Diane Meuser

On the degree of a local zeta function

<http://www.numdam.org/item?id=CM_1987__62_1_17_0>
On the degree of a local zeta function

DIANE MEUSER

Department of Mathematics, Harvard University, Cambridge, MA 02138, USA; present address: Dept. of Mathematics, Boston University, 111 Cunningham Street, Boston, MA 02215, USA

Received 27 November 1985; accepted in revised form 1 June 1986

Let K be a finite algebraic extension of Q, R the ring of integers of K and $\{v\}$ the set of finite places of K. For $v \in \{v\}$ let $|\ |_v$ be the non-archimedian absolute value on K and K_v the completion of K with respect to this absolute value. Let R_v be the ring of integers of K_v, P_v the unique maximal ideal of R_v and $k_v = R_v/P_v$. Then k_v is a finite field and we let $q_v = \text{card } k_v$. Let $f(x) = f(x_1, \ldots, x_n) \in K[x_1, \ldots, x_n]$ be a homogeneous polynomial of degree m. Then for any v we can consider

$$Z(t) = \int_{R_v^{(s)}} |f(x)|_v^s \, dx \big|_v$$

where $s \in C$, $\Re(s) > 0$ and $t = q_v^{-s}$. This has been shown to be a rational function of t by Igusa in [Igusa, 1977]. Writing $Z(t) = P(t)/Q(t)$ we define $\deg Z(t) = \deg P(t) - \deg Q(t)$. Igusa has conjectured in [Igusa, 1984], p. 1027, and [Igusa, 1986], that for almost all v, i.e. except for a finite number of v, one has $\deg Z(t) = -m$. In this paper Igusa gives many examples where f satisfies the additional property that it is the single invariant polynomial for a connected irreducible simple linear algebraic group.

In this paper we show this conjecture is true if f is non-degenerate with respect to its Newton Polyhedron. This establishes the conjecture for "generic" homogeneous polynomials in a sense to be described below.

§1. The Newton polyhedron of f and its associated toroidal modification

We first recall some of the terminology and basic properties of the Newton polyhedron of an arbitrary polynomial. Other references for this include [Danilov, 1978; Kouchnirenko, 1976; Lichtin, 1981; Varchenko, 1977].

Let $f \in K[x_1, \ldots, x_n]$. We write $f = \sum a_I x^I$, where $I = (i_1, \ldots, i_n)$ and $x^I = x_1^{i_1} \cdots x_n^{i_n}$. Let $\text{Supp}(f) = \{I \in N^n \mid a_I \neq 0\}$. Let $S(f)$ denote the convex hull of $\bigcup_{I \in \text{Supp}(f)} (I + R^n_+)$. Let $\Gamma_+(f)$ be the union of all faces of $S(f)$. Let $\Gamma(f)$ be the union of compact faces only. $\Gamma_+(f)$ is called the Newton polyhedron of f and $\Gamma(f)$ is called the Newton diagram. We will denote a
fixed Newton polyhedron and diagram by Γ_+ and Γ respectively. Given a Newton polyhedron Γ_+ and its associated Newton diagram Γ we define $\Omega_{\Gamma_+} = \{ g \in K[x_1, \ldots, x_n] | \Gamma_+(g) = \Gamma_+ \}$. If $g \in \Omega_{\Gamma_+}$ and γ is a face of Γ, we define g_γ to be $\sum_{f \in \gamma} b_f x^f$ if $g = \sum_{f \in \gamma} b_f x^f$. Then we define non-degeneracy as in [Kouchnirenko, 1976].

Definition: f is non-degenerate with respect to its Newton polyhedron if for any face γ of $\Gamma_+(f)$ the functions $(x_i \cdot \partial f / \partial x_i)$, have no common zero in $(\overline{K} - \{0\})^n$, where \overline{K} denotes the algebraic closure of K.

Fix m and n. Identify homogeneous polynomials of degree m in n variables with P_K^N, where $N = \binom{m+n-1}{m} - 1$. For Γ_+, a fixed Newton polyhedron $X_{\Gamma_+} = \{ f | \Gamma_+(f) = \Gamma_+ \}$ is a Zariski subset of P_K^N. Let $Y_{\Gamma_+} = \{ f \ | f \text{ is non-degenerate with respect to } \Gamma_+ \}$.

Then in a completely analogous manner to the proof of Theorem 6.1 in [Kouchnirenko, 1976] we have the following result which shows the non-degeneracy condition is generic.

Proposition 1: Y_{Γ_+} is a Zariski open, dense subset of X_{Γ_+}.

Let K be a finite algebraic extension of Q, $\{ v \}$ the finite places of K, and K_v, R_v, P_v and k_v as defined in the introduction. Let $U_v = R_v - P_v$ be the units of R_v. We first recall some definitions concerning the reduction of varieties modulo P_v.

