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Let K be a finite algebraic extension of Q, R the ring of integers of K and
{v} the set of finite places of K. For v E {v} let | 1 u be the non-archimedian
absolute value on K and Kv the completion of K with respect to this absolute
value. Let Ru be the ring of integers of Kv, P, the unique maximal ideal of Ru
and ku = Ru/Pu. Then k v is a finite field and we let qu = card kv. Let

f(x) = f(xl’’’.’ xn) ~ K[x1,..., xn be a homogeneous polynomial of degree
m. Then for any v we can consider

where s e C, Re( s ) &#x3E; 0 and t = q-sv. This has been shown to be a rational
function of t by Igusa in [Igusa, 1977]. Writing Z(t) = P(t)/Q(t) we define
deg Z( t ) = deg P(t) - deg Q(t). Igusa has conjectured in [Igusa, 1984], p.
1027, and [Igusa, 1986], that for almost all v, i.e. except for a finite number of
v, one has deg Z(t) = - m. In this paper Igusa gives many examples where f
satisfies the additional property that it is the single invariant polynomial for a
connected irreducible simple linear algebraic group.

In this paper we show this conjecture is true if f is non-degenerate with
respect to its Newton Polyhedron. This establishes the conjecture for "generic"
homogeneous polynomials in a sense to be described below.

§1. The Newton polyhedron of f and its associated toroidal modification

We first recall some of the terminology and basic properties of the Newton
polyhedron of an arbitrary polynomial. Other references for this include

[Danilov, 1978; Kouchnirenko, 1976; Lichtin, 1981; Varchenko, 1977].
Let f ~ K[x1,...,xn]. We write f =  ajxl, where 1 = (i1,..., in) and

x = xi11 ··· x’-. Let Supp( f ) = {I E Nn|aI ~ 0}. Let S(f) denote the convex
hull of ~I~Supp(f)(I+Rn+). Let 0393+(f) be the union of all faces of S(f). Let
r( f ) be the union of compact faces only. 0393+(f) is called the Newton

polyhedron of f and r( f ) is called the Newton diagram. We will denote a
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fixed Newton polyhedron and diagram by 0393+ and r respectively. Given a
Newton polyhedron 0393+ and its associated Newton diagram r we define

03A90393+ = {g~K[x1,...,xn]|0393+(g)=0393+}. If g~03A90393+, and y is a face of r, we
define g03B3 to be £ bjx, I if g =  bjx, + £ bIxI. Then we define non-de-

IEy IEY IEy

generacy as in [Kouchnirenko, 1976].

Definition: f is non-degenerate with respect to its Newton polyhedron if for
any face y of 0393+(f) the functions (xi·~f/~xi), have no common zero in
( K - {0})n, where K denotes the algebraic closure of K.

Fix m and n. Identify homogeneous olynomials of degree m in n
variables with PNK, where N = ()-1. For 0393+ a fixed Newton

polyhedron Xr + = {f|0393+(f) = 0393+} is a Zariski subset of Pf. Let

Y,,, = {f|f is non-degenerate with respect to 0393+}.

Then in a completely analogous manner to the proof of Theorem 6.1 in

[Kouchnirenko, 1976] we have the following result which shows the non-de-
generacy condition is generic.

PROPOSITION 1: Y0393+ is a Zariski open, dense subset of XI,,.
Let K be a finite algebraic extension of Q, {v} the finite places of K, and K,,
R v, Pv and kv as defined in the introduction. Let U, = Ry - P, be the units of
Ru. We first recall some definitions concerning the reduction of varieties
modulo Pv.

For g E R[xl, ... , xn], v a finite place of K, let gv denote the polynomial in
kv[x1,...,xn] obtained by reducing the coefficients of g modulo Pv. We shall
abbreviate this to g when v is understood and use the same notation when g
is a constant in R. Let V be an algebraic set defined over K, i.e., V = {x E
Kn |fi(x) = 0, 1  i  r}, where fi(x) E K[x1,...,xn].

Let I(V) be the ideal of V, i.e., I(V) = {f ~ K[xl, ... , xn]|f(x) = 0 ~X ~ V}.
Then we define the reduction of V modulo Pu, denoted Vv by

If f~R[x1,...,xn] then for any finite place v of K we can consider the
non-degeneracy of Iv. We have:

PROPOSITION 2: Let f ~ R [x1,..., xn] be non-degenerate with respect to its
Newton polyhedron. Then for almost all v
a) 0393 + (fv) = 0393+(f)
b) Iv is non-degenerate with respect to its Newton polyhedron.

