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1. Introduction

A connection on a principal bundle is called Yang-Mills when it gives a
critical point of the Yang-Mills functional, that is, it satisfies the Yang-
Mills equation d*FA 0 with respect to the curvature FA . From the
Bianchi identity dA FA = 0 a Yang-Mills connection is nothing but a con-
nection whose curvature is harmonic with respect to the covariant exterior
derivative dA .
Over an oriented Riemannian 4-manifold M a connection A being Yang-

Mills is equivalent to either DAFI = 0 or dAF- = 0 where F+ (or F-)
denotes the self-dual (or anti-self-dual) part of FA. An (anti-) self-dual
connection, namely a connection satisfying F- = 0 (or F+ = 0) yields a
Yang-Mills connection minimizing the Yang-Mills functional from the
Chern-Weil theorem.
There are many arguments focused on the gauge orbit space (moduli

space) of (anti-) self-dual connections [4, 6, 8]. But we have a small knowl-
edge of general solutions of the Yang-Mills equations. In fact only theorems
with respect to the weakly stability and an estimate of the index of the
Hessian of the functional are obtained over manifolds of special type [3, 10,
14] and we have isolation theorems relative to LOO- (or L2 -) norm of the
curvature [3, 12, 13].
Now we assume that the base manifold is a complex surface with a Kâhler

metric. Then the curvature splits into FA = F2,0 + FO,2 + F1,1, where Fp,q
is the (p, q)-component. We have from the Bianchi identity a AF2,o = 0 and
~AF0,2 = 0 with respect to the partial covariant derivatives.
We notice that the complex surface carries the natural orientation and the

self-dual part F+ relative to this orientation is given as F+ = F2,0 +
po,2 + po (8) ru (F° is a 0-form and 03C9 is the Kâhler form) and the anti-self-
dual part F- is a form of type (1, 1) which is orthogonal to 03C9 [7].
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An anti-self-dual connection relates to a semi-stable holomorphic struc-
ture together with an Einstein-Hermitian structure on the associated com-
plex vector bundle [5, 9].
By the way we observe in general that a connection is Yang-Mills over a

complex Kâhler surface if and only if ~*AF2,0 = - i8AFo (Proposition 3.1).
Then that FI is parallel is equivalent to F2,0 being harmonic by the Bianchi
identity.

Definition. A connection on a complex Kâhler surface is said to be with
harmonic curvature if F2,o is harmonic (i.e., 8AF2,o = 0 and ~*AF2,0 = 0).

We investigate in this article relations between the harmonicity and the
anti-self-duality of the Yang-Mills connections. The following is one of the
main results.

THEOREM 1. Let M be either a compact complex surface with a Kâhler metric
of positive scalar curvature, a complexflat torus or a K3 surface with a Ricci
flat metric. Suppose that an irreducible connection A is Yang-Mills and is with
harmonic curvature. Then A is anti-self-dual.

A connection is irreducible when it admits no nontrivial covariantly
constant Lie algebra-valued 0-form.
We have the following observation from Weitzenbôck formulae that if

the components of F+ pointwise commute each other, that is, either

[F0 A F2,0] = 0 or [F2,o A PO,2] = 0, then F2,0 is harmonic (Proposition 3.3).
Denote by YM the space of irreducible Yang-Mills connections and 0

the space of irreducible connections whose curvature satisfies Fo = 0. Then
the theorem asserts that dYM (B 0 = _, here ai_ is the space of irreduc-
ible anti-self-dual connections. These spaces are gauge invariant with respect
to the group g of gauge transformations. So the moduli space of irreducible
anti-self-dual connections _ /g is described as _ /g = YM/g ~ ,;,O/e.
The following gives an isolation phenomenon relative to L2 -norm of F° .