For $g \in R[x_1, \ldots, x_n]$, v a finite place of K, let \overline{g}_v denote the polynomial in $k_v[x_1, \ldots, x_n]$ obtained by reducing the coefficients of g modulo P_v. We shall abbreviate this to \overline{g} when v is understood and use the same notation when g is a constant in R. Let V be an algebraic set defined over K, i.e., $V = \{ x \in \overline{K}^n | f_i(x) = 0, 1 \leq i \leq r \}$, where $f_i(x) \in K[x_1, \ldots, x_n]$.

Let $I(V)$ be the ideal of V, i.e., $I(V) = \{ f \in \overline{K}[x_1, \ldots, x_n] | f(x) = 0 \ \forall x \in V \}$. Then we define the reduction of V modulo P_v, denoted V_v by

$$V_v = \{ x \in \overline{K}_v^n | \overline{f}_v(x) = 0 \ \forall f \in I(V) \cap R_v[x_1, \ldots, x_n] \}.$$

If $f \in R[x_1, \ldots, x_n]$ then for any finite place v of K we can consider the non-degeneracy of \overline{f}_v. We have:

Proposition 2: Let $f \in R[x_1, \ldots, x_n]$ be non-degenerate with respect to its Newton polyhedron. Then for almost all v

a) $\Gamma_+(\overline{f}_v) = \Gamma_+(f)$

b) \overline{f}_v is non-degenerate with respect to its Newton polyhedron.

Proof. Let $S = \{ v | \text{all coefficients of } f \text{ are in } U_v \}$. Then for $v \in S$, $\Gamma_+(\overline{f}_v) = \Gamma_+(f)$ and a) follows since almost all v are in S.

Let \(\tau \) be a face of \(\Gamma(f) \), and write \(f = f_{\tau,1}, \ldots, f_{\tau,t} \) where each \(f_{\tau,i} \) is absolutely irreducible. Let \(V_{\tau,i} \) be the variety defined by \(f_{\tau,i} = 0 \), \(Y \) the hyperplane defined by \(x_i = 0 \), and \(Y = \bigcup_{i=1}^{t} Y_i \). The condition that \(f \) is non-degenerate is equivalent to the condition that for any face \(\tau \) of \(\Gamma(f) \), and \(V_{\tau,i} \) as above, the singular points of each \(V_{\tau,i} \) are contained in \(Y \) and for any \(i, j, i \neq j \) we have \(V_{\tau,i} \cap V_{\tau,j} \subset Y \).

Let \(L \) be a finite extension of \(K \) such that the coefficients of \(f_{\tau,i} \) for any \(\tau, i \) are in \(L \). To each place of \(v \) of \(K \) let \(v' \) be any place of \(L \) dividing \(v \). As a straightforward consequence of Hilbert's Nullstellensatz, for any \(\tau, i, j \) we have \((V_{\tau,i})_{v'} \supseteq (V_{\tau,j})_{v'} \supseteq Y \), for all \(v, v' \). As a consequence of Proposition 30 in [Shimura, 1955], \((V_{\tau,i})_{v'} \) is absolutely irreducible and its singularities are contained in \(Y_{v'} \) for almost all places \(v' \) of \(L \). Let \(\tilde{S} \) be the set of \(v \in S \) satisfying the above property for all \(\tau, i \) and all \(v' | v \). Then almost every place of \(K \) is in \(\tilde{S} \) and \(f_v \) is non-degenerate for all \(v \in \tilde{S} \). Q.E.D.

We next describe a toroidal modification of \(K^n \) that we shall use to prove the conjecture for homogeneous \(f \) that are non-degenerate with respect to their Newton polyhedron. The modification we use is not the one utilized in [Lichtin, 1981] or [Lichtin and Meuser, 1985], which gives a nonsingular variety \(Y \), and a morphism \(h: \tilde{Y} \rightarrow K^n \) such that \(f \circ h = 0 \) is a divisor with normal crossings, but a weaker modification that has also been used by Denef in [Denef, not yet published].

Let \((R^n)\ast = R^n - 0 \). Let \(a^1, \ldots, a^l \) be vectors in \(R^n \) and \(\sigma = \{ \alpha_i a^1 + \cdots + \alpha_i a^l | \alpha_i \in R, 1 \leq i \leq l \} \). \(\sigma \) is called a closed cone which we denote by \(\langle a^1, \ldots, a^l \rangle \). \(\sigma' = \{ \alpha_i a^1 + \cdots + \alpha_i a^l | \alpha_i > 0, 1 \leq i \leq l \} \) is called an open cone. The dimension of any cone is the dimension of the smallest vector subspace of \(R^n \) containing it. \(\sigma \) or \(\sigma' \) is called a simplicial cone if \(a^1, \ldots, a^l \) are linearly independent over \(R \). If \(\sigma \) is a closed cone spanned by integral vectors, then we have the following well-known result on \(\sigma \cap \mathbb{Z}_+^n \) which we shall later use.

