COMPOSITIO MATHEMATICA

DIANE MEUSER On the degree of a local zeta function

Compositio Mathematica, tome 62, nº 1 (1987), p. 17-29 <http://www.numdam.org/item?id=CM_1987__62_1_17_0>

© Foundation Compositio Mathematica, 1987, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

On the degree of a local zeta function

DIANE MEUSER

Department of Mathematics, Harvard University, Cambridge, MA 02138, USA; present address: Dept. of Mathematics, Boston University, 111 Cunningham Street, Boston, MA 02215, USA

Received 27 November 1985; accepted in revised form 1 June 1986

Let K be a finite algebraic extension of Q, R the ring of integers of K and $\{v\}$ the set of finite places of K. For $v \in \{v\}$ let $| |_v$ be the non-archimedian absolute value on K and K_v the completion of K with respect to this absolute value. Let R_v be the ring of integers of K_v , P_v the unique maximal ideal of R_v and $k_v = R_v/P_v$. Then k_v is a finite field and we let $q_v = \operatorname{card} k_v$. Let $f(x) = f(x_1, \ldots, x_n) \in K[x_1, \ldots, x_n]$ be a homogeneous polynomial of degree m. Then for any v we can consider

$$Z(t) = \int_{\mathcal{R}_v^{(n)}} |f(x)|_v^s |\mathrm{d}x|_v$$

where $s \in C$, $\operatorname{Re}(s) > 0$ and $t = q_v^{-s}$. This has been shown to be a rational function of t by Igusa in [Igusa, 1977]. Writing Z(t) = P(t)/Q(t) we define deg $Z(t) = \deg P(t) - \deg Q(t)$. Igusa has conjectured in [Igusa, 1984], p. 1027, and [Igusa, 1986], that for almost all v, i.e. except for a finite number of v, one has deg Z(t) = -m. In this paper Igusa gives many examples where f satisfies the additional property that it is the single invariant polynomial for a connected irreducible simple linear algebraic group.

In this paper we show this conjecture is true if f is non-degenerate with respect to its Newton Polyhedron. This establishes the conjecture for "generic" homogeneous polynomials in a sense to be described below.

$\S1$. The Newton polyhedron of f and its associated toroidal modification

We first recall some of the terminology and basic properties of the Newton polyhedron of an arbitrary polynomial. Other references for this include [Danilov, 1978; Kouchnirenko, 1976; Lichtin, 1981; Varchenko, 1977].

Let $f \in K[x_1, ..., x_n]$. We write $f = \sum_{\substack{I \in N^n \\ a_I x^I}} a_I x^I$, where $I = (i_1, ..., i_n)$ and $x^I = x_1^{i_1} \cdots x_n^{i_n}$. Let $\operatorname{Supp}(f) = \{I \in N^n \mid a_I \neq 0\}$. Let S(f) denote the convex hull of $\bigcup_{I \in \operatorname{Supp}(f)} (I + \mathbb{R}^n_+)$. Let $\Gamma_+(f)$ be the union of all faces of S(f). Let $\Gamma(f)$ be the union of compact faces only. $\Gamma_+(f)$ is called the Newton polyhedron of f and $\Gamma(f)$ is called the Newton diagram. We will denote a

fixed Newton polyhedron and diagram by Γ_+ and Γ respectively. Given a Newton polyhedron Γ_+ and its associated Newton diagram Γ we define $\Omega_{\Gamma_+} = \{g \in K[x_1, \ldots, x_n] | \Gamma_+(g) = \Gamma_+\}$. If $g \in \Omega_{\Gamma_+}$, and γ is a face of Γ , we define g_{γ} to be $\sum_{I \in \gamma} b_I x^I$ if $g = \sum_{I \in \gamma} b_I x^I + \sum_{I \in \gamma} b_I x^I$. Then we define non-degeneracy as in [Kouchnirenko, 1976].

Definition: f is non-degenerate with respect to its Newton polyhedron if for any face γ of $\Gamma_+(f)$ the functions $(x_i \cdot \partial f/\partial x_i)$, have no common zero in $(\overline{K} - \{0\})^n$, where \overline{K} denotes the algebraic closure of K.

Fix *m* and *n*. Identify homogeneous polynomials of degree *m* in *n* variables with P_K^N , where $N = \binom{m+n-1}{m} - 1$. For Γ_+ a fixed Newton polyhedron $X_{\Gamma_+} = \{f \mid \Gamma_+(f) = \Gamma_+\}$ is a Zariski subset of P_K^N . Let

 $Y_{\Gamma_{+}} = \{ f \mid f \text{ is non-degenerate with respect to } \Gamma_{+} \}.$

Then in a completely analogous manner to the proof of Theorem 6.1 in [Kouchnirenko, 1976] we have the following result which shows the non-degeneracy condition is generic.

PROPOSITION 1: Y_{Γ} is a Zariski open, dense subset of X_{Γ} .

Let K be a finite algebraic extension of Q, $\{v\}$ the finite places of K, and K_v , R_v , P_v and k_v as defined in the introduction. Let $U_v = R_v - P_v$ be the units of R_v . We first recall some definitions concerning the reduction of varieties modulo P_v .

