S. TSUYUMINE

On the Siegel modular function field of degree three

<http://www.numdam.org/item?id=CM_1987__63_1_83_0>

© Foundation Compositio Mathematica, 1987, tous droits réservés.
L’accès aux archives de la revue « Compositio Mathematica » (http://http://www.compositio.nl/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/
On the Siegel modular function field of degree three

S. TSUYUMINE
Sonderforschungsbereich 170, Mathematisches Institut, Bunsenstrasse 3–5, 3400 Göttingen, Federal Republic of Germany (Current address: Department of Mathematics, Mie University, Tsu, 514 Japan)

Received 19 September 1986; accepted 22 December 1986

Introduction

Let H_n be the Siegel space of degree n, and let Γ_n be the modular group. A (Siegel) modular function f is defined to be a meromorphic function on H_n which is invariant under Γ_n, where for $n = 1$, we need an additional condition that f is meromorphic also at the cusp. Let K_n denote the Siegel modular function field over \mathbb{Q}, namely the field generated over \mathbb{Q} by modular functions with the rational Fourier coefficients. Then the modular function field is given by $K_n \cong \mathbb{Q}C$. When $n = 1$, namely the elliptic modular case, it is well-known that K_1 is generated by the absolute invariant, which has a nice arithmetic property, e.g. an elliptic curve E has a model over the field generated over \mathbb{Q} by its special value attached to E. In the higher dimensional case, several ways to get K_n are known: for example, Siegel [16], [18] showed that K_n is generated by E_{kl}/E_k^l (even $k > n + 1$, $l = 1, 2, \ldots$) where E_k denotes the Eisenstein series of weight k. Besides this, if we denote by $K(\Gamma_n(l))$ the modular function field for the principal congruence subgroup $\Gamma_n(l)$ of level l, then it is shown (Siegel [17]) that $K(\Gamma_n(l))$, $l \geq 3$, is generated by ratios of theta constants. Then K_n is given as the invariant subfield $K(\Gamma_n(l))^{\Gamma_n/\Gamma_n(l)}$. However, these methods seem not very effective to get a finite number of generators explicitly. In the case of K_2, Igusa determined three generators in his paper [3], [4], where they are written by Eisenstein series, or also by theta constants. In particular, K_2 is shown to be purely transcendental. In a previous paper [19], we gave 34 generators of the graded ring of Siegel modular forms of degree three. By this, we are able to find generators of K_3 systematically. However, a systematic calculation gives too many (actually thrity three) generators. The purpose of the presence paper is to give seven generators of K_3 explicitly, which are ratios of modular forms of weight at most 30.

The quotient space H_3/Γ_3 is naturally equipped with the structure of the moduli variety over \mathbb{Q}, of three-dimensional principally polarized Abelian
It is still an open problem if the number of generators of K_3 can
be reduced one more, to six, which amounts to the rationality problem of
H_3/Γ_3 since K_3 is the rational function field of the variety H_3/Γ_3. The moduli
variety of curves of genus three is regarded as an open subvariety of H_3/Γ_3
by means of the Torelli map. Using the moduli theory of curves, Riemann
[11], Weber [20], Frobenius [2] studied $K(\Gamma_3(2))$. They showed the rationality
of the variety $H_3/\Gamma_3(2)$, and moreover gave six generators of $K(\Gamma_3(2))$
explicitly written in terms of derivatives of odd theta functions at the origin.
Prof. R. Sasaki has given a nice mimeograph [12] surveying this topic. So
H_3/Γ_3 is a unirational variety with a Galois covering of a rational variety of
degree $[\Gamma_3:\Gamma_3(2)] = 1451520$, in other words, K_3 has a Galois extension of
degree 1451520 which is purely transcendental. Also by the moduli theory
of curves, H_3/Γ_3 is proved to be even stably rational (Kollár and Schreyer
[6], see also Bogomolov and Katsylo [1]).