Lemma 1. Let \(\sigma = \langle a^1, \ldots, a^l \rangle \) be a closed cone in \(R^n \), where each \(a^i, 1 \leq i \leq l \), is an integral vector. There are a finite number of integral vectors \(w^1, \ldots, w^r \) such that

\[
\sigma \cap \mathbb{Z}_+^n = \bigsqcup_{i=1}^r \left(w^i + \sum_{j=1}^l \alpha_j a^j | \alpha_j \in \mathbb{Z}_+ \right).
\]

Proof: It is well known that \(\sigma \) has a partition into closed simplicial cones where each such cone is spanned by a subset of \(\{ a^1, \ldots, a^l \} \). Thus we can assume \(\sigma \) is simplicial. We form the parallelootope \(P_\sigma = \left\{ \sum_{j=1}^l \alpha_j a^j | 0 \leq \alpha_j < 1 \right\} \).

Let \(w^1, \ldots, w^r \) be the points in \(P_\sigma \cap \mathbb{Z}_+^n \). Then these \(w^i \) satisfy the statement of the lemma. Q.E.D.
Associated to any Newton polyhedron Γ_+ we have a partition of $(\mathbb{R}^n_+)^*$ into open cones. For $a \in (\mathbb{R}^n_+)^*$ we let $m(a) = \inf \{ a \cdot y \}$ and $\tau_a = \{ y \in \Gamma_+ \mid y \cdot a = m(a) \}$. τ_a is called the meet locus of a. We define an equivalence relation \sim by $a^1 \sim a^2$ if $\tau_{a^1} = \tau_{a^2}$. This equivalence relation satisfies the following properties:

i) If $a \in (\mathbb{R}^n_+)^*$, τ_a is a face of Γ_+.

ii) Let τ be a face of Γ_+. Let F_1, \ldots, F_r be the facets of Γ_+ containing τ. Let a^i denote a vector dual to F_i, $1 \leq i \leq r$. Then

$$\{ a \in (\mathbb{R}^n_+)^* \mid \tau_a = \tau \} = \{ \alpha_1 a^1 + \cdots + \alpha_r a^r \mid \alpha_i > 0 \}.$$

We denote the cone in the above formula by σ_τ. Then its closure σ_τ satisfies $\sigma_\tau = \{ a \in (\mathbb{R}^n_+)^* \mid \tau_a \supseteq \tau \}$. A vector $a = (a_1, \ldots, a_n)$ in $\mathbb{Z}^n_+ - \theta$ is called primitive if the greatest common divisor of the a_j, $1 \leq j \leq n$, is one. For each facet of Γ_+ there is a unique primitive integral vector dual to that facet. The above properties imply each equivalence class under \sim is an open cone spanned by a subset of primitive integral vectors dual to facets.

If f is a homogeneous polynomial of degree m in n variables note that all $I \in \text{Supp}(f)$ lie on the hyperplane $I \cdot x = m$, where $I = (1, \ldots, 1)$. Let F be a face of $\Gamma(f)$. It is straightforward to see that if P is an exposed point of F then $P = I$ for some $I \in \text{Supp}(f)$. Hence $\Gamma(f)$ is a single face with supporting hyperplane $I \cdot x = m$. Let $E(\Gamma_+)$ be the exposed points of Γ_+. Every $P \in E(\Gamma_+)$ lies in Γ hence $I \in \sigma P$. We can partition σP into simplicial cones of the form $\{ \alpha_1 a^1 + \cdots + \alpha_n a^n \mid \alpha_i \in \mathbb{R}, \alpha_i > 0 \}$ where we may assume $a^1 = I$, and a^2, \ldots, a^n are primitive integral vectors dual to noncompact facets of Γ_+ containing P.

Let $\sigma = \langle a^1, \ldots, a^n \rangle$ be the closure of one of the maximum dimension cones corresponding to $P \in E(\Gamma_+)$. Write $a^i = (a_{i1}, \ldots, a_{in})$ and let $M = [a_{ij}]$. Then M determines a morphism $\theta: K^n_+ \to K^n_+$ defined by $\theta(y_1, \ldots, y_n) = (x_1, \ldots, x_n)$ where

$$x_j = y_1^{a_{j1}} \cdots y_n^{a_{jn}}. \quad (1)$$

Let dx be the differential $dx_1 \ldots dx_n$ and $\theta^*(dx)$ its pullback under θ. Then for $f \in R[x_1, \ldots, x_n]$, Γ_+, and θ as above we have the following result.