For $g \in R[x_1, ..., x_n]$, v a finite place of K, let \overline{g}_v denote the polynomial in $k_v[x_1, ..., x_n]$ obtained by reducing the coefficients of g modulo P_v . We shall abbreviate this to \overline{g} when v is understood and use the same notation when g is a constant in R. Let V be an algebraic set defined over K, i.e., $V = \{x \in \overline{K}^n | f_i(x) = 0, 1 \le i \le r\}$, where $f_i(x) \in K[x_1, ..., x_n]$.

Let I(V) be the ideal of V, i.e., $I(V) = \{f \in \overline{K}[x_1, \dots, x_n] | f(x) = 0 \quad \forall x \in V\}$. Then we define the reduction of V modulo P_v , denoted \overline{V}_v by

$$\overline{V}_v = \left\{ x \in \overline{k}_v^n \mid \overline{f}_v(x) = 0 \ \forall f \in I(V) \cap R_v[x_1, \dots, x_n] \right\}.$$

If $f \in R[x_1, ..., x_n]$ then for any finite place v of K we can consider the non-degeneracy of \bar{f}_v . We have:

PROPOSITION 2: Let $f \in R[x_1, ..., x_n]$ be non-degenerate with respect to its Newton polyhedron. Then for almost all v a) $\Gamma + (\bar{f}_v) = \Gamma_+(f)$ b) \bar{f}_v is non-degenerate with respect to its Newton polyhedron.

Proof. Let $S = \{v | \text{all coefficients of } f \text{ are in } U_v\}$. Then for $v \in S$, $\Gamma_+(\bar{f}_v) = \Gamma_+(f)$ and a) follows since almost all v are in S.

Let τ be a face of $\Gamma(f)$, and write $f_{\tau} = f_{\tau,1}, \ldots, f_{\tau,t}$ where each $f_{\tau,t}$ is absolutely irreducible. Let $V_{\tau,t}$ be the variety defined by $f_{\tau,t} = 0$, Y_t the hyperplane defined by $x_i = 0$, and $Y = \bigcup_{i=1}^n Y_i$. The condition that f is non-degenerate is equivalent to the condition that for any face τ of $\Gamma(f)$, and $V_{\tau,t}$ as above, the singular points of each $V_{\tau,t}$ are contained in Y and for any $i, j, i \neq j$ we have $V_{\tau,t} \cap V_{\tau,t} \subset Y$.

Let L be a finite extension of K such that the coefficients of $f_{\tau,i}$ for any τ , i are in L. To each place of v of K let v' be any place of L dividing v. As a straightforward consequence of Hilbert's Nullstellensatz, for any τ , i, j we have $(\overline{V}_{\tau,i})_{v'} \cap (\overline{V}_{\tau,j})_{v'} \subset \overline{Y}_{v'}$ for all v, v'. As a consequence of Proposition 30 in [Shimura, 1955], $(\overline{V}_{\tau,i})_{v'}$ is absolutely irreducible and its singularities are contained in $\overline{Y}_{v'}$ for almost all places v' of L. Let \tilde{S} be the set of $v \in S$ satisfying the above property for all τ , i and all v' | v. Then almost every place of K is in \tilde{S} and f_v is non-degenerate for all $v \in \tilde{S}$. Q.E.D.

We next describe a toroidal modification of K_v^n that we shall use to prove the conjecture for homogeneous f that are non-degenerate with respect to their Newton polyhedron. The modification we use is not the one utilized in [Lichtin, 1981] or [Lichtin and Meuser, 1985], which gives a nonsingular variety Y_v and a morphism $h: Y_v \to K_v^n$ such that $f \circ h = 0$ is a divisor with normal crossings, but a weaker modification that has also been used by Denef in [Denef, not yet published].

Let $(\mathbf{R}_{+}^{n})^{*} = \mathbf{R}_{+}^{n} - \mathbf{0}$. Let a^{1}, \ldots, a^{l} be vectors in \mathbf{R}_{+}^{n} and $\sigma = \{\alpha_{1}a^{1} + \cdots + \alpha_{l}a^{l} | \alpha_{i} \in \mathbf{R}_{+}, 1 \le i \le l\}$. σ is called a closed cone which we denote by $\langle a^{1}, \ldots, a^{l} \rangle$. $\sigma = \{\alpha_{1}a^{1} + \cdots + \alpha_{l}\alpha^{l} | \alpha_{i} > 0, 1 \le i \le l\}$ is called an open cone. The dimension of any cone is the dimension of the smallest vector subspace of \mathbf{R}^{n} containing it. σ , or σ , is called a simplicial cone if a^{1}, \ldots, a^{l} are linearly independent over \mathbf{R} . If σ is a closed cone spanned by integral vectors, then we have the following well known result on $\sigma \cap \mathbb{Z}_{+}^{n}$ which we shall later use.

LEMMA 1. Let $\sigma = \langle a^1, ..., a^l \rangle$ be a closed cone in \mathbb{R}^n_+ , where each $a^i, 1 \leq i \leq l$, is an integral vector. There are a finite number of integral vectors $w^1, ..., w^r$ such that

$$\boldsymbol{\sigma} \cap \boldsymbol{Z}_{+}^{n} = \prod_{i=1}^{r} \left\{ \boldsymbol{w}^{i} + \sum_{j=1}^{l} \boldsymbol{\alpha}_{j} \boldsymbol{a}^{j} \mid \boldsymbol{\alpha}_{j} \in \boldsymbol{Z}_{+} \right\}$$