Proof. Let S = {v| all coefficients of f are in Uv}. Then f or v E S, 0393+(fv) =
0393+(f) and a) follows since almost all v are in S.
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Let T be a face of 0393(f), and write f03C4 = f03C4,1,...,f03C4,t where each f,@, is

absolutely irreducible. Let V,,, t be the variety defined by f03C4,l = 0, Y the

hyperplane defined by Xi = 0, and Y = Uni=1Yl. The condition that f is non-de-
generate is equivalent to the condition that for any face T of 0393(f), and V03C4,l as
above, the singular points of each V03C4,i are contained in Y and for any i, j, i ~ j
we have lg ; ~ lg j c Y. 

Let L be a finite extension of K such that the coefficients of fr i for any T,
i are in L. To each place of v of K let v’ be any place of L dividing v. As a
straightforward conséquence of Hilbert’s Nullstellensatz, for any T, i, j we
have (V03C4,i)v’ ~ (V03C4,j)v’ ~ YU- for all v, v’. As a consequence of Proposition 30
in [Shimura, 1955], (V03C4,i)v’ is absolutely irreducible and its singularities are
contained in Yv’ for almost all places v’ of L. Let S be the set of v e S
satisfying the above property for all T, i and all v’|v. Then almost every place
of K is in S and fv is non-degenerate for all v E S. Q.E.D.

We next describe a toroidal modification of K" that we shall use to prove the
conjecture for homogeneous f that are non-degenerate with respect to their
Newton polyhedron. The modification we use is not the one utilized in

[Lichtin, 1981] or [Lichtin and Meuser, 1985], which gives a nonsingular
variety Yv and a morphism h : Yv ~ Kg such that f - h = 0 is a divisor with
normal crossings, but a weaker modification that has also been used by Denef
in [Denef, not yet published].

Let (Rn+)* = Rn+ - 0. Let a1,...,al be vectors in Ri and 03C3 = {03B11a1
+ ... + 03B1lal|03B1i ~ R +, 1  i  11. a is called a closed cone which we denote

by ~a1,..., al~. 03C3 = {03B11a1 + ··· + 03B1l03B1l|03B1i&#x3E;0, 1  i  l} is called an open
cone. The dimension of any cone is the dimension of the smallest vector

subspace of Rn containing it. a, or Q, is called a simplicial cone if aB..., al I
are linearly independent over R. If a is a closed cone spanned by integral
vectors, then we have the following well known result on a n Zi which we
shall later use.

LEMMA 1. Let a = ~a1,..., a’) be a closed cone in Rn+, where each ai, 1  i  l,
is an integral vector. There are a finite number of integral vectors wl, ... , w r such
that

Proof: It is well known that a has a partition into closed simplicial cones
where each such cone is spanned by a subset of {a1,..., al}. Thus we can

assume a is simplicial. We form the parallelotope P03C3 = { 03B1jaj|0  a j  1 .
Let w1,..., w r be the points in P03C3 n Zn+. Then these w

i satisfy the statement
of the lemma. Q.E.D.
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Associated to any Newton polyhedron 0393+ we have a partition of (Rn+)* into
open cones. For a~(Rn+)* we let m ( a ) = inf {a·y} and r,,= (y 0393+|y.

a = m(a)}. 03C4a is called the meet locus of a. We define an equivalence relation
-by a1 ~ a2 if 03C4a1 = 03C4a2 . This equivalence relation satisfies the following
properties:
i) If a E (Rn+)*, 03C4a is a face of 0393+.
ii) Let T be a face of 0393+. Let F1,...., Fr be the facets of 0393+ containing T. Let
a denote a vector dual to Fi, 1  i  r. Then

We denote the cone in the above formula by (JT. Then its closure QT satisfies
QT = {a ~ (Rn+)*| ra 2 03C4}. A vector a = (a1,..., an) in Zt - 0 is called primi-
tive if the greatest common divisor of the a,, 1  j  n, is one. For each facet
of 0393+ there is a unique primitive integral vector dual to that facet. The above
properties imply each equivalence class under - is an open cone spanned by
a subset of primitive integral vectors dual to facets.

If f is a homogeneous polynomial of degree m in n variables note that all
1 E Supp( f ) lie on the hyperplane 1 - x = m, where 1 = (1, ... 1). Let F be a
face of 0393(f). It is straightforward to see that if P is an exposed point of F
then P = I for some I E Supp( f ). Hence r( f ) is a single face with supporting
hyperplane 1·x = m. Let E(0393+) be the exposed points of r +. Every P E

v

E(0393+) lies in r hence 1 E QP. We can partition (J p into simplicial cones of the
form {03B11a1 + ... +ana n |03B1i ~ R, 03B1i &#x3E; 0} where we may assume a’ = 1, and
a2,...,an are primitive integral vectors dual to noncompact facets of r +
containing P.