In some cases, generators of K_n work as the absolute invariant of the
elliptic modular case. More precisely by Shimura [13], [14] it is shown that
if a principally polarized Abelian variety A is with sufficiently many complex
multiplication, under a certain condition, or generic of odd dimension (our case),
then A has a model over the field generated over \mathbb{Q} by their special
values attached to A (see also [15], Theorem 9.5, Corollary 9.6). The author
hopes that the result of the present paper will be of use for study of the
rationality problem of H_3/Γ_3, or for that of arithmetic properties of three-
dimensional Abelian varieties.

1. Notation and preliminary

Let $\mathbb{Z}, \mathbb{Q}, \mathbb{C}$ denote as usual the ring of integers, the rational number field,
the complex number field respectively. Let $A = \bigoplus A_k, B = \bigoplus B_k$ be graded
\mathbb{C}-algebras. Then the tensor product $A \otimes B$ denotes a graded \mathbb{C}-algebra
$\bigoplus_k A_k \otimes B_k$. For an integral graded algebra A, $F_0(A)$ denotes the field
formed by elements of degree 0 in the field of fractions of A. We denote by
$M_{k,l}(\ast)$, the set of $k \times l$ matrices with entries in \ast, and by $M_k(\ast)$, the set of
square matrices of size k.

Let H_n denote the Siegel space of degree n \{\(Z \in M_n(\mathbb{C})|Z = Z,\)
\(\text{Im } Z > 0\}\}, and let Γ_n denote the modular group $Sp_{2n}(Z)$. Γ_n acts on H_n by
the usual modular substitution

$$Z \rightarrow MZ = (AZ + B)(CZ + D)^{-1}, \quad M = (A^B) \in \Gamma_n.$$

$\Gamma_n(l)$ denotes the principal congruence subgroup of level l \{\(M \in \Gamma_n|M \equiv 1_{2n}\)
\(\mod l\}\}, 1_{2n} being the identity matrix of size $2n$. For a congruence subgroup
of Γ_n, a holomorphic function f on H_n is called a (Siegel) modular form for Γ of weight k if f satisfies

$$f(MZ) = |CZ| + D^{|ijf(Z)|} \text{ for } M \in \Gamma$$

and if f is holomorphic also at cusps which is automatic when $n > 1$. In the present paper, weight k of a modular form is always supposed to be even. $A(\Gamma)_k$ denotes the vector space of modular forms of weight k, and $A(\Gamma) = \bigoplus A(\Gamma)_k$, the graded ring of modular forms. For $f \in A(\Gamma)_k$, and for $M \in \Gamma_n$, we define $(Mf)(Z)$ to be $|CZ| + D^{-|f|}(MZ)$.

Let $m = \binom{m'}{m''} \in M_{2,n}(\mathbb{Z})$. We define a theta function with a theta characteristic m by setting

$$\theta[m](Z, x) = \sum_{g \in \mathbb{Z}^n} e^{\left(\frac{1}{2}(g + \frac{1}{2}m')Z'(g + \frac{1}{2}m') + (g + \frac{1}{2}m')^2(x + \frac{1}{2}m'')\right)}$$

where $x = (x_1, \ldots, x_n)$ is a variable on \mathbb{C}^n, and $e(\cdot) = \exp(2\pi i \cdot)$. m is called even or odd according as $e(\frac{1}{2}m'm'')$ equals 1 or -1. We put $\theta[m](Z) = \theta[m](Z, 0)$, which is called a theta constant and which is not identically zero if and only if m is even. $\theta[m](Z)$ has the integral Fourier coefficients. If m is odd, then $(1/2\pi)\partial/(\partial x)\theta[m](Z, 0)$ does not vanish identically and has the integral Fourier coefficients.