Proof: It is well known that σ has a partition into closed simplicial cones where each such cone is spanned by a subset of $\{a^1, \ldots, a^l\}$. Thus we can assume σ is simplicial. We form the parallelotope $P_{\sigma} = \left\{\sum_{j=1}^{l} \alpha_j a^j | 0 \leq \alpha_j < 1\right\}$. Let w^1, \ldots, w^r be the points in $P_{\sigma} \cap \mathbb{Z}_+^n$. Then these w^i satisfy the statement of the lemma. Q.E.D. Associated to any Newton polyhedron Γ_+ we have a partition of $(\mathbf{R}^n_+)^*$ into open cones. For $a \in (\mathbf{R}^n_+)^*$ we let $m(a) = \inf_{\substack{y \in \Gamma_+ \\ y \in \Gamma_+ \\ }} \{a \cdot y\}$ and $\tau_a = \{y \in \Gamma_+ | y \cdot a = m(a)\}$. τ_a is called the meet locus of a. We define an equivalence relation \sim by $a^1 \sim a^2$ if $\tau_{a^1} = \tau_{a^2}$. This equivalence relation satisfies the following properties:

i) If $a \in (\mathbb{R}^n_+)^*$, τ_a is a face of Γ_+ .

ii) Let τ be a face of Γ_+ . Let F_1, \ldots, F_r be the facets of Γ_+ containing τ . Let a' denote a vector dual to F_i , $1 \le i \le r$. Then

$$\left\{a\in \left(\mathbf{R}^{n}_{+}\right)^{*}\big|\tau_{a}=\tau\right\}=\left\{\alpha_{1}a^{1}+\cdots+\alpha_{r}a^{r}\big|\alpha_{i}>0\right\}.$$

We denote the cone in the above formula by $\check{\sigma}_{\tau}$. Then its closure σ_{τ} satisfies $\sigma_{\tau} = \{a \in (\mathbb{R}^n_+)^* \mid \tau_a \supseteq \tau\}$. A vector $a = (a_1, \ldots, a_n)$ in $\mathbb{Z}^n_+ - 0$ is called primitive if the greatest common divisor of the a_j , $1 \le j \le n$, is one. For each facet of Γ_+ there is a unique primitive integral vector dual to that facet. The above properties imply each equivalence class under \sim is an open cone spanned by a subset of primitive integral vectors dual to facets.

If f is a homogeneous polynomial of degree m in n variables note that all $I \in \text{Supp}(f)$ lie on the hyperplane $I \cdot x = m$, where I = (1, ..., 1). Let F be a face of $\Gamma(f)$. It is straightforward to see that if P is an exposed point of F then P = I for some $I \in \text{Supp}(f)$. Hence $\Gamma(f)$ is a single face with supporting hyperplane $\overline{1} \cdot x = m$. Let $E(\Gamma_+)$ be the exposed points of Γ_+ . Every $P \in E(\Gamma_+)$ lies in Γ hence $I \in \sigma P$. We can partition σ_p into simplicial cones of the form $\{\alpha_1 a^1 + \cdots + \alpha_n a^n \mid \alpha_i \in \mathbf{R}, \alpha_i > 0\}$ where we may assume $a^1 = I$, and a^2, \ldots, a^n are primitive integral vectors dual to noncompact facets of Γ_+ containing P.

Let $\sigma = \langle a^1, \ldots, a^n \rangle$ be the closure of one of the maximum dimension cones corresponding to $P \in E(\Gamma_+)$. Write $a^i = (a_{i1}, \ldots, a_{in})$ and let $M = [a_{ij}]$. Then M determines a morphism $\theta \colon K_v^n \to K_v^n$ defined by $\theta(y_1, \ldots, y_n) = (x_1, \ldots, x_n)$ where

$$x_{j} = y_{1}^{a_{1j}} \cdots y_{n}^{a_{nj}}.$$
 (1)

Let dx be the differential $dx_1 \dots dx_n$ and $\theta^*(dx)$ its pullback under θ . Then for $f \in R[x_1, \dots, x_n]$, Γ_+ , and θ as above we have the following result.

PROPOSITION 3:

a) $(f \circ \theta)(y) = y_1^m \prod_{i=2}^n y_i^{m(a^i)} f_{\theta}(y)$ where $f_{\theta}(y) \in R[y_2, \dots, y_n], f_{\theta}(\theta) \neq 0$. b) $\theta^*(dx) = (\det M) y_1^{n-1} \prod_{i=2}^n y_i^{|a^i|-1} dy$ where $|a^i| = \sum_{j=1}^n a_{ij}$. c) Let $S = \{v \mid \Gamma_+(\bar{f}_v) = \Gamma_+(f), \bar{f}_v$ non-degenerate with respect of Γ_+ , and $\overline{(\det M)}_v \neq 0$. Then for $v \in S$, $(\overline{f}_{\theta})_v(\theta) \neq 0$, and if $b \in k_v^n$ satisfies $(\overline{f}_{\theta})_v(b) = 0$ then

$$y_j \frac{\partial (\bar{f}_{\theta})_v}{\partial y_j}(b) \neq 0$$

for some $2 \leq j \leq n$.