Let 03C3 = ~a1,...,an~ be the closure of one of the maximum dimension
cones corresponding to P E E(0393+). Write ai = ( a 11, ... , ain) and let M = [aij].
Then M determines a morphism 03B8 : Knv ~ Knv defined by 03B8(y1,...,yn) =
(x1,...,xn) where

Let dx be the differential dxl ... dXn and 03B8*(dx) its pullback under 0. Then
for f E R[x1,..., xn ], r +, and 0 as above we have the following result.

PROPOSITION 3: 
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for some 2  j  n.

Proof. a) and b) are just specializations of Varchenko’s result, Lemma 10.2 in
[Varchenko, 1977]. We write f = apxP +  with P as in the discussion above
and xI = x ··· x. Then under the map 03B8 the monomial Xl is transformed
to a’. For a) we denote that I ~ 0393(f) implies I·a1 = m and I·al 

m(ai) for 2  i  n. Furthermore p. a = m(ai) for all i, and P is the only
point of 0393(f) having this property, so this gives the above factorization of
(f 0 03B8)(y). The formula 03B8*(dx) is a straightforward consequence of (1).

For c), we first observe that for v E S we have (ap)v ~ 0, hence (f03B8)v(0) ~ 0.
The proof of the rest of c) is identical to Lichtin’s proof of Proposition 2.3 in
[Lichtin, 1981]. Q.E.D.

Let Ku be the completion of K corresponding to any finite place v of K.
Using the same notation as in the introduction, for every such place we fix
7Tu E Pv - P2v. Let Uu = Ru - Pu. For x E Kv we can write x = 03C0ordv Xu where
u E Uv. Let R(n)v = Ru X ... Rv ( n times) with a similar meaning for U(n)v,
P(n)v.

Let o = ~a1, ... , al) be the closure of a cone in the partition corresponding
to r+. To each such cone we associate a maximal dimension closed cone 
containing a, and note that it is not unique. For any place v, associated to a
we consider the subset of R(n)v defined by

Let Y = R(l)v X u(n-l) and consider the morphism 03B8|Y03C3 : Y03C3 ~ R(n)v where 03B8 is
the morphism associated to a defined by (1). We observe that

(ord x1,..., ord xn) = (ord yi)ai, hence 03B8(Y03C3) c Xa. The next Lemma gives
;=1

the properties of 03B8|1 y and the decomposition of Xa that were established by
Denef, Lemma 3 in [Denef, not yet published]. For y = ( yl, ... , 03B3n) ~ Knv, and
T any subset of Knv, denote by yT the set {(03B31x1,..., Ynxn) |(x1,...., xn)~T}.
LEMMA 2. a ) The map 03B8|Y03C3 : Y03C3 ~ 03B8(Y03C3) is locally bianalytic and each fiber has
cardinality KO( v) = card ker 03B8| U(n)v. b) If Wi = (wi1,..., wln), 1  i  r, are the
vectors in 03C3 ~ Zn+ given by Lemma 1, let ’TT w’ denote (03C0,...,03C0w). Let

u1,..., Us(v) be the coset representatives for U(n)v/03B8(U(n)v). Then
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§2. The degree of Z(t)

Let v be a finite place of K. Using the same notation as in the preceding
sections, we define an absolute value on K*v by |x|v = q-ordv x. We let |dx|v
be the Haar measure on Kv normalized so that the measure of Rv is one. Then
the measure of a + Pv for any a ~ Kv is q-1v. If a E R(n)v, a + P(n)v will denote
a coset modulo P(n)v, i. e. (a1 + Pv) X ... (an + Pv) where a = (a1,..., an).

We shall also use Idx 1 v’ defined above for n = 1, to be the measure 03A0|dxi|v
i=l

on R(n)v. When v is fixed we denote 03C0v, |dx|v and qv by 03C0, |dx| and q
respectively. Letting t = q-s we have the following basic formulas for N,
nEZ; N, n0.

For f ~ K[x1,...,xn], and any finite place v, we can consider the zeta

function Z(t) associated to f as defined in the introduction. We then have the
following result.

THEOREM. Let f(x)=f(x1,...,xn)~K[x1,...,xn] be a homogeneous poly-
nomial that is non-degenerate with respect to its Newton polyhedron. Then for
almost every place v of K, deg Z(t) = - deg f(x).