THEOREM 2. Let M be a compact complex surface with a Kâhler metric of
positive scalar curvature and P = P(M, G) a principal bundle. Then there is
a constant c &#x3E; 0 which depends only on the invariant inner product on the Lie
algebra g of G and the Riemannian structure of M such that if A is an

irreducible Yang-Mills connection on P satisfying JIFAIIL2  c, then A is

anti-self-dual.
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We have then from this theorem an open subset W = {[A]; ~F0A~L2  c}
in the orbit space /g of irreducible connections with property _ /g =
W n YM/g.
We discuss next the weakly stability of a Yang-Mills connection with

harmonic curvature over a general complex Kâhler surface.
We obtain the following by an averaging trick with respect to the complex

structure of M. Similar arguments are used in [3] and [14].

THEOREM 3. Let M be a compact Kâhler surface and P an SU(2)-principal
bundle with Pont, (gp)  0, gp = P X Ad g, satisfying 4k ~ 3pa (M). Let A
be an irreducible Yang-Mills connection on P. If A is weakly stable (that is,
the Hessian of the Yang-Mills functional is positive semi definite) and satisfies
[F2,0 ^ F0,2] = 0, then
(i ) A is anti-self-dual, or
(ü) A is not anti-self-dual and the space Ker DA, of harmonic (1,0)-forms with

values in gCP has dimension at least 1 + 4k - 3pa(M), DA = ~A~*A +
~*A~A, and moreover for any a’ E Ker DA, A + a, a = a’ + 03B1’ gives a

Yang-Mills connection with harmonic curvature and FÂ+a - FÀ . Here
k = c2 (E), E = P  SU(2) e2 and pa(M) is the arithmetic genus of M.

Thus the nullity nA of the Hessian at the non anti-self-dual connection in
the theorem is given by nA ~ 1 + 4k - 3pa (M). In fact conclusion (ii)
implies that there is a subset N in YM, A E N, with effective 1 parameters,
l ~ 1 + 4k - 3pa (M) in the way that (1) each connection in N is Yang-
Mills and with harmonic curvature, (2) if AI and A2 in N are gauge equi-
valent, then A1 = A2 and (3) the self-dual part F+ coincides for any
connection in N.
We remark finally on relations among special subspaces of the orbit space
/g over a complex Kâhler surface. For simplicity we set G = SU(n). We
have then the group Wc of complex gauge transformations of the bundle
so that (g, H+) gives an Iwasawa decomposition of gC, H+ = F(M:
P x SU(n) H+ (n)). Here H+ (n) is the space of positive definite Hermitian
matrices with determinant 1. The group ec acts on d in a twisted manner
to induce the quotient space /gC and we get a fibration /g ~ /gC
with fibre e+ which is diffeomorphic to the space of infinitesimal gauge
transformations Q(gp). Hence the homotopy groups of these spaces are
isomorphic.
The space /gC inherits a canonical complex structure, since Ker ~*A c

03A90,1(gCP) is identified with its tangent space. The subspace 0/g of /g
admits also a complex structure because its tangent space is isomorphic to
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Ker ~*A. Thus 0/g is considered as a representative of the complex space
/gC in the ambient space /g by a unitary group description.
We denote by 1,1 the space {A E ; FA is type (1, 1)}. Then we have the

canonical projection 1,1/g ~ 1,1/gC. The latter space is the moduli of
holomorphic structures on the associated bundle. The restriction of this
canonical projection to the moduli space _ /g is shown to be injective and
open [8]. Thus the moduli space represents exactly the moduli 1,1/gC in a
unitary group way. Moreover _ le is a deformation retract of dI,1 /g, in
fact it is diffeomorphic to the product _ le x H+ by the aid of the
moment map [5]. WehavealsodYMlr;; n 1,1/g = _ /g which is an easy
application of our argument.

2. Weitzenbôck formulae

Let M be a compact complex surface with a Kâhler metric g and P =

P(M, G) be a smooth principal bundle over M with a compact semi-simple
Lie group G. Over the bundle Ak Q g, of Lie algebra-valued k-forms the
inner product ,&#x3E; is canonically defined. For any connection A on P
we have the covariant exterior derivatives dA ; 03A9k(gP) ~ 03A9k+1(gP) where
03A9k(gP) denotes the space of Lie algebra-valued k-forms. Like the canonical
splitting of the exterior derivatives d = ô + ~, dA decomposes over M into
dA = a A + ~A. Then we get from the Bianchi identity

We now give the Weitzenbôck formulae for Lie algebra-valued (k, 0)-
forms which just correspond to the formulae in [3].
We define a Hermitian inner product «, » on 03A9p,q(gCP), the space of

C-valued (p, q)-forms by

where * is the C-linearly extended Hodge operator over complex forms and
is the conjugation on the bundle of gCP-forms which is defined naturally.