Let ξ_0, \ldots, ξ_{r-1} be variables, and let h be a homogeneous polynomial in ξ_0, \ldots, ξ_{r-1}, of degree k in ξ_0, and of degree s in each of ξ_1, \ldots, ξ_{r-1} such that the identity

$$h \left(\frac{a_{i,j} + b}{c_{i,j} + d}, \ldots \right) = (c\xi_0 + d)^{-k} \prod_{i=1}^{r-1} (c\xi_i + d)^{-s}h(\ldots, \xi, \ldots)$$

is satisfied for $(a_{ij}) \in SL_2(\mathbb{C})$. Let $S(\mathfrak{r})$ denote the \mathbb{C}-algebra of such h with $k = s$. $S(\mathfrak{r})$ becomes a graded \mathbb{C}-algebra in terms of s. $S(2, r)$ is defined to be a subring of $S(\mathfrak{r})$ composed of h which is symmetric in ξ_0, \ldots, ξ_{r-1}, namely $S(2, r)$ is the invariant subring $S(\mathfrak{r})^\mathfrak{S}_r$ where the symmetric group \mathfrak{S}_r acts naturally on ξ_0, \ldots, ξ_{r-1} as permutations. $S(2, r)$ is nothing else but the graded ring of invariants of a binary r-form (cf. Tsuyumine [19], Sect. 1), and its homogeneous element is called a (projective) invariant.

An element h satisfying (1) is called a (k, s)-covariant if h is symmetric in ξ_1, \ldots, ξ_{r-1}. The ring of (s, s)-covariants ($s \geq 0$) is equal to $S(\mathfrak{r})^{\mathfrak{S}_{r-1}}$ where \mathfrak{S}_{r-1} acts on ξ_1, \ldots, ξ_{r-1} as permutations. We have inclusions of rings; $S(2, r) \subset S(\mathfrak{r})^{\mathfrak{S}_{r-1}} \subset S(\mathfrak{r})$.

2. Modular forms of degree three

Let us recall some structures of the graded ring $A(\Gamma_3)$ of modular forms of degree three. The details are found in Tsuyumine [19]. For simplicity we write A for $A(\Gamma_3)$ in what follows.

We decompose $Z \in H_3$ into

$$Z = \left(\begin{array}{c} Z_1 \\ \tau \\ Z_3 \end{array} \right), \quad Z_1 = \left(\begin{array}{cc} z_1 & z_{12} \\ z_{12} & z_2 \end{array} \right) \in H_2, \quad z_3 \in H_1, \quad \tau = \left(\begin{array}{c} \tau_1 \\ \tau_2 \end{array} \right) \in \mathbb{C}^2.$$

R denotes the subset of H_3 given by $\tau = 0$. A point of H_3 equivalent to some point in R is called reducible, and the set of images of such points by the canonical projection of H_3 to H_3/Γ_3 is its algebraic subset, and called the reducible locus. Let $V \subset H_3$ denote the irreducible component of zeros of a theta constant $\theta[111]$ which contains R. For a modular form $f \in A$, we define $v(f)$ to be the vanishing order of $f|_V$ at R ($v(f) = \infty$ if $f|_V \equiv 0$). $v(f)$ is called the order of f. If $f|_V \neq 0$, then $v(f)$ is a non-negative even integer since f is of even weight, namely f is invariant by changing i for $-i$. For even $v \geq 0$, we define $A(v)$ to be a graded ideal generated by modular forms f with $v(f) = v$. We have a sequence of inclusions $A = A(0) \supset A(2) \supset A(4) \supset \cdots$. Let

$$\chi_{18}(Z) = \prod_{m \text{ even}} \theta[m](Z).$$

Then χ_{18} is a modular form of weight 18, and it is a prime element of the ring A (Igusa [5]). If $f \in A$ vanishes identically on V, then f is divisible by χ_{18}, i.e., f/χ_{18} is an element of A. χ_{18} is involved in every $A(v)$. Let us put

$$\bar{A}(v) = A(v)/A(v + 2).$$

$\bar{A}(0)$ is a graded \mathbb{C}-algebra and $\bar{A}(v)$'s can be regarded as $\bar{A}(0)$-modules. We have an isomorphism

$$A/(\chi_{18}) \simeq \bar{A}(0) \oplus \bar{A}(2) \oplus \cdots$$ \hspace{1cm} (2)