Proof.- Let deg f(x) = m, and r + be the Newton polyhedron of f. As
explained in the previous section, associated to this Newton polyhedron we
have a partition of Ri into open cones. For P an exposed point of r +, let Qp
be the associated maximal dimension open cone. As previously observed we
can partition ôp into simplicial cones of the form {03B1103B11 + ··· + ana a; &#x3E; 01
where a’ = 1, if âp is not already in this form. The a’, 2  i  n, are dual to
noncompact facets of r +. Repeating this process for all points of E(0393+) let
1,...,K denote the resulting simplicial cones, and let 01’...’ uK denote the
corresponding closed cones. Ri c U Ql and if {i1,...,ik} ~ {1,... K} then

al is a closed cone, which is a face of each a, i, hence is a simplicial cone.
Furthermore the closed cone {03B11|03B1O} is contained in every such cone.
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Consider

Since every (k1,..., kn) ~ zin) occurs exactly once in (3) we can write Z( t ) as
the sum and difference of integrals of the form

where a = ~1, a2,..., al~ for some l, 1  1  n, where the 1 = 1 case is o = (1).
For each maximal dimension cone 03C3k = ~1, a2,...,an~ write a =

(03B1i1,..., atn ), let Mk = [aij], and let 03B8k be the morphism defined by (1) in §1.
Let S be the set of places satisfying the conditions in Proposition 3 c) for Mk,
1  k  K.
We now fix v E S, and o = ~1, a 2, ... , al). Choose a maximal dimension

cone (Jk, 1  k  K, such that ak contains o. We denote this choice by
 = ~1, a l, al+1,..., an~ and let M, 03B8 be the matrix and morphism associated
to . Referring to the decomposition of X03C3 in Lemma 2 b) we can write (4) as
a sum of integrals of the form

for some u = ui 1  i  s(v), and w = wJ, 1  j  r, where Y03C3 = R(l)v X U(n-l)v.
Write f = 03A3aIxI, then f(u03C0wx) = LaIuI7TwoIxI. We have w·O  m(w)

I I

for all 1 E r +, so we let

Then the integral in (5) equals

By applying a) and b) in Proposition 3, in addition to the above observations,
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we have that the integral in the above is

where YQ = R(l-1)v X U(n-l)v and gu,w(y) E Rv[y2,..., Yn]. Applying (2) to the
first integral we have that the contribution to Z(t) from (5) is

times

By our observations above the factor (7) occurs for any integral of the form
(5), so we can write

where (t) is the sum and difference of expressions in the form of (8) for all
possible o, u, w. We shall show that (8) can be written in the form

P03C3,u,w(t)/Q(t) where Q(t)=(q-t)03A0(q|al| - tm(al)) and the product is over
all a dual to a noncompact facet of r +. We then write (t) = P(t)/Q(t) and

where sign Q = ± 1 is the coefficient of a in the decomposition (3). Let

D = 1 + 03A3m(ai) = deg Q(t). We shall show that after possibly excluding an
additional finite set of places in S, that deg P(t) = D, in which case the
theorem follows.
Now consider gu w(y). Referring back to fu,w(x) as given in (6) we see thatfu,w(x) =  aju x where Tw is a face of r + . We have that fu,w is nonde-

generate with respect to its Newton polyhedron since if T’ is a face of Tw. and
b E (kv-{0})n is a solution to

then ûb would be a solution to
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But T’ is a face of r +, hence this contradicts the non-degeneracy of f. Thus
by applying Proposition 3 we have gu,w(b) = 0 implies

for some j, 2  j  n.
First consider the case where (J = ~1, a 2, ... , al) with 1  2. We shall show

that deg P03C3,u,w(t)  D. Then writing the coefficient c03C3,u,w of tD in P03C3,u,w(t) as
(03BA03B8(v)))-103C3,u,w we show qn-103C3,u,w = 0 mod q.

If w ~ 0, since w E (J rl Z(n)+ by permuting the vectors {a2,...,al} we may
suppose w = 03B111 + 03B12a2 + ··· +akak where 0  03B1i  1, 2  i  k, 0  03B11  1
and k  1. When w = 0 set k = 1. Then we write the integral in (8) as