Remark that ~03BE A *~~ = 0 for k-forms ç and il which are of different type.
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We denote by d1 and d1* the formai adjoint of dA and the self-dual part
d1 of dA with respect to ~, ~M and by ~*A and ~*A the formai adjoint of the
partial derivatives a A and ~A relative to the Hermitian inner product.

PROPOSITION 2.1. Let A be a connection on P. For a e 03A91(gP), a = 03B1’ + a",
03B1’ = 03B1" e 03A91,0(gCP) we have

where

Remark. This formula corresponds to the decomposition of the real

Laplacians operating on the scalar field forms over a Kâhler manifold.

Before proving this proposition we introduce an operator which is con-
venient for the expression of d+A* by d’ = J dA ; 03A90(gP) ~ 03A91 (gp), where J
is the complex structure on 03A91 (gp) induced from the base manifold, Ja -

LEMMA 2.2. (i) For a E 03A91(JP) we have

and

(ii) with respect to a seff-dual JP-valued 2-form

Proof of Proposition 2.1. We have from
and we operate

by the aid of (2.7) to get
Thus follows

from this.
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Proof o, f Lemma 2.2. (i) We have for dA ~ = ~A ~ + ~A~ ~dA~, 03B1~M =
«~A~, a’iiM + «~A~, 03B1"»M = «cP, ~*A03B1’ + ~*A03B1"»M. Since ~*A03B1’ + ~*A03B1"
is real, this is just equal to ~~, ~*A03B1’ + ~*A03B1"~M. Similarly we get (2.5). For
03B1 ~ 03A91(gP) the self-dual part d1 rx of dA 03B1 is written as d+A 03B1 = ~A 03B1’ +
~A 03B1" + 1 2 ~~A03B1’ + ~A 03B1", 03C9~ O 03C9, because we have that for any real 2-form
0 = 02,0 + 03B80,2 + 03B81,1 its self-dual part 03B8+ is given by 0+ = 03B82,0 + 03B80,2 +

1 2 ~03B81,1, 03C9~ ~ 03C9 [7]. Since 03C9 = i 03A3 g03BC03BD dz03BC A dzv and ~A 03B1’ = 03A3 v03B103BC dzv A
dz03BC, ~*A03B1’ = -03A3 g03BD03BCv03B103BC (v · = ~v · +[Av, ·], v · = v · + [Av, ·]), we have
~~A03B1’ + ~A03B1", 03C9~ = dCA*03B1. Thus (2.6) is obtained.
To get (2.7) we use the following formula

for self-dual 2-forms 0 and 03C8. Then we obtain

Here the third term reduces to

from which we derive (2.7).

PROPOSITION 2.3. Let A be a connection. Then for each t/1 E 03A92,0(gCP)

where S is the scalar curvature of the metric g.

Proof. The component of ~A 03C8 is given by Then

reduces to We have similarly
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Then

By making use of the Ricci formulae we reduce this to

Thus (2.8) is derived, since the base manifold is two dimensional and
S = -1 Y- gÜtRtü and F° = 1 2 ~FA, 03C9~ = -i/2 03A3 g03C303C4 F03C403C3.
The following gives a vanishing theorem relative to a harmonic (2, 0)-

form.

PROPOSITION 2.4. (i) Let M be a compact complex Kâhler surface with
positive scalar curvature. If a connection A on a G-principal bundle over M
satisfies po = 0, then in the space 03A92,0(gCP) Ker DA = 0.
(ii) Let M be either a two dimensional complex flat torus or a K3 surface with
a Ricci flat Kâhler metric. If a connection A is irreducible and satisfies F0 = 0
then Ker DA = 0.