Proof: a) and b) are just specializations of Varchenko's result, Lemma 10.2 in [Varchenko, 1977]. We write $f = a_p x^P + \sum_{I}$ with P as in the discussion above and $x^I = x_1^{i_1} \cdots x_n^{i_n}$. Then under the map θ the monomial x^I is transformed to $\sum_{i=1}^{n} y_i^{I \cdot a'}$. For a) we denote that $I \in \Gamma(f)$ implies $I \cdot a^1 = m$ and $I \cdot a^i \ge$ $m(a^i)$ for $2 \le i \le n$. Furthermore $P \cdot a^i = m(a^i)$ for all *i*, and P is the only point of $\Gamma(f)$ having this property, so this gives the above factorization of $(f \circ \theta)(y)$. The formula $\theta^*(dx)$ is a straightforward consequence of (1).

For c), we first observe that for $v \in S$ we have $(\bar{a}_p)_v \neq 0$, hence $(\bar{f}_\theta)_v(\theta) \neq 0$. The proof of the rest of c) is identical to Lichtin's proof of Proposition 2.3 in [Lichtin, 1981]. Q.E.D.

Let K_v be the completion of K corresponding to any finite place v of K. Using the same notation as in the introduction, for every such place we fix $\pi_v \in P_v - P_v^2$. Let $U_v = R_v - P_v$. For $x \in K_v^*$ we can write $x = \pi_v^{\text{ord } x} u$ where $u \in U_v$. Let $R_v^{(n)} = R_v \times \cdots \times R_v$ (n times) with a similar meaning for $U_v^{(n)}$, $P_v^{(n)}$.

Let $\sigma = \langle a^1, \ldots, a^l \rangle$ be the closure of a cone in the partition corresponding to Γ_+ . To each such cone we associate a maximal dimension closed cone $\tilde{\sigma}$ containing σ , and note that it is not unique. For any place v, associated to σ we consider the subset of $R_v^{(n)}$ defined by

$$X_{\sigma} = \left\{ x \in R_{v}^{(n)} | (\text{ord } x_{1}, \dots, \text{ord } x_{n}) \in \sigma \right\}.$$

Let $Y_{\sigma} = R_{v}^{(l)} \times U_{v}^{(n-l)}$ and consider the morphism $\theta \mid_{Y_{\sigma}} : Y_{\sigma} \to R_{v}^{(n)}$ where θ is the morphism associated to $\tilde{\sigma}$ defined by (1). We observe that (ord $x_{1}, \ldots, \text{ord } x_{n}) = \sum_{i=1}^{n} (\text{ord } y_{i})a^{i}$, hence $\theta(Y_{\sigma}) \subseteq X_{\sigma}$. The next Lemma gives the properties of $\theta \mid_{Y_{\sigma}}$ and the decomposition of X_{σ} that were established by Denef, Lemma 3 in [Denef, not yet published]. For $\gamma = (\gamma_{1}, \ldots, \gamma_{n}) \in K_{v}^{n}$, and T any subset of K_{v}^{n} , denote by γT the set $\{(\gamma_{1}x_{1}, \ldots, \gamma_{n}x_{n}) \mid (x_{1}, \ldots, x_{n}) \in T\}$.

LEMMA 2. a) The map $\theta|_{Y_{\sigma}}: Y_{\sigma} \to \theta(Y_{\sigma})$ is locally bianalytic and each fiber has cardinality $\kappa_{\theta}(v) = card \ ker \ \theta|_{U_{v}^{(n)}}$. b) If $w^{i} = (w_{i1}, \ldots, w_{in}), 1 \leq i \leq r$, are the vectors in $\sigma \cap \mathbb{Z}_{+}^{n}$ given by Lemma 1, let $\pi^{w^{i}}$ denote $(\pi^{w_{i1}}, \ldots, \pi^{w_{in}})$. Let $u_{1}, \ldots, u_{s(v)}$ be the coset representatives for $U_{v}^{(n)}/\theta(U_{v}^{(n)})$. Then

$$X_{\sigma} = \coprod_{\substack{1 \leq i \leq s(v) \\ 1 \leq j \leq r}} u_{i} \pi^{w^{j}}(\theta(Y_{\sigma})).$$

§2. The degree of Z(t)

Let v be a finite place of K. Using the same notation as in the preceding sections, we define an absolute value on K_v^* by $|x|_v = q_v^{-\operatorname{ord} x}$. We let $|dx|_v$ be the Haar measure on K_v normalized so that the measure of R_v is one. Then the measure of $a + P_v$ for any $a \in K_v$ is q_v^{-1} . If $a \in R_v^{(n)}$, $a + P_v^{(n)}$ will denote a coset modulo $P_v^{(n)}$, i.e. $(a_1 + P_v) \times \cdots \times (a_n + P_v)$ where $a = (a_1, \ldots, a_n)$. We shall also use $|dx|_v$, defined above for n = 1, to be the measure $\prod_{i=1}^{i=1} |dx_i|_v$ on $R_v^{(n)}$. When v is fixed we denote π_v , $|dx|_v$ and q_v by π , |dx| and q respectively. Letting $t = q^{-s}$ we have the following basic formulas for N, $n \in \mathbb{Z}$; N, $n \ge 0$.

$$\int_{R} |x|^{Ns+n-1} |dx| = \frac{q^{n}(1-q^{-1})}{q^{n}-t^{N}}$$

$$\int_{P} |x|^{Ns+n-1} |dx| = \frac{(1-q^{-1})t^{N}}{q^{n}-t^{N}}.$$
(2)

For $f \in K[x_1, ..., x_n]$, and any finite place v, we can consider the zeta function Z(t) associated to f as defined in the introduction. We then have the following result.

