),

Let 6 = (a’,..., a') be the closure of a cone in the partition corresponding

to I',. To each such cone we associate a maximal dimension closed cone &
containing ¢, and note that it is not unique. For any place v, associated to o
we consider the subset of R{" defined by

X, = {xERg")Kord X15-..,0rd x,) Eo}.

Let ¥, =R{’ x U{"~" and consider the morphism 6 |y : Y, — R{" where 0 is

the morphism associrzllted to 6 defined by (1). We observe that
(ord xy,...,0rd x,)= Y, (ord y,)a’, hence 6(Y,) C X,. The next Lemma gives

i=1
the properties of |, and the decomposition of X, that were established by
Denef, Lemma 3 in [Denef, not yet published]. For y = (v,,...,v,) € K,, and
T any subset of K, denote by yT the set {(v;xy,..., ¥,X,) |(X1,..., x,) ET}.

LEMMA 2. a) The map 0|y, : Y, = 0(Y,) is locally bianalytic and each fiber has

cardinality k4(v) = card ker 6 | ym- b) If w'= (W,l, W), 1<i<r, are the
vectors in 6 NZ} given by Lemma 1, let ©" denote (w"",...,w""). Let
Uy, ..., Uy, be the coset representatives for U™ /8(U™). Then
X,= 1] uiﬂwj(ﬂ(Ya)).
1<i<s(v)

1gjsr
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§2. The degree of Z(t)

Let v be a finite place of K. Using the same notation as in the preceding
sections, we define an absolute value on K* by |x|,=¢,°¢* Welet |dx]|,
be the Haar measure on K, normalized so that the measure of R, is one. Then
the measure of a + P, forany a € K, is g, *. If a€ R{”, a + P{™ will denote
a coset modulo P, ie. (a;+P,)X --- X(a,+ P,) where a=(ay...,a,).
We shall also use |dx |, defined above for n =1, to be the measure [ [ |dx;],

i=1
on R{". When v is fixed we denote =,, |dx|, and g, by 7, |dx| and ¢

respectively. Letting =g ° we have the following basic formulas for N,
neZ, N, n>0.

- qn 1_q—1
AR 1'd"’=—"((f—zN )
(1-g )" @
/|x|N3+n-—l|dx|= . = .
P q"—1t
For f€K[x,,...,x,], and any finite place v, we can consider the zeta

function Z(t) associated to f as defined in the introduction. We then have the
following result.

THEOREM. Let f(x)=f(xy,...,X,) € K[xy,...,Xx,] be a homogeneous poly-
nomial that is non-degenerate with respect to its Newton polyhedron. Then for
almost every place v of K, deg Z(t) = —deg f(x).

Proof: Let deg f(x)=m, and T, be the Newton polyhedron of f. As
explained in the previous section, associated to this Newton polyhedron we
have a partition of R”, into open cones. For P an exposed point of I'_, let 6,
be the associated maximal dimension open cone. As previously observed we
can partition &, into simplicial cones of the form {a;a’ + - -+ +a,a"|a; > 0}
where a' =1, if &, is not already in this form. The a’, 2 <i < n, are dual to
noncompact facets of I',. Repeating this process for all points of E(I'.) let
015 .., 0k denote the resulting simpli[?ial cones, and let o,,..., 0, denote the

corresponding closed cones. R € |J o; and if {i},...,i,} € {1,... K} then

i=1
k

() o, is a closed cone, which is a face of each o; , hence is a simplicial cone.
J
j=1
Furthermore the closed cone {al|a > O} is contained in every such cone.
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Consider

L:Joi_ U (oilmo,2)+...+(_1)j—1

1<i<i, <K

x U (oilﬁ~'-ﬂo,-])+~-~+(-—1)K_l(olﬂ---ﬂa,<).

(3)

Since every (k, ..., k,) € Z{™ occurs exactly once in (3) we can write Z(?) as
the sum and difference of integrals of the form

J 176121, 4)

where o = (1, a%,..., a') for some /, 1 < /< n, where the /=1 case is o = (I).

For each maximal dimension cone o, = (I, a%...,a") write a'=
(an,...,a;), let M =[a;], and let 6, be the morphism defined by (1) in §1.
Let S be the set of places satisfying the conditions in Proposition 3 c¢) for M,,
1<k<K.