Proof. (i) This is obvious because we have from (2.8)

(ii) From the above formula each harmonic (2, 0)-form 03C8 is ôA -covariant
constant. It is also dA -covariant constant since ~*A~A03C8 = ~*A~A03C8 +
2i[F’, 03C8]. By the way the bundle 039B2,0 is trivial and admits a covariant
constant section (~0). Hence 03C8 vanishes from the irreducibility of the
connection A.

3. Yang-MiUs connection with harmonic curvature

Let P be a G-principal bundle over a compact Kâhler surface M. Let A be
a connection on P. Decompose the self-dual part F+ of the curvature into
F+ = F2,0 + F0,2 + F° (D co. We first show the following proposition.
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PROPOSITION 3.1. The following conditions are equivalent;
(i) A is Yang-Mills, that is, dA F+ - 0,

Proof Suppose that A is a Yang-Mills connection. Then dA F+ - (OA +
~A)(F2,0 + F0,2 + FO 0 w) = 0. Hence the (2, 1)-component of this

equation vanishes also. Conversely, assume (3.1). By a reality condition on
FA the complex conjugate of (3.1) holds, that is, ~A F0,2 = -oA(FO 0 03C9).
Thus dA F+ - 0 by the aid of the Bianchi identity (2.1). Assume (3.1)
again. Since ~*A = -* o ~Ao * and ~*A = - * o ~A o * [11], we have 01F2,0 =
-~*A(F0 Q 03C9). Here we get moreover (o1(PO 0 03C9))03BC = 03A3 i’tVt(PO 0 03C9)03BC03C3 =
i03BCF0. Hence (3.2) is obtained. From (3.2) together with the conjugate
formula ~*AF0,2 = i~AF0, we have by the aid of (2.7) d1*F+ = ~*AF2,0 +
~*AF0,2 + dCAF0 = ~*AF2,0 + ~*AF0,2 + i(~AF0 - ~AF0) = 0. Then dAF+ = o.

As a direct consequence of Proposition 3.1 we have

COROLLARY 3.2 [5]. Let A be a Yang-Mills connection. If A is irreducible and
its curvature is of type (1, 1), then it is anti-self-dual.
The following is a Weitzenbôck formula with respect to the (2, 0)-com-

ponent F2,0 of the curvature.

PROPOSITION 3.3. Let A be a Yang-Mills connection. Then we have

and equivalently

Proo, f : From Proposition 3.1 we have ~AF2,0 = ~A~*AF2,0 + ~*A~AF2,0 =
- i8 A aA pO = - i[F2,0, FO]. Here we made use of Ricci formula. We apply
further Proposition 2.3 to (3.3) to get (3.4).

PROPOSITION 3.4. Let M be a compact Kâhler surface with positive scalar
curvature. Let A be an irreducible Yang-Mills connection. If it satisfies one of
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the following, then it is anti-self-dual;

Proof. We assume (i). Then from Proposition
and hence

Since the scalar curvature is positive, F2,0 vanishes. Then by Corollary 3.2
we have that A is anti-self-dual. Now assume (ii). We take the inner product
of (3.4) with p2,0. Then

Thus A is anti-self-dual, since

Remark. From this proposition we observe that if the base manifold is as
above and A is an irreducible Yang-Mills connection satisfying pO = 0,
then A is anti-self-dual.

There is a constant c &#x3E; 0 depending on the Lie algebra g and the

inner product ~, ~ on g such that |[X, XII ~ c|X|2, X E gC. Then

|«[F0 039B F2,0], p2’0»1 | dv = |F0, [F2,0 A F2,0]~| ~ c|F0| |F2,0|2 dv. Apply-
ing the technique of Sobolev inequalities appeared in [12] we obtain

COROLLARY 3.5. Let M be as above. Let A be an irreducible Yang-Mills
connection. If ~ po ~L2  cl for some constant CI &#x3E; 0 depending on the inner
product on g and the Riemannian structure of M, then A is anti-self-dual.