of vector spaces, or more strongly, of (infinite) graded modules over some ring of Krull dimension five. If f is a modular form of weight k with $v(f) > \frac{3}{2}k$, then f vanishes identically on V ([19], Cor. 2 to Prop. 7) and hence f is divisible by χ_{18}. So the vector space $(A/(\chi_{18}))_k$ corresponding to modular forms of weight k is isomorphic to the direct sum $\bar{A}(0)_k \oplus \bar{A}(2)_k \oplus \cdots \oplus A([\frac{3}{2}k])'_k$, $[\frac{3}{2}k]'$ denoting the maximal even integer not exceeding $\frac{3}{2}k$. To know the structure of $\bar{A}(v)$, we exhibit them as
subspaces of $A(\tau_2) \otimes A(\Gamma_1)$ in the following way where Γ_2 is the maximal congruence subgroup of Γ_2 which stabilizes an odd theta characteristic $(\frac{1}{10})$ mod 2.

Suppose that g is a meromorphic modular form, but holomorphic on $V - \Gamma_3 R$, $\Gamma_3 R$ being the union $\cup M \cdot R$, $M \in \Gamma_3$, and that $g|_{v - \Gamma_3 R}$ is locally bounded at R, hence at $\Gamma_3 R \cap V$. For such g, and for $(Z_1, z_3) \in H_2 \times H_1$ we define

$$(\Psi g)(Z_1, z_3) = \lim_{Z \to Z_0} g(Z), \quad Z_0 = \begin{pmatrix} Z_1 & 0 \\ 0 & z_3 \end{pmatrix} \in R.$$

By Riemann's removable singularity theorem $g|_{v - \Gamma_3 R}$ extends to a holomorphic function on V, and hence Ψg is well-defined. Ψg is an element of the tensor product $A(\tau_2) \otimes A(\Gamma_1)$ ([19], Sect. 14). Let χ_{28} be a modular form of weight 28 defined in Section 5 of the present paper (or [19], Sect. 22). It is a modular form of lowest weight having the property that $\chi_{28}|_{v}$ vanishes only at $\Gamma_3 R \cap V$. Its order $v(\chi_{28})$ is eight. Now let us fix three modular forms β', γ, δ with $\beta' \in A(2) - A(4)$, $\gamma \in A(4) - A(6)$, $\delta \in A(6) - A(8)$. Then if $f \in A$ is of order $v \equiv 0 \mod 8$ (resp. 2, 4, 6 mod 8), then

$$f|_{\chi_{28}}$$

is obviously holomorphic on $V - \Gamma_3 R$ and moreover its restriction to $V - \Gamma_3 R$ is locally bounded at R ([19], Sect. 13). So its image by Ψ is well-defined. We denote by $\Psi(v)$, the map $f \mapsto \Psi(f|_{\chi_{28}^{(8)}})$ (resp. $\Psi(f|_{\chi_{28}^{(v+6)/8}})$, $\Psi(f|_{\chi_{28}^{(v+4)/8}})$, $\Psi(f|_{\chi_{28}^{(v+2)/8}})$), where we shall write simply Ψ instead of $\Psi(0)$. (In [19], we have taken as β', γ, δ, some particular modular forms.) $\Psi(v)$ is a map of $A(v)$ to $A(\Gamma_2) \otimes A(\Gamma_1)$, and by definition the kernel of $\Psi(v)$ is just $A(v + 2)$. So $\Psi(0)$ is also considered to be an embedding of $\tilde{A}(v)$ to $A(\Gamma_2) \otimes A(\Gamma_1)$. By definition $(\Psi(v))(Z_1, z_3) = f(Z_1/z_3)$, hence $\Psi(\tilde{A}(0))$ is contained in $A(\Gamma_2) \otimes A(\Gamma_1)$. If we identify $\tilde{A}(0)$ with $\Psi(\tilde{A}(0))$, then the map $\Psi(v)$ of $\tilde{A}(v)$ to $A(\Gamma_2) \otimes A(\Gamma_1)$ can be regarded as an $A(0)$-module morphism since $\Psi(v)(fg) = \Psi(f) \cdot \Psi(v)g$ for $f \in A$, $g \in A(v)$. $\tilde{A}(0) \subseteq A(\Gamma_2) \otimes A(\Gamma_1)$ is equal to $\{ \Sigma j \otimes j \in A(\Gamma_2) \otimes A(\Gamma_1) | \Sigma j \otimes j(z_3) \text{ is symmetric in } z_1, z_2, z_3 \}$ ([19], Sect. 16), over which $A(\Gamma_2) \otimes A(\Gamma_1)$ is finite as a module, hence $A(\Gamma_2) \otimes A(\Gamma_1)$ is. Since $\chi_{28}A(v) \subseteq A(v + 8)$, we have sequences of inclusions of $A(0)$-submodules of $A(\Gamma_2) \otimes A(\Gamma_1)$ by definition of $\Psi(v)$;