THEOREM. Let $f(x) = f(x_1, ..., x_n) \in K[x_1, ..., x_n]$ be a homogeneous polynomial that is non-degenerate with respect to its Newton polyhedron. Then for almost every place v of K, deg Z(t) = -deg f(x).

Proof: Let deg f(x) = m, and Γ_+ be the Newton polyhedron of f. As explained in the previous section, associated to this Newton polyhedron we have a partition of \mathbb{R}^n_+ into open cones. For P an exposed point of Γ_+ , let $\check{\sigma}_P$ be the associated maximal dimension open cone. As previously observed we can partition $\check{\sigma}_P$ into simplicial cones of the form $\{\alpha_1 a^1 + \cdots + \alpha_n a^n | \alpha_i > 0\}$ where $a^1 = I$, if $\check{\sigma}_P$ is not already in this form. The $a^i, 2 \le i \le n$, are dual to noncompact facets of Γ_+ . Repeating this process for all points of $E(\Gamma_+)$ let $\check{\sigma}_1, \ldots, \check{\sigma}_K$ denote the resulting simplicial cones, and let $\sigma_1, \ldots, \sigma_K$ denote the corresponding closed cones. $\mathbb{R}^n_+ \subseteq \bigcup_{i=1}^K \sigma_i$ and if $\{i_1, \ldots, i_k\} \subseteq \{1, \ldots, K\}$ then

 $\bigcap_{j=1}^{\kappa} \sigma_{i_j}$ is a closed cone, which is a face of each σ_{i_j} , hence is a simplicial cone. Furthermore the closed cone $\{\alpha I \mid \alpha \ge 0\}$ is contained in every such cone. Consider

$$\bigcup_{i=1}^{K} \sigma_{i} - \bigcup_{1 \leq i_{1} < i_{2} \leq K} (\sigma_{i_{1}} \cap \sigma_{i_{2}}) + \dots + (-1)^{j-1}$$

$$\times \bigcup_{1 \leq i_{1} < \dots < i_{j} \leq K} (\sigma_{i_{1}} \cap \dots \cap \sigma_{i_{j}}) + \dots + (-1)^{K-1} (\sigma_{1} \cap \dots \cap \sigma_{K}).$$
(3)

Since every $(k_1, \ldots, k_n) \in \mathbb{Z}_+^{(n)}$ occurs exactly once in (3) we can write Z(t) as the sum and difference of integrals of the form

$$\int_{X_{\sigma}} |f(x)|_{v}^{s} |\mathrm{d}x|_{v}$$
(4)

where $\sigma = \langle \mathbf{1}, a^2, \dots, a^l \rangle$ for some $l, 1 \leq l \leq n$, where the l = 1 case is $\sigma = \langle \mathbf{1} \rangle$.

For each maximal dimension cone $\sigma_k = \langle \mathbf{1}, a^2, \dots, a^n \rangle$ write $a^i = (a_{i1}, \dots, a_{in})$, let $M_k = [a_{ij}]$, and let θ_k be the morphism defined by (1) in §1. Let S be the set of places satisfying the conditions in Proposition 3 c) for M_k , $1 \leq k \leq K$.

We now fix $v \in S$, and $\sigma = \langle I, a^2, ..., a^l \rangle$. Choose a maximal dimension cone σ_k , $1 \leq k \leq K$, such that σ_k contains σ . We denote this choice by $\tilde{\sigma} = \langle I, a^l, a^{l+1}, ..., a^n \rangle$ and let M, θ be the matrix and morphism associated to $\tilde{\sigma}$. Referring to the decomposition of X_{σ} in Lemma 2 b) we can write (4) as a sum of integrals of the form

$$\int_{u\pi^{w}\theta(Y_{\sigma})}|f(x)|^{s}|\mathrm{d}x|$$
(5)

for some $u = u_i$, $1 \le i \le s(v)$, and $w = w^j$, $1 \le j \le r$, where $Y_\sigma = R_v^{(l)} \times U_v^{(n-l)}$. Write $f = \sum_{i=1}^{r} a_I x^I$, then $f(u\pi^w x) = \sum_{i=1}^{r} a_I u^I \pi^{w \cdot I} x^I$. We have $w \cdot I \ge m(w)$

for all $I \in \Gamma_+$, so we let

$$f_{u,w}(x) = \sum_{I} a_{I} u^{I} \pi^{w \cdot I - m(w)} x^{I}.$$
 (6)

Then the integral in (5) equals

$$q^{-|w|}t^{m(w)}\int_{\theta(Y_{\sigma})}|f_{u,w}(x)|^{s}|dx|.$$

By applying a) and b) in Proposition 3, in addition to the above observations,

we have that the integral in the above is

$$\frac{1}{\kappa_{\theta}(v)} \int_{R_{v}} |y_{1}|^{ms+n-1} |dy_{1}| \cdot \int_{Y_{\sigma}'} \prod_{i=2}^{n} |y_{i}|^{m(a')s+|a'|-1} |g_{u,w}(y)|^{s} |dy|$$

where $Y'_{\sigma} = R_v^{(l-1)} \times U_v^{(n-l)}$ and $g_{u,w}(y) \in R_v[y_2, \ldots, y_n]$. Applying (2) to the first integral we have that the contribution to Z(t) from (5) is

$$q^{n}(1-q^{-1})(q^{n}-t^{m})^{-1}$$
(7)

times

$$\frac{q^{-|w|}}{\kappa_{\theta}(v)}t^{m(w)}\int_{Y'_{\sigma}}\prod_{i=2}^{n}|y_{i}|^{m(a')s+|a'|-1}|g_{u,w}(y)|^{s}|dy_{2}\cdots dy_{n}|.$$
(8)