We now fix v€ S, and ¢ =(1, a?,..., a"). Choose a maximal dimension
cone o, 1<k<K, such that o, contains 6. We denote this choice by
6={(1, a', a'*',..., a") and let M, 6 be the matrix and morphism associated
to 6. Referring to the decomposition of X, in Lemma 2 b) we can write (4) as
a sum of integrals of the form

[ ()17 1dx] (5)
un™0(Y,)
for some u=1u,, 1 <i<s(v), and w=w’, 1 <j<r, where Y, =R\ x U~

Write f= Y a,x’, then f(um"x)= Y a,u’n” 'x!. We have w-I>m(w)
1

I
for all I€T,, so we let

fuw(x) = Lagu'z™ 17mCx, (6)
I
Then the integral in (5) equals
g " [ £ (x) 17 1dx ).
0(Y,)

By applying a) and b) in Proposition 3, in addition to the above observations,
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we have that the integral in the above is

1 s+n— = ! = K
[ dn - [ Ty ™11 g, (1) 1°1dy |
"a(v) R, Y, i=2

where ¥/ =RY"Dx U™ and g, ,(¥) ER,[),,..., y,]- Applying (2) to the
first integral we have that the contribution to Z(¢) from (5) is

g"(1-q ")(g"— ") (7
times
—|w]
4 mw l—[ |ma )s+la'| -1 d -dy. | 8
KG(U) / lyl |gu w(y)l I Y2 ynl ( )

By our observations above the factor (7) occurs for any integral of the form
(5), so we can write

_g"(l-q7")
z(n) = L5 2()
where Z(¢) is the sum and difference of expressions in the form of (8) for all
p0551b1e o, u, w. We shall show that (8) can be written in the form
P,. w(t)/Q(t) where Q(t) =(q— t)[1(q'“'' —¢™“?) and the product is over
all a' dual to a noncompact facet of T',. We then write Z(¢) = P(t)/Q(t) and

P(t)=X.(signo) X P, ,,.(1) ©)

where sign o = +1 is the coefficient of ¢ in the decomposition (3). Let
D=1+XYm(a’)=deg Q(t). We shall show that after possibly excluding an
additional finite set of places in S, that deg P(¢) =D, in which case the
theorem follows.

Now consider gu w( »). Referring back to f, ,(x) as given in (6) we see that

fu L(x)=Y au'x", where 7, is a face of T',. We have that fu ,» 1s nonde-
IeT,
generate with respect to its Newton polyhedron since if 7’ is a face of 7, and

b € (k,-{0})" is a solution to

x-ﬂ’lﬂ =0 1<j<n
7 Ox; -

then ub would be a solution to

(xja—ié),=0 1<j<n.
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But 7’ is a face of T',, hence this contradicts the non-degeneracy of f. Thus
by applying Proposition 3 we have g, ,,(b) =0 implies

ag
(y B ) () %0 (10)
for some j,2<j<n
First consider the case where o = (1, a%,...,d » with /> 2. We shall show

that deg P, , .(¢) < D. Then writing the coefficient ¢
(xg(v)) "¢, ., we show ¢" ¢, , ,=0mod q.

If w#0,since weonZ{™ by permutmg the vectors {a ,...,a') we may
suppose w=a;1 + a,a’ + - -+ +a,a* where 0<a; <1, 2< k 0<a <1

and k <I. When w=0 set k=1. Then we write the 1ntegra1 in (8) as

D .
ouwOf £7 10 Py (1) as

m(a)s+|a| -1
v/.R(I k)xU(n ')'/;2(" 1)1—[ |y‘ |gu w(y)l |dy| (11)

We have

gu w(y) = Za ul weI— ’”(W)yl a?—m(a? ) B an~a"—m(a")'

Observing that I €7, implies I-a'=m(a’), 2<i<k, we have g, ,€
k,[Yk+1s---» Y,). Thus in this case (10) spec1ahzes to g,,(b)=0, bek!
implies (y; 9g,,,/9y;)(b) # 0 for some j, k <j <n; which implies the system
of congruences

8.»(y)=0mod P,

080w . 12
(yJ dy, )(y)EOmode, k<j<n (12)

has no solution in R{".
For any subset J C {k+1,...,1} consider cosets (cy,1,...,C,)+ P50
of RU™0 x U*=" satisfying

=0mod P, i€J 13
¢;#0mod P, i&J (13)

and call these cosets of type J. We distinguish the cosets of type J further by
saying a coset is of type J; if it satisfies g, , #0 mod P, in addition to the
above conditions and say it is of type J, if it satisfies g, , =0 mod P, in

addition to the above conditions. We then write (11) as a sum over varying J
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of integrals of type

!
,/’Cj;(“n |m@)s*lali=1 g (3)%]dy]| (14)

where C, is a coset of type J.
If C, is a coset of type J;, by applying the formulas (2), we have that the
integral in (14) is of the form P,(¢)/Q;(t), where deg P,(t)= Y. m(a’) and
ieJ
k
deg Q; = Y m(a’)+ Y. m(a’). If G, is of type J, by (12) we can choose

i=2 =¥
Jk<j< n’, such that 3}1 08, ,/9y;#0 mod P,. We then make the change of
variables j,=g, ., 7=y, i#j. Then the integral (14) is of tllle form

Py(t)/Q,(t), where deg P,(1)=1+ ) m(a') and deg Q,(¢1)=1+ ) m(a’)
ieJ i=2
+ Y m(a’). In either case we have P/(z)/Q,(t)=R;(t)/Q(t) where
ieJ

k
deg R,(t)=D— Y m(a'). Thus (11) is the sum of rational functions with

i=2
this property, hence referring to (8) we see that for w # 0

k

deg P, , (1) < D+m(w)—;2m(a’).