We have

Observing that 1 E Tw implies 1. a = m(ai), 2  i  k, we have gu w E
kv[yk+1,...yn]. Thus in this case (10) specializes to gu,w(b) = 0, b ~ knv
implies (yj ~gu,w/~yj)(b) ~ 0 for some j, k  j  n ; which implies the system
of congruences

has no solution in R(n)v.
For any subset J ~ {k+1,...,l} consider cosets (ck+1,..., cn ) + P(n-k)vv

of R(l-k)v X U(n-l)v satisfying

and call these cosets of type J. We distinguish the cosets of type J further by
saying a coset is of type J1 if it satisfies gu,w ~ 0 mod Pv in addition to the
above conditions and say it is of type J2 if it satisfies gu,w == 0 mod PU in
addition to the above conditions. We then write (11) as a sum over varying J
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of integrals of type

where CJ is a coset of type J.
If CJ is a coset of type JI, by applying the formulas (2), we have that the

integral in (14) is of the form P1(t)/Ql(t), where deg P1(t) =  m(a’) and
k

deg QI = L m(ai) + L m(a’). If CJ is of type J2 by (12) we can choose

j, k  j  n, such that yj ~gu,w/~yj ~ 0 mod P,. We then make the change of
variables j = gu,w, l = yi, i =1= j. Then the integral (14) is of the form

P2(t)/Q2(t), where deg P2(t) = 1 +  m(a’) and deg Q2(t) = 1 +  m(a’)

+ L m(a’). In either case we have Pi(t)/Qi(t) = Ri(t)/Q(t) where
i EJ

k

deg R i (t) = D - L m (a’). Thus (11) is the sum of rational functions with
i=2

this property, hence referring to (8) we see that for w =1= 0

Moreover the coefficient of the highest degree term in P03C3,u,w(t) is

where Nj is the number of cosets of type Ji.
If w = 0, we have deg P03C3,u,w(t)  D. If w ~ 0 in order to show this we must

show m(w)  m(a’). We have wj = ai +  aiaij where 03B1i  1, 1  i  k,

hence wj  1 +  aij, and wj ~ Z implies wj  aij. Now let P E E(0393+)
be such that Q is obtained from the partition of Op into simplicial cones. Write
P = (P1,...,Pn). We have m(w)=P.w and w(ai) = P·ai, 2  i  k. Hence

k

Thus m(w)  03A3 m(al), which implies deg P03C3,u,w(t)  D.
i=2
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Now consider c03C3,u,w. If deg P03C3,u,w(t)  D then c03C3,u,w = 0. If deg P03C3,u,w(t) =
D then by observing that NJ1 + NJ2 = (q-1)n-k-|J| we have

k

where we let NJ = NJ2. If |1 w |  03A3|ai| then qn-103C3,u,w is clearly congruent
i=2

k

to zero mod q, but if |w 1 = Liai | then
i=2

This proves our assertion about the case a = (1, a 2, ... , al) with 1  2.
The only remaining cases to consider are those where u varies and a = (1):

In this case we show that (8) can be written as P1,u(t)/Q(t) where deg P1,u(t)
 D. Denoting the coefficient of tD by cl, u and defining 1,u as in the

previous case we show qn-11,u is an integer and qn-11,u ~ 0 mod q.
In this case the integral in (8) is 

Consider the cosets mod P(n-1)v of U(n-1)v. Letting N be the number of cosets
satisfying gu ~ 0 mod Pv and applying entirely similar reasoning as before we
have that the above integral equals

Then examination of the above shows deg P1,u(t)  D and

Hence qn-11,u is an integer and

Furthermore we note that the value on the right of the congruence is

independent of u.
Let c, denote the coefficient of tD in P(t), which we wish to show is

nonzero for almost all v. We have cv = 03A3(sign 03C3) 03A3 c03C3,u,w. Recalling that the
a u, w
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morphisms associated to the maximal dimension cones were denoted B1, ... , 03B8K
K

we define 03BA(v) = 03BA03B8l(v). If a is a cone, and the morphism associated to the
K

maximal dimension cone Q is 03B8j, define K a = 03BA03B8l(v). We assume 03B81 is the

i*j
K

morphism associated to (1), and let 03BA1(v) =  KO,(V). Then

qn-1v03BA(v)cv=  (sign 03C3) qn-1v 03BA03C3(v) 03C3,u, w ± n-l 1k1( v) 1,u.

Let s1(v) denote the number of coset representatives in Unv/03B81(Unv). Then the
congruences in (15) and (16) give

qÛ-1K(v)cv= ±03BA1(v)s1(v) mod qv.

Now

where |Mi| is the determinant of the matrix f associated to Oi and Wv,1 Mil 
is the 1 Mi -th roots of unity in llv. We also have

where [Uv : U|M1|v] = card Wv|M1| for almost all v. Hence for almost all v

which implies 03BA1(v)s1(v) ~ 0 mod qv for almost all v. Therefore Cu =1= 0 for
almost all v, which concludes the proof. Q.E.D.
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