By our observations above the factor (7) occurs for any integral of the form (5), so we can write

$$Z(t) = \frac{q^n(1-q^{-1})}{q^n-t^m}\tilde{Z}(t)$$

where $\tilde{Z}(t)$ is the sum and difference of expressions in the form of (8) for all possible σ , u, w. We shall show that (8) can be written in the form $P_{\sigma,u,w}(t)/Q(t)$ where $Q(t) = (q-t)\Pi(q^{|a'|} - t^{m(a')})$ and the product is over all a^i dual to a noncompact facet of Γ_+ . We then write $\tilde{Z}(t) = P(t)/Q(t)$ and

$$P(t) = \sum_{\sigma} (\text{sign } \sigma) \sum_{u,w} P_{\sigma,u,w}(t)$$
(9)

where sign $\sigma = \pm 1$ is the coefficient of σ in the decomposition (3). Let $D = 1 + \sum m(a^i) = \deg Q(t)$. We shall show that after possibly excluding an additional finite set of places in S, that deg P(t) = D, in which case the theorem follows.

Now consider $g_{u,w}(y)$. Referring back to $f_{u,w}(x)$ as given in (6) we see that $\bar{f}_{u,w}(x) = \sum_{I \in \tau_w} \bar{a}_i \bar{u}^I x^I$, where τ_w is a face of Γ_+ . We have that $\bar{f}_{u,w}$ is nonde-

generate with respect to its Newton polyhedron since if τ' is a face of $\tau_{w'}$ and $b \in (\bar{k}_v - \{0\})^n$ is a solution to

$$\left(x_j\frac{\partial \bar{f}_{u,w}}{\partial x_j}\right)_{\tau'} = 0 \quad 1 \le j \le n$$

then $\bar{u}b$ would be a solution to

$$\left(x_j\frac{\partial \bar{f}}{\partial x_j}\right)_{\tau'}=0\qquad 1\leqslant j\leqslant n.$$

But τ' is a face of Γ_+ , hence this contradicts the non-degeneracy of f. Thus by applying Proposition 3 we have $\bar{g}_{u,w}(b) = 0$ implies

$$\left(y_j \frac{\partial \bar{g}_{u,w}}{\partial y_j}\right)(b) \neq 0 \tag{10}$$

for some $j, 2 \leq j \leq n$.

First consider the case where $\sigma = \langle \mathbf{1}, a^2, ..., a^l \rangle$ with $l \ge 2$. We shall show that deg $P_{\sigma,u,w}(t) \le D$. Then writing the coefficient $c_{\sigma,u,w}$ of t^D in $P_{\sigma,u,w}(t)$ as $(\kappa_{\theta}(v))^{-1}\tilde{c}_{\sigma,u,w}$ we show $q^{n-1}\tilde{c}_{\sigma,u,w} \equiv 0 \mod q$. If $w \ne 0$, since $w \in \sigma \cap \mathbb{Z}_+^{(n)}$ by permuting the vectors $\{a^2, ..., a^l\}$ we may

If $w \neq 0$, since $w \in \sigma \cap \mathbb{Z}_{+}^{(n)}$ by permuting the vectors $\{a^{2}, ..., a^{l}\}$ we may suppose $w = \alpha_{1}\mathbf{1} + \alpha_{2}a^{2} + \cdots + \alpha_{k}a^{k}$ where $0 < \alpha_{i} < 1, 2 \leq i \leq k, 0 \leq \alpha_{1} < 1$ and $k \leq l$. When $w = \mathbf{0}$ set k = 1. Then we write the integral in (8) as

$$\int_{\mathcal{R}_{v}^{(l-k)} \times U_{v}^{(n-l)}} \int_{\mathcal{R}_{v}^{(k-1)}} \prod_{i=2}^{l} |y_{i}|^{m(a')s+|a'|-1} |g_{u,w}(y)|^{s} |dy|.$$
(11)

We have

$$g_{u,w}(y) = \sum_{I} a_{I} u^{I} \pi^{w \cdot I - m(w)} y_{2}^{I \cdot a^{2} - m(a^{2})} \dots y_{n}^{I \cdot a^{n} - m(a^{n})}.$$

Observing that $I \in \tau_w$ implies $I \cdot a^i = m(a^i)$, $2 \le i \le k$, we have $\overline{g}_{u,w} \in k_v[y_{k+1}, \ldots, y_n]$. Thus in this case (10) specializes to $\overline{g}_{u,w}(b) = 0$, $b \in \overline{k}_v^n$ implies $(y_j \partial \overline{g}_{u,w}/\partial y_j)(b) \ne 0$ for some $j, k < j \le n$; which implies the system of congruences

$$g_{u,w}(y) \equiv 0 \mod P_v$$

$$\left(y_j \frac{\partial g_{u,w}}{\partial y_j}\right)(y) \equiv 0 \mod P_v, \quad k < j \le n$$
(12)

has no solution in $R_p^{(n)}$.