Moreover the coefficient of the highest degree term in P, , (1) is

1 w 171 NI AE=1 g —
£y (0) g IEIIE (—1) Y (1 ) gk
J

X [N,lq‘1 + N, (1- q"l)] ,

where N, is the number of cosets of type J;.
If w=0, we have deg P, , (1)< D.If w+# 0 in order to show this we must

show m(w) < Z m(a'). We have w; = a; + Z a;a,; where @, <1, 1<i<k,
i= %{ i=2 %

and w; € Z implies w;< )_ a;;. Now let P€ E(T,)
i=2

be such that & 1s obtamed from the partition of &, into 51mp11c1a1 cones. Write

P=(P,...,P,). We have m(w)=P-w and m(a’)=P-a’, 2<i<k. Hence

hence w, <1+ Ea,j,

n k k

m(w)< Y Pj( Za,-j) =) P-ad.

j=1 " \i= i=2
k

Thus m(w) < Y. m(a'), which implies deg P, ,, ,(¢) <D
i=2
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Now consider ¢, ,, . If deg P, , ,(¢) <D thenc, ,,=0.1f deg P, , ,(¢)=
D then by observing that N, + N, =(g—1)""*"""! we have

0" = kg MIEINE (- (g - )T
J

x[(g=1)" ' =N, - N,(¢-1)],

k
where we let N;=N,. If |w|< ) |a'| then ¢"7'¢, ,,, is clearly congruent
i=2

to zero mod ¢, butif |w|= ) |a’| then
i=2

q" ', =12 (-1) ""Imod ¢g=0mod q. (15)
7

This proves our assertion about the case o = (1, a%,...,a » with /> 2.

The only remaining cases to consider are those where u varies and o = (I).
In this case we show that (8) can be written as P, ,(¢)/Q(t) where deg Py ()
< D. Denoting the coefficient of ¢ by c¢;, and defining ¢, as in the
previous case we show ¢"~'¢, , is an integer and ¢" " '¢, , # 0 mod q.

In this case the integral in (8) is

f lg.(»)1°1dy].
Uu(n 1)

Consider the cosets mod P{"~ of U"~P. Letting N be the number of cosets
satisfying g, =0 mod P, and applying entirely similar reasoning as before we
have that the above integral equals

_1\(n=2 n—1 o, N1-g )t
(71 )[((q—l) - N)g M PR

Then examination of the above shows deg P, () < D and

", =(-1)"[(¢-1)"" -N-N(¢g-1)].

Hence ¢"~ ¢, , is an integer and

+1 mod gq. (16)

Q
xS

'n

[
I

Furthermore we note that the value on the right of the congruence is
independent of u.
Let ¢, denote the coefficient of ¢ in P(t), which we wish to show is
nonzero for almost all v. We have ¢, = ) (sign 6) ) ¢, - Recalling that the
o

u,w
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morphisms associated to the maximal dimension cones were denoted @, ..., 0k
K

we define k(v) = [ ] Kg,(0). If 0 is a cone, and the morphism associated to the
i=1
K

maximal dimension cone ¢ is ;, define «, = [1x4,(v). We assume 6, is the
=y
K

morphism associated to (1), and let k,(v) = [ ] k4 (v). Then
i=2

0, k(v)e,= L (sign o) X g7 o (0) &0t 2g7 K1(0) 8-
o#(I) u,w u

Let s5,(v) denote the number of coset representatives in U," /8,(U,"). Then the
congruences in (15) and (16) give

g, " 'k(v) e, = +x(v)s1(v) mod g,.

Now
K K
K (0) < Qcard Wit <n®7! I;I2 | M, |

where | M; | is the determinant of the matrix M; associated to 6, and W, |,
is the | M, |-th roots of unity in U,. We also have

si(v)<n- [UL UulMll]

where [U, : U/*!] = card W, |, | for almost all v. Hence for almost all v

K
ki (0)s1(0) <"1

which implies «,(v)s;(v) #0 mod ¢, for almost all v. Therefore c,+# 0 for
almost all v, which concludes the proof. Q.E.D.
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