$$\Psi(\tilde{A}(0)) \subset \Psi(8)\tilde{A}(8) \subset \cdots$$

$$\Psi(2)\tilde{A}(2) \subset \Psi(10)\tilde{A}(10) \subset \cdots$$
Since $A(\Gamma_1) \otimes A(\Gamma_1)$ is a Noetherian $A(0)$-module, there is a positive even integer v_0 such that if $v \geq v_0$, then $\Psi(v)A(v) = \Psi(v - 8)A(v - 8)$, in other words

$$A(v) = \chi_{28}A(v - 8) \quad \text{for} \quad v \geq v_0. \quad (3)$$

Then it is not difficult to see that any modular form $f \in A(v)$, $v \geq v_0$, is written as $f = g\chi_{18} + h\chi_{18}$ for some $g, h \in A$, combining (3) with the fact that f is divisible by χ_{18} if $v(f) > \frac{v}{2}$ weight (f). v_0 is actually taken to be 14, and hence the isomorphism (2) becomes

$$A/(\chi_{18}) \simeq A(0) \oplus A(2) \oplus A(4) \oplus \left(\bigoplus_{\mu=0}^{\infty} (A(6) \oplus A(8) \oplus A(10) \oplus A(12))\chi_{28}^{\mu} \right).$$

All the structures of $A(v)$, $v \leq 12$, have been determined in [19], and from this the structure of $A/(\chi_{18})$ is given, and that of A is too.

Finally in this section we give a comment on an alternate definition of $\Phi(2)$. Restricting to V, the Taylor expansion of $\theta[110](Z)$ at $Z_0 = (\tau_1, \tau_2, \tau_3) \in \mathbb{R}$ in terms of τ, we get

$$0 = \sum_{i=1}^{2} \left(\frac{\partial}{\partial \tau_i} \theta[110](Z_1, 0)(\theta[0][\theta[0][\theta[0)])(z_3) \right) \tau_i$$

$$+ \text{(higher degree terms of } \tau).$$

At least one of $\partial/(\partial \tau_i)\theta[110](Z_1, 0)$ is not zero since the theta divisor of degree two is nonsingular, and $\theta[0][\theta[0][\theta[0]$ vanishes nowhere on H_1. Hence one of the τ_i is written as an analytic function of another on some neighborhood at Z_0. Let $f \in A(2)$. Substituting it in the expansion of $(f \delta/\chi_{28})_v$ in terms of τ, and taking the limit as $\tau_i \to 0$, we get

$$(\Phi(2)f)(Z_1, z_3) = (F_2F_6/F_8)(Z_1, z_3)$$
where

\[
F_2(Z_1, z_3) = \frac{1}{2!(2\pi i)^4(\sqrt{-1})^2} \sum_{l=0}^{\frac{n}{2}} (-1)^l \binom{2}{l} \frac{\partial}{\partial \tau^l_1} \frac{\partial}{\partial \tau^l_2} f(Z_1)
\]

\[
\times \left(\frac{\partial}{\partial x_1} \theta[\frac{1}{i}] \right)^{2-l} \left(\frac{\partial}{\partial x_2} \theta[\frac{1}{i}] \right)^l,
\]

\[
F_6(Z_1, z_3) = \frac{1}{6!(2\pi i)^6(\sqrt{-1})^6} \sum_{l=0}^{6} (-1)^l \binom{6}{l} \frac{\partial}{\partial \tau^l_1} \frac{\partial}{\partial \tau^l_2} \delta(Z_1)
\]