Proposition 3:

a) $(f \circ \theta)(y) = y_1^m \prod_{i=2}^n y_i^{m(a^i)} f_\theta(y)$ where $f_\theta(y) \in R[y_2, \ldots, y_n]$, $f_\theta(\theta) \neq 0$.

b) $\theta^*(dx) = (\det M) y_1^{m-1} \prod_{i=2}^n y_i^{a^i} \text{d}y$ where $|a^i| = \sum_{j=1}^n a_{ij}$.

c) Let $S = \{ v \mid \Gamma_+(\tilde{f}_v) = \Gamma_+(f) \text{, } \tilde{f}_v \text{ non-degenerate with respect of } \Gamma_+, \text{ and }$
Proof. a) and b) are just specializations of Varchenko's result, Lemma 10.2 in [Varchenko, 1977]. We write $f = a_p x^p + \sum_I P$ with P as in the discussion above and $x_1^i = x_1^{i_1} \cdots x_n^{i_n}$. Then under the map θ the monomial x_1^i is transformed to $\sum y_1^i - a'$. For a) we denote that $I \in \Gamma(f)$ implies $I \cdot a_1 = m$ and $I \cdot a_i \geq m(a_i)$ for $2 \leq i \leq n$. Furthermore $P \cdot a_i = m(a_i)$ for all i, and P is the only point of $\Gamma(f)$ having this property, so this gives the above factorization of $(f \circ \theta)(y)$. The formula $\theta^*(dx)$ is a straightforward consequence of (1).

For c), we first observe that for $v \in S$ we have $(\tilde{a}_p)_v \neq 0$, hence $(\tilde{f}_\theta)_v(0) \neq 0$. The proof of the rest of c) is identical to Lichtin's proof of Proposition 2.3 in [Lichtin, 1981]. Q.E.D.

Let K_v be the completion of K corresponding to any finite place v of K. Using the same notation as in the introduction, for every such place we fix $\pi_v \in P - P^2$. Let $U_v = R_v - P_v$. For $x \in K_v^*$ we can write $x = \pi_v \cdot x_u$ where $u \in U_v$. Let $R_v^{(n)} = R_v \times \cdots \times R_v$ (n times) with a similar meaning for $U(v), P(v)^n$.

Let $\sigma = \langle a^1, \ldots, a^l \rangle$ be the closure of a cone in the partition corresponding to Γ^+. To each such cone we associate a maximal dimension closed cone σ containing σ, and note that it is not unique. For any place v, associated to σ we consider the subset of $R_v^{(n)}$ defined by

$$X_\sigma = \{ x \in R_v^{(n)} | (\text{ord } x_1, \ldots, \text{ord } x_n) \in \sigma \}.$$

Let $Y_\sigma = R_v^{(l)} \times U_v^{(n-l)}$ and consider the morphism $\theta \mid Y_\sigma : Y_\sigma \to R_v^{(n)}$ where θ is the morphism associated to σ defined by (1). We observe that $(\text{ord } x_1, \ldots, \text{ord } x_n) = \sum_{i=1}^n (\text{ord } y_i) a_i^i$, hence $\theta(Y_\sigma) \subseteq X_\sigma$. The next Lemma gives the properties of $\theta \mid Y_\sigma$ and the decomposition of X_σ that were established by Denef, Lemma 3 in [Denef, not yet published]. For $\gamma = (\gamma_1, \ldots, \gamma_n) \in K_v^n$, and T any subset of K_v^n, denote by γT the set ${((\gamma_1 x_1, \ldots, \gamma_n x_n)) | (x_1, \ldots, x_n) \in T}$.}

Lemma 2. a) The map $\theta \mid Y_\sigma : Y_\sigma \to \theta(Y_\sigma)$ is locally bianaalytic and each fiber has cardinality $K_v(\gamma) = \text{card ker } \theta \mid U_v^{(n)}$. b) If $w^i = (w_{i1}, \ldots, w_{in})$, $1 \leq i \leq r$, are the vectors in $\sigma \cap Z_+^n$ given by Lemma 1, let π^w denote $(\pi^{w_i1}, \ldots, \pi^{w_{in}})$. Let $u_1, \ldots, u_{s(v)}$ be the cost representatives for $U_v^{(n)} / \theta(U_v^{(n)})$. Then

$$X_\sigma = \prod_{1 \leq i \leq s(v)} u_i \pi^{w_i}(\theta(Y_\sigma)).$$

§2. The degree of $Z(t)$

Let v be a finite place of K. Using the same notation as in the preceding sections, we define an absolute value on K_v^* by $|x|_v = q_v^{-\text{ord}_v x}$. We let $|dx|_v$ be the Haar measure on K_v normalized so that the measure of R_v is one. Then the measure of $a + P_v$ for any $a \in K_v$ is q_v^{-1}. If $a \in R_v^{(n)}$, $a + P_v^{(n)}$ will denote a coset modulo $P_v^{(n)}$, i.e. $(a_1 + P_v) \times \cdots \times (a_n + P_v)$ where $a = (a_1, \ldots, a_n)$.

We shall also use $|dx|_v$ defined above for $n = 1$, to be the measure $\prod_{i=1}^n |dx_i|_v$ on $R_v^{(n)}$. When v is fixed we denote π_v, $|dx|_v$ and q_v by π, $|dx|$ and q respectively. Letting $t = q^{-s}$ we have the following basic formulas for N, $n \in \mathbb{Z}$; N, $n \geq 0$.

\[
\begin{align*}
\int_R |x|^{N-s+n-1} |dx| &= \frac{q^n(1-q^{-1})}{q^n-t^N} \\
\int_P |x|^{N-s+n-1} |dx| &= \frac{(1-q^{-1})t^N}{q^n-t^N}.
\end{align*}
\]

(2)

For $f \in K[x_1, \ldots, x_n]$, and any finite place v, we can consider the zeta function $Z(t)$ associated to f as defined in the introduction. We then have the following result.