In the case that the scalar curvature S = 0 we have

PROPOSITION 3.6. Let M be a two dimensional complex flat torus or a K3
surface with a Ricci flat metric. Then an irreducible Yang-Mills connection
satisfying either [F’ A F2’°] - 0 or [F2,0 039B F0,2] = 0 is anti-self-dual.

This proposition is easily verified by (ii), Proposition 2.4.
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4. Weakly stable Yang-Mills connection

We relax the positive scalar curvature condition of the base manifold and
then argue a relation between the anti-self-duality and the weakly stability
for a Yang-Mills connection with harmonic curvature. We will show here
Theorem 3.

Proof of Theorem 3. The Hessian Je of the Yang-Mills functional is given
by the formula [14]

where [a A 03B2]+ is the self-dual part of the 2-form [a A 03B2]. If the connection
is irreducible, then the weakly stability is equivalent to the following bilinear
form

being positive semi definite over 03A91(gP) [14]. By the way p2,0 is harmonic
from (3.3), since «~A F2,0, F2,0» = -«i[F2,0 A F°], F2,0» = ~iF0,
[F2,0 039B F2,0]~. Hence pO is covariant constant and then vanishes. Therefore
by Proposition 2.1 (4.1) is written as for 03B2 = a

We have also for J03B1

On the other hand the dimension dim Ker DA is given by dim Ker ~1A =
dim Ker ~2A + 4k - 3Pa(M), where D1 and ~2A are the complex Laplacians
associated to the sequence; 03A90(gCP) ~ 03A91,0(gCP) ~ 03A92,0(gCP), because
the index of this sequence dim Ker ~0A - dim Ker ~1A + dim Ker ~2A is

represented by -c2(gCP) + 3Pa(M) [2], and Ker ~0A = 0 and c2(gCP) =
4c2(E).
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Assume now that A is not anti-self-dual. Then F2,0 is a non zero harmonic
2-form. Hence dim ker ~1A ~ 1 + 4k - 3p,,(M) &#x3E; 0. For any non zero

a’ E Ker oÂ we have

Since DA and DA commute with J, H(J03B1, Ja) - - H(03B1, a) for ri E Ker Dl
It follows then from the weakly stability that 3P(a, a) = à8(Ja, Ja) - 0
and hence H(03B1, 03B2) = 0 for an f3 E 03A91(gP), namely

03B2’ ~ 03A91,0(gCP). Hence we have [F12, 03B11] = [F12, 03B12] = 0, where F2,0 =

F12 dz1 A dz2 and 03B1’ = 03B11 dz1 + 03B12 dz2. Since A is not anti-self-dual

and the structure group is SU(2), 03B11, 03B12 are scalar multiples of F12 . Then
[03B1" A 03B1"] = [03B1’ A 03B1’] = 0 holds on an open subset. [03B1" A 03B1"] is a poly-
nomial function of a solution to the elliptic equations ~A03B1" = 0. From a

uniqueness theorem on continuation of a solution [1] ] [03B1" A 03B1"] = 0 holds
over M. We show now that each A + 03B1 is Yang-Mills and is with harmonic
curvature and satisfies F+A+03B1 = F+A. Since ~A03B1’ = [03B1’ A a’] = 0, we

have F2,0A+03B1 = F2,0A and then F0,2A+03B1 = pO,2 Moreover F1,1A+03B1 = FI,1 + ~A03B1’ +
~A03B1" + [03B1’ 039B 03B1"]. But we get [03B1’ A 03B1"] = 0, since it is proportional to
[F2,0 A F0,2] = 0. Then F0A+03B1 = F0A + i/2(L g03BD03BC03BD03B103BC - 03A3 g03BD03BC~03BC03B103BD) = F0A = 0,
because 03B1’ e Ker DA and 03B1" e Ker ~A. Since [03B1" 1B F2,0] = 0 we have that
~A+03B1 F2,0A+03B1 = ~AF2,0A. Hence A + 03B1 is a Yang-Mills connection from

Proposition 3.1.
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