For any subset $J \subseteq \{k + 1, ..., l\}$ consider cosets $(c_{k+1}, ..., c_n) + P_v^{(n-k)_v}$ of $R_v^{(l-k)} \times U_v^{(n-l)}$ satisfying

$$c_i \equiv 0 \mod P_v \quad i \in J$$

$$c_i \not\equiv 0 \mod P_v \quad i \notin J$$
(13)

and call these cosets of type J. We distinguish the cosets of type J further by saying a coset is of type J_1 if it satisfies $g_{u,w} \neq 0 \mod P_v$ in addition to the above conditions and say it is of type J_2 if it satisfies $g_{u,w} \equiv 0 \mod P_v$ in addition to the above conditions. We then write (11) as a sum over varying J

of integrals of type

$$\int_{C_{f}} \int_{\mathcal{R}_{v}^{(k-1)}} \prod_{i=2}^{l} |y_{i}|^{m(a')s+|a'|-1} |g_{u,w}(y)|^{s} |dy|$$
(14)

where C_J is a coset of type J.

If C_J is a coset of type J_1 , by applying the formulas (2), we have that the integral in (14) is of the form $P_1(t)/Q_1(t)$, where deg $P_1(t) = \sum_{i \in J} m(a^i)$ and

deg $Q_1 = \sum_{i=2}^{k} m(a^i) + \sum_{i \in J} m(a^i)$. If C_J is of type J_2 by (12) we can choose $j, k < j \le n$, such that $y_j \partial g_{u,w} / \partial y_j \ne 0 \mod P_v$. We then make the change of variables $\tilde{y}_j = g_{u,w}, \quad \tilde{y}_i = y_i, \quad i \ne j$. Then the integral (14) is of the form $P_2(t)/Q_2(t)$, where deg $P_2(t) = 1 + \sum_{i \in J} m(a^i)$ and deg $Q_2(t) = 1 + \sum_{i=2}^k m(a^i)$ + $\sum_{i \in J} m(a^i)$. In either case we have $P_i(t)/Q_i(t) = R_i(t)/Q(t)$ where deg $R_i(t) = D - \sum_{i=2}^{\kappa} m(a^i)$. Thus (11) is the sum of rational functions with this property, hence referring to (8) we see that for $w \neq 0$

deg
$$P_{\sigma,u,w}(t) \leq D + m(w) - \sum_{i=2}^{k} m(a^i)$$
.

Moreover the coefficient of the highest degree term in $P_{\sigma,u,w}(t)$ is

$$\begin{split} &\pm \kappa_{\theta}(v)^{-1} q^{-|w| + \sum_{i=2}^{k} |a^{i}|} \sum_{J} (-1)^{|J|} (1 - q^{-1})^{|J| + k - 1} q^{-(n-k-|J|-1)} \\ &\times \Big[N_{J_{1}} q^{-1} + N_{J_{2}} (1 - q^{-1}) \Big], \end{split}$$

where N_{J_i} is the number of cosets of type J_i . If w = 0, we have deg $P_{\sigma,u,w}(t) \leq D$. If $w \neq 0$ in order to show this we must show $m(w) \leq \sum_{\substack{i=2\\k}}^{k} m(a^i)$. We have $w_j = \alpha_1 + \sum_{\substack{i=2\\k}}^{k} \alpha_i a_{ij}$ where $\alpha_i < 1, 1 \leq i \leq k$, hence $w_j < 1 + \sum_{i=2}^k a_{ij}$, and $w_j \in \mathbb{Z}$ implies $w_j \leq \sum_{i=2}^k a_{ij}$. Now let $P \in E(\Gamma_+)$ be such that $\tilde{\sigma}$ is obtained from the partition of $\check{\sigma}_{P}$ into simplicial cones. Write $P = (P_1, \ldots, P_n)$. We have $m(w) = P \cdot w$ and $m(a^i) = P \cdot a^i$, $2 \le i \le k$. Hence

$$m(w) \leq \sum_{j=1}^{n} P_j\left(\sum_{i=2}^{k} a_{ij}\right) = \sum_{i=2}^{k} P \cdot a^i.$$

Thus $m(w) \leq \sum_{i=2}^{n} m(a^{i})$, which implies deg $P_{\sigma,u,w}(t) \leq D$.

Now consider $c_{\sigma,u,w}$. If deg $P_{\sigma,u,w}(t) < D$ then $c_{\sigma,u,w} = 0$. If deg $P_{\sigma,u,w}(t) = D$ then by observing that $N_{J_1} + N_{J_2} = (q-1)^{n-k-|J|}$ we have

$$q^{n-1}\tilde{c}_{\sigma,u,w} = \pm q^{-|w| + \sum_{i=2}^{k} |a^{i}|} \sum_{J} (-1)^{|J|} (q-1)^{|J|+k-1} \\ \times \left[(q-1)^{n-k-|J|} - N_{J} - N_{J} (q-1) \right],$$

where we let $N_J = N_{J_2}$. If $|w| < \sum_{i=2}^{k} |a^i|$ then $q^{n-1}\tilde{c}_{\sigma,u,w}$ is clearly congruent to zero mod q, but if $|w| = \sum_{i=2}^{k} |a^i|$ then

$$q^{n-1}\tilde{c}_{\sigma,u,w} \equiv \pm \sum_{J} (-1)^{|J|} \mod q \equiv 0 \mod q.$$
⁽¹⁵⁾

This proves our assertion about the case $\sigma = \langle 1, a^2, ..., a^l \rangle$ with $l \ge 2$.