Theorem. Let $f(x) = f(x_1, \ldots, x_n) \in K[x_1, \ldots, x_n]$ be a homogeneous polynomial that is non-degenerate with respect to its Newton polyhedron. Then for almost every place v of K, $\deg Z(t) = -\deg f(x)$.

Proof: Let $\deg f(x) = m$, and Γ_+ be the Newton polyhedron of f. As explained in the previous section, associated to this Newton polyhedron we have a partition of R^n_+ into open cones. For P an exposed point of Γ_+, let δ_p be the associated maximal dimension open cone. As previously observed we can partition δ_p into simplicial cones of the form $\{a_1 a^1 + \cdots + a_n a^n | a_i > 0\}$ where $a^1 = I$, if δ_p is not already in this form. The a^i, $2 \leq i \leq n$, are dual to noncompact facets of Γ_+. Repeating this process for all points of $E(\Gamma_+)$ let $\delta_1, \ldots, \delta_K$ denote the resulting simplicial cones, and let $\sigma_1, \ldots, \sigma_K$ denote the corresponding closed cones. $R^n_+ \subseteq \bigcup_{i=1}^K \sigma_i$ and if $\{i_1, \ldots, i_k\} \subseteq \{1, \ldots K\}$ then

\[
\bigcap_{j=1}^k \sigma_{i_j}\end{align*}

is a closed cone, which is a face of each σ_{i_j}, hence is a simplicial cone. Furthermore the closed cone $\{a I | a \geq 0\}$ is contained in every such cone.
Consider
\[\bigcup_{i=1}^{K} \sigma_i - \bigcup_{1 \leq i_1 < i_2 \leq K} (\sigma_{i_1} \cap \sigma_{i_2}) + \cdots + (-1)^{j-1} \times \bigcup_{1 \leq i_1 < \cdots < i_j \leq K} (\sigma_{i_1} \cap \cdots \cap \sigma_{i_j}) + \cdots + (-1)^{K-1}(\sigma_1 \cap \cdots \cap \sigma_k). \]

Since every \((k_1, \ldots, k_n) \in \mathbb{Z}_+^n\) occurs exactly once in (3) we can write \(Z(t)\) as the sum and difference of integrals of the form
\[
\int_{X_\sigma} |f(x)|^s |dx|_v
\]
where \(\sigma = \langle I, a^2, \ldots, a^l \rangle\) for some \(1 \leq l \leq n\), where the \(l = 1\) case is \(\sigma = \langle I \rangle\).

For each maximal dimension cone \(\sigma_k = \langle I, a^2, \ldots, a^n \rangle\) write \(a^l = (a_{i_1}, \ldots, a_{i_l})\), let \(M_k = [a_{ij}]\), and let \(\theta_k\) be the morphism defined by (1) in §1. Let \(S\) be the set of places satisfying the conditions in Proposition 3 c) for \(M_k, 1 \leq k \leq K\).

We now fix \(v \in S\), and \(\sigma = \langle I, a^2, \ldots, a^l \rangle\). Choose a maximal dimension cone \(\sigma_k, 1 \leq k \leq K\), such that \(\sigma_k\) contains \(\sigma\). We denote this choice by \(\bar{\sigma} = \langle I, a^l, a^{l+1}, \ldots, a^n \rangle\) and let \(M, \theta\) be the matrix and morphism associated to \(\bar{\sigma}\). Referring to the decomposition of \(X_\sigma\) in Lemma 2 b) we can write (4) as a sum of integrals of the form
\[
\int_{\mu \sigma(v) \theta(Y_\sigma)} |f(x)|^s |dx|
\]
for some \(u = u_i, 1 \leq i \leq s(v)\), and \(w = w_j, 1 \leq j \leq r\), where \(Y_\sigma = R^{(l)}_o \times U^{(n-l)}_o\).

Write \(f = \sum a_I x^I\), then \(f(u \pi^w x) = \sum a_I u^I \pi^{w \cdot I} x^I\). We have \(w \cdot I \geq m(w)\) for all \(I \in \Gamma_+\), so we let
\[
f_{u,w}(x) = \sum a_I u^I \pi^{w \cdot I - m(w)} x^I. \]

Then the integral in (5) equals
\[
q^{-|w|} \int_{\theta(Y_\sigma)} |f_{u,w}(x)|^s |dx|.
\]