\[
\times \left(\frac{\partial}{\partial x_1} \theta[\frac{1}{i}] \right)^{6-l} \left(\frac{\partial}{\partial x_2} \theta[\frac{1}{i}] \right)^l,
\]

\[
F_8(Z_1, z_3) = \frac{1}{8!(2\pi i)^8(\sqrt{-1})^8} \sum_{l=0}^{8} (-1)^l \binom{8}{l} \frac{\partial}{\partial \tau^l_1} \frac{\partial}{\partial \tau^l_2} \chi_{28}(Z_1)
\]

\[
\times \left(\frac{\partial}{\partial x_1} \theta[\frac{1}{i}] \right)^{8-l} \left(\frac{\partial}{\partial x_2} \theta[\frac{1}{i}] \right)^l
\]

(\(\binom{\cdot}{\cdot}\)) denoting a binomial coefficient. \(\Psi(2)f\) is holomorphic and has a Fourier expansion on \(H_2 \times H_1\), and each of \(F_2, F_6, F_8\) has too. By definition \(30\chi_{28}\) has integral Fourier coefficients. Now let us suppose that \(\delta\) has rational Fourier coefficients (with a bounded denominator). Then both of \(F_6, F_8\) have rational Fourier coefficients (with a bounded denominator). Hence there is a rational number \(N\) such that \(N\Psi(2)f\) has integral Fourier coefficients if and only if \(F_2\) does. In particular, for such \(N\), \(2N\Psi(2)f\) has the integral Fourier coefficients if \(f\) does.

Let us calculate a first term of \(F_2\) explicitly in terms of the Fourier coefficient of \(f \in A(2)\) for the identity matrix, i.e. for \(e(\text{tr}(Z))\). There are 23 positive symmetric semi-integral ternary matrices with merely one as their diagonal components, each of which is equivalent under the action \(S \rightarrow {}^tUSU, U \in GL_3(\mathbb{Z})\), to one of the following three matrices; the identity matrix; the matrix with 0 as its (1, 2), (1, 3)-components and with \(1/2\) as its (2, 3)-component; the matrix with 0 as its (1, 2)-component and with \(1/2\) as its (1, 3), (2, 3)-components. Let \(a_0, a_1, a_2\) be the Fourier coefficients of \(f\) corresponding to the first, second, third matrix respectively. From \(\Psi\beta = 0\), two relations among \(a_0, a_1, a_2\) are derived; \(a_0 + 4a_1 + 4a_2 = a_1 + 6a_2 = 0\), hence \(a_0:a_1:a_2 = 20:-6:1\) if \(a_0 \neq 0\). Then a direct calculation shows

\[
F_2(Z_1, z_3) = -\frac{2}{3} a_0 e(\text{tr}(\pm \frac{1}{4} \pm \frac{3}{4})Z_1))e(z_3) + \cdots
\]
3. A subring of $A(\Gamma_3)$

$\Gamma_2/\Gamma_2(2)$ is isomorphic to the symmetric group S_6 of degree six, and it acts on the set of six odd theta characteristics (mod 2) of degree two as permutations. Γ_2 has been defined to be a stabilizer subgroup of Γ_2 at an odd theta characteristic $\binom{11}{10}$, and hence $\Gamma_2/\Gamma_2(2)$ is isomorphic to S_5.

There is an injective homomorphism φ_2 of $A(\Gamma_2(2))$ to $S(6) \subset \mathbb{C}[\zeta_0, \ldots, \zeta_5]$ which is equivalent under S_6 (Igusa [5], Tsuyumine [19], Sect. 9, 11), where φ_2 induces an isomorphism between the field of fractions of $A(\Gamma_2(2))$ and that of $S(6)^{(2)}$, $S(6)^{(2)}$ denoting the subring of $S(6)$ consisting of homogeneous elements of even degree. We may assume that $S_5 \simeq \Gamma_2/\Gamma_2(2)$ acts on $\{\xi_1, \ldots, \xi_5\}$ as permutations. Hence we have a commutative diagram:

$$A(