The only remaining cases to consider are those where u varies and $\sigma = \langle 1 \rangle$. In this case we show that (8) can be written as $P_{1,u}(t)/Q(t)$ where deg $P_{1,u}(t) \leq D$. Denoting the coefficient of t^D by $c_{1,u}$ and defining $\tilde{c}_{1,u}$ as in the previous case we show $q^{n-1}\tilde{c}_{1,u}$ is an integer and $q^{n-1}\tilde{c}_{1,u} \neq 0 \mod q$.

In this case the integral in (8) is

$$\int_{U_v^{(n-1)}} |g_u(y)|^s |\mathrm{d} y|.$$

Consider the cosets mod $P_v^{(n-1)}$ of $U_v^{(n-1)}$. Letting N be the number of cosets satisfying $g_{\mu} \equiv 0 \mod P_{\nu}$ and applying entirely similar reasoning as before we have that the above integral equals

$$(q^{-1})^{(n-2)}\left[\left((q-1)^{n-1}-N\right)q^{-1}+\frac{N(1-q^{-1})t}{(q-t)}\right].$$

Then examination of the above shows deg $P_{1,u}(t) \leq D$ and

$$q^{n-1}\tilde{c}_{1,u} = (-1)^{D} [(q-1)^{n-1} - N - N(q-1)].$$

Hence $q^{n-1}\tilde{c}_{1,u}$ is an integer and

$$q^{n-1}\tilde{c}_{1,\mu} \equiv \pm 1 \mod q. \tag{16}$$

Furthermore we note that the value on the right of the congruence is independent of *u*.

Let c_v denote the coefficient of t^D in P(t), which we wish to show is nonzero for almost all v. We have $c_v = \sum_{\sigma} (\operatorname{sign} \sigma) \sum_{u,w} c_{\sigma,u,w}$. Recalling that the

27

morphisms associated to the maximal dimension cones were denoted $\theta_1, \ldots, \theta_K$ we define $\kappa(v) = \prod_{i=1}^K \kappa_{\theta_i}(v)$. If σ is a cone, and the morphism associated to the maximal dimension cone $\tilde{\sigma}$ is θ_j , define $\kappa_{\sigma} = \prod_{\substack{i=1 \ i \neq j \\ i \neq j}}^K \kappa_{\theta_i}(v)$. We assume θ_1 is the morphism associated to $\langle I \rangle$, and let $\kappa_1(v) = \prod_{i=2}^K \kappa_{\theta_i}(v)$. Then

$$q_v^{n-1}\kappa(v)c_v = \sum_{\sigma\neq\langle I\rangle} (\operatorname{sign} \sigma) \sum_{u,w} q_v^{n-1}\kappa_\sigma(v) \tilde{c}_{\sigma,u,w} \pm \sum_u q_v^{n-1}\kappa_1(v) \tilde{c}_{1,u}.$$

Let $s_1(v)$ denote the number of coset representatives in $U_v^n/\theta_1(U_v^n)$. Then the congruences in (15) and (16) give

$$q_v^{n-1}\kappa(v)c_v \equiv \pm \kappa_1(v)s_1(v) \mod q_v.$$

Now

$$\kappa_1(v) \leq \prod_{i=2}^{K} \text{ card } W_{v,|M_i|}^{(n)} \leq n^{K-1} \prod_{i=2}^{K} |M_i|$$

where $|M_i|$ is the determinant of the matrix M_i associated to θ_i and $W_{v,|M_i|}$ is the $|M_i|$ -th roots of unity in U_v . We also have

$$s_1(v) \leqslant n \cdot \left[U_v : U_v^{|M_1|} \right]$$

where $[U_v: U_v^{|M_1|}] = \text{card } W_{v,|M_1|}$ for almost all v. Hence for almost all v

$$\kappa_1(v)s_1(v) \leqslant n^K \prod_{i=1}^K |M_i|$$

which implies $\kappa_1(v)s_1(v) \neq 0 \mod q_v$ for almost all v. Therefore $c_v \neq 0$ for almost all v, which concludes the proof. Q.E.D.

Acknowledgements

Supported by National Science Foundation Grant No. DMS 84-14109.

References

Danilov, V.I.: The geometry of toric varieties. Russian Math. Surveys 33: 2 (1978) 97-154.

Denef, J.: Poles of complex powers and Newton polyhedron. To appear in Groupe d'Etude d'Analyse Ultrametrique, Paris '84-'85.

Igusa, J.-I.: Some observations on higher degree characters. Amer. J. Math. 99 (1977) 393-417. Igusa, J.-I.: Some results on p-adic complex powers. Amer. J. Math. 106 (1984) 1013-1032.

Igusa, J.-I.: Some aspects of the arithmetic theory of polynomials. Preprint (1986).

- Kouchnirenko, A.G.: Polyèdres de Newton et nombres de Milnor. Invent. Math. 32 (1976) 1-32.
- Lichtin, B.: Estimation of Lojasiewicz exponents and Newton polygons. Invent. Math. 64 (1981) 417-429.
- Lichtin, B. and Meuser, D.: Poles of a local zeta function and Newton polygons. *Compositio Math.* 55 (1985) 313-332.
- Shimura, G.: Reduction of algebraic varieties with respect to a discrete valuation of the basic field. Amer. J. Math. 77 (1955) 134-176.
- Varchenko, A.N.: Zeta function of monodromy and Newton's diagram. Invent. Math. 37 (1977) 253-267.

Addendum. J. Denef has recently given a proof of Igusa's conjecture in the general case.