By applying a) and b) in Proposition 3, in addition to the above observations,
we have that the integral in the above is
\[
\frac{1}{\kappa_\theta(v)} \int_{Y'_0} |y_1|^{m + n - 1} |y_1| \cdot \prod_{i=2}^{n} |y_i|^{m(a'_i) + |a'_i| - 1} |g_{u,w}(y)|^s |dy|
\]
where \(Y'_0 = R^{(n)} \times U^{(n)} \) and \(g_{u,w}(y) \in R[y_2, \ldots, y_n] \). Applying (2) to the first integral we have that the contribution to \(Z(t) \) from (5) is
\[
q^n(1 - q^{-1})(q^n - t^m)^{-1}
\]
times
\[
\frac{q^{-|w|}}{\kappa_\theta(v)} t^{m(w)} \prod_{i=2}^{n} |y_i|^{m(a'_i) + |a'_i| - 1} |g_{u,w}(y)|^s |dy_2 \cdots dy_n|.
\]
By our observations above the factor (7) occurs for any integral of the form (5), so we can write
\[
Z(t) = \frac{q^n(1 - q^{-1})}{q^n - t^m} \tilde{Z}(t)
\]
where \(\tilde{Z}(t) \) is the sum and difference of expressions in the form of (8) for all possible \(\sigma, u, w \). We shall show that (8) can be written in the form \(P_{\sigma,u,w}(t)/Q(t) \) where \(Q(t) = (q - t)\prod(q^{a'_i} - t^{m(a'_i)}) \) and the product is over all \(a'_i \) dual to a noncompact facet of \(\Gamma_+ \). We then write \(\tilde{Z}(t) = P(t)/Q(t) \) and

\[
P(t) = \sum_{\sigma} (\text{sign } \sigma) \sum_{u,w} P_{\sigma,u,w}(t)
\]
where \(\text{sign } \sigma = \pm 1 \) is the coefficient of \(\sigma \) in the decomposition (3). Let \(D = 1 + \sum m(a'_i) = \deg Q(t) \). We shall show that after possibly excluding an additional finite set of places in \(S \), that \(\deg P(t) = D \), in which case the theorem follows.

Now consider \(g_{u,w}(y) \). Referring back to \(f_{u,w}(x) \) as given in (6) we see that
\[
\hat{f}_{u,w}(x) = \sum_{j \in \tau_w} \hat{a}_j x^j,
\]
where \(\tau_w \) is a face of \(\Gamma_+ \). We have that \(\hat{f}_{u,w} \) is nondegenerate with respect to its Newton polyhedron since if \(\tau' \) is a face of \(\tau_{w'} \) and \(b \in (k_\theta(0))^n \) is a solution to
\[
\left(x_j \frac{\partial \hat{f}_{u,w}}{\partial x_j} \right)_{\tau'} = 0 \quad 1 \leq j \leq n
\]
then \(\hat{ub} \) would be a solution to
\[
\left(x_j \frac{\partial \hat{f}}{\partial x_j} \right)_{\tau'} = 0 \quad 1 \leq j \leq n.
\]
But τ' is a face of Γ_+, hence this contradicts the non-degeneracy of f. Thus by applying Proposition 3 we have $\tilde{g}_{u,w}(b) = 0$ implies

$$
\left(y_j \frac{\partial \tilde{g}_{u,w}}{\partial y_j} \right)(b) \neq 0
$$

for some j, $2 \leq j \leq n$.

First consider the case where $a = \langle 1, a^2, \ldots, a^l \rangle$ with $l \geq 2$. We shall show that $\deg P_{\sigma, u, w}(t) \leq D$. Then writing the coefficient $c_{\sigma, u, w}$ of t^D in $P_{\sigma, u, w}(t)$ as $(\kappa_\theta(v))^{-1}\tilde{c}_{\sigma, u, w}$ we show $q^{n-1}\tilde{c}_{\sigma, u, w} \equiv 0 \mod q$.

If $w \neq 0$, since $w \in \sigma \cap Z(n)$ by permuting the vectors $\{a^2, \ldots, a^l\}$ we may suppose $w = \alpha_1 + \alpha_2 a^2 + \cdots + \alpha_k a^k$ where $0 < \alpha_i < 1$, $2 \leq i \leq k$, $0 \leq \alpha_1 < 1$ and $k \leq l$. When $w = 0$ set $k = 1$. Then we write the integral in (8) as

$$
\int_{R^{(l-k)}_v \times U^{(n-l)}_v} \prod_{i=2}^l |y_i|^m(a^i)s + |a^i|^{-1} |g_{u,w}(y)| \cdot |dy|.
$$

We have

$$
g_{u,w}(y) = \sum_I a_I u^I \pi^{w \cdot I - m(w)} y_2^{a_2 - m(a^2)} \cdots y_n^{a_n - m(a^n)}.
$$

Observing that $I \in \tau_w$ implies $I \cdot a^i = m(a^i)$, $2 \leq i \leq k$, we have $\tilde{g}_{u,w} \in k_v[y_{k+1}, \ldots, y_n]$. Thus in this case (10) specializes to $\tilde{g}_{u,w}(b) = 0$, $b \in k_v^n$ implies $(y_j \frac{\partial \tilde{g}_{u,w}}{\partial y_j})(b) \neq 0$ for some j, $k < j \leq n$; which implies the system of congruences

$$
g_{u,w}(y) \equiv 0 \mod P_v
$$

$$
\left(y_j \frac{\partial g_{u,w}}{\partial y_j} \right)(y) \equiv 0 \mod P_v, \ k < j \leq n
$$

has no solution in $R_v^{(n)}$.

For any subset $J \subseteq \{k+1, \ldots, l\}$ consider cosets $(c_{k+1}, \ldots, c_n) + P_v^{(n-k)}$ of $R_v^{(l-k)} \times U_v^{(n-l)}$ satisfying

$$
c_i \equiv 0 \mod P_v \quad i \in J
$$

$$
c_i \not\equiv 0 \mod P_v \quad i \not\in J
$$

and call these cosets of type J. We distinguish the cosets of type J further by saying a coset is of type J_1 if it satisfies $g_{u,w} \not\equiv 0 \mod P_v$ in addition to the above conditions and say it is of type J_2 if it satisfies $g_{u,w} \equiv 0 \mod P_v$ in addition to the above conditions. We then write (11) as a sum over varying J.
of integrals of type
\[\int_{C_J} \int_{R^{(l-3)}} \prod_{i=2}^l |y_i|^{m(a^i)+|a^i|-1} |g_{u,w}(y)|^s \, dy \]
(14)
where \(C_J \) is a coset of type \(J \).
If \(C_J \) is a coset of type \(J_1 \), by applying the formulas (2), we have that the integral in (14) is of the form \(P_1(t)/Q_1(t) \), where \(\deg P_1(t) = \sum_{i \in J} m(a^i) \) and \(\deg Q_1 = \sum_{i=2}^k m(a^i) + \sum_{i \in J} m(a^i) \). If \(C_J \) is of type \(J_2 \) by (12) we can choose \(j, k < j \leq n \), such that \(y_j \partial g_{u,w}/\partial y_j \not\equiv 0 \mod P_\nu \). We then make the change of variables \(y_j = g_{u,w} \), \(\tilde{y}_i = y_i, \ i \neq j \). Then the integral (14) is of the form \(P_2(t)/Q_2(t) \), where \(\deg P_2(t) = 1 + \sum_{i \in J} m(a^i) \) and \(\deg Q_2(t) = 1 + \sum_{i=2}^k m(a^i) + \sum_{i \in J} m(a^i) \). In either case we have \(P_i(t)/Q_i(t) = R_i(t)/Q(t) \) where \(\deg R_i(t) = D - \sum_{i=2}^k m(a^i) \). Thus (11) is the sum of rational functions with this property, hence referring to (8) we see that for \(w \neq 0 \)
\[\deg P_{a,u,w}(t) \leq D + m(w) - \sum_{i=2}^k m(a^i). \]
Moreover the coefficient of the highest degree term in \(P_{a,u,w}(t) \) is
\[\pm \kappa_\theta(v)^{-1} q^{-|w|+\sum_{l=2}^k |a^l|} \sum_{J} (-1)^{|J|} (1-q^{-1})^{|J|+k-1} q^{-(n-k-|J|-1)} \times \left[N_J q^{-1} + N_J (1-q^{-1}) \right], \]
where \(N_J \) is the number of cosets of type \(J_i \).
If \(w = 0 \), we have \(\deg P_{a,u,w}(t) \leq D \). If \(w \neq 0 \) in order to show this we must show \(m(w) \leq \sum_{i=2}^k m(a^i) \). We have \(w_j = \alpha_i + \sum_{i=2}^k \alpha_i a_{ij} \) where \(\alpha_i < 1, 1 \leq i \leq k \), hence \(w_j < 1 + \sum_{i=2}^k a_{ij} \), and \(w_j \in \mathbb{Z} \) implies \(w_j \leq \sum_{i=2}^k a_{ij} \). Now let \(P \in E(\Gamma_+) \) be such that \(\bar{\sigma} \) is obtained from the partition of \(\bar{\sigma}_P \) into simplicial cones. Write \(P = (P_1, \ldots, P_n) \). We have \(m(w) = P \cdot w \) and \(m(a^i) = P \cdot a^i, 2 \leq i \leq k \). Hence
\[m(w) \leq \sum_{j=1}^n P_j \left(\sum_{i=2}^k a_{ij} \right) = \sum_{i=2}^k P \cdot a^i. \]
Thus \(m(w) \leq \sum_{i=2}^k m(a^i) \), which implies \(\deg P_{a,u,w}(t) \leq D \).
Now consider \(c_{\sigma,u,w} \). If \(\deg P_{\sigma,u,w}(t) < D \) then \(c_{\sigma,u,w} = 0 \). If \(\deg P_{\sigma,u,w}(t) = D \) then by observing that \(N_{J_1} + N_{J_2} = (q-1)^{n-k-|J|} \) we have

\[
q^{n-1}c_{\sigma,u,w} = \pm q^{-\sum_{i=2}^{k} a_i^i + \sum_{J} |J|} \sum_{J} (-1)^{|J|} (q - 1)^{|J| + k - 1} \times [(q - 1)^{n-k-|J|} - N_J - N_J(q - 1)],
\]

where we let \(N_J = N_{J_2} \). If \(|w| < \sum_{i=2}^{k} a_i^i \) then \(q^{n-1}c_{\sigma,u,w} \) is clearly congruent to zero mod \(q \), but if \(|w| = \sum_{i=2}^{k} a_i^i \) then

\[
q^{n-1}c_{\sigma,u,w} = \pm \sum_{J} (-1)^{|J|} \mod q \equiv 0 \mod q. \tag{15}
\]

This proves our assertion about the case \(\sigma = \langle 1, a^2, \ldots, a^l \rangle \) with \(l \geq 2 \).

The only remaining cases to consider are those where \(u \) varies and \(\sigma = \langle 1 \rangle \): In this case we show that (8) can be written as \(P_{1,u}(t)/Q(t) \) where \(\deg P_{1,u}(t) \leq D \). Denoting the coefficient of \(t^D \) by \(c_{1,u} \) and defining \(\tilde{c}_{1,u} \) as in the previous case we show \(q^{n-1}c_{1,u} \) is an integer and \(q^{n-1}c_{1,u} \not\equiv 0 \mod q \).

In this case the integral in (8) is

\[
\int_{U_v^{(n-1)}} |g_u(y)|^s \, \mathrm{d}y.
\]

Consider the cosets mod \(P_v^{(n-1)} \) of \(U_v^{(n-1)} \). Letting \(N \) be the number of cosets satisfying \(g_u \equiv 0 \mod P_v \) and applying entirely similar reasoning as before we have that the above integral equals

\[
(q^{-1})^{(n-2)} \left[((q - 1)^{n-1} - N)q^{-1} + \frac{N(1 - q^{-1})t}{(q - t)} \right].
\]

Then examination of the above shows \(\deg P_{1,u}(t) \leq D \) and

\[
q^{n-1}c_{1,u} = (-1)^D \left[(q - 1)^{n-1} - N - N(q - 1) \right].
\]

Hence \(q^{n-1}c_{1,u} \) is an integer and

\[
q^{n-1}c_{1,u} \equiv \pm 1 \mod q. \tag{16}
\]

Furthermore we note that the value on the right of the congruence is independent of \(u \).

Let \(c_v \) denote the coefficient of \(t^D \) in \(P(t) \), which we wish to show is nonzero for almost all \(v \). We have \(c_v = \sum_{\sigma} \text{sign } \sigma \sum_{u,w} c_{\sigma,u,w} \). Recalling that the
morphisms associated to the maximal dimension cones were denoted $\theta_1, \ldots, \theta_K$ we define $\kappa(v) = \prod_{i=1}^{K} \kappa_{\theta_i}(v)$. If σ is a cone, and the morphism associated to the maximal dimension cone σ is θ_j, define $\kappa_{\sigma} = \prod_{i \neq j}^{K} \kappa_{\theta_i}(v)$. We assume θ_1 is the morphism associated to $\langle I \rangle$, and let $\kappa_1(v) = \prod_{i=2}^{K} \kappa_{\theta_i}(v)$. Then

$$q_{\nu}^{n-1}\kappa(v)c_{\nu} = \sum_{\sigma \neq \langle I \rangle} \text{sign } \sigma \sum_{u,w} q_{\nu}^{n-1}\kappa_\sigma(v)\bar{c}_{\sigma,u,w} + \sum_{u} q_{\nu}^{n-1}\kappa_1(v)\bar{c}_{1,u}.$$

Let $s_1(v)$ denote the number of coset representatives in $U_{\nu}/\theta_1(U_{\nu}^*)$. Then the congruences in (15) and (16) give

$$q_{\nu}^{n-1}\kappa(v)c_{\nu} \equiv \pm \kappa_1(v)s_1(v) \mod q_{\nu}.$$

Now

$$\kappa_1(v) \leq \prod_{i=2}^{K} \text{card } W_{\nu,|M_i|} \leq n^{K-1} \prod_{i=2}^{K} |M_i|$$

where $|M_i|$ is the determinant of the matrix M_i associated to θ_i and $W_{\nu,|M_i|}$ is the $|M_i|$-th roots of unity in U_{ν}. We also have

$$s_1(v) \leq n \cdot [U_{\nu} : U_{\nu}^{[M_i]}]$$

where $[U_{\nu} : U_{\nu}^{[M_i]}] = \text{card } W_{\nu,|M_i|}$ for almost all v. Hence for almost all v

$$\kappa_1(v)s_1(v) \leq n^K \prod_{i=1}^{K} |M_i|$$

which implies $\kappa_1(v)s_1(v) \not\equiv 0 \mod q_{\nu}$ for almost all v. Therefore $c_{\nu} \not\equiv 0$ for almost all v, which concludes the proof. Q.E.D.

Acknowledgements

Supported by National Science Foundation Grant No. DMS 84-14109.

References

On the degree of a local zeta function

Addendum. J. Denef has recently given a proof of Igusa’s conjecture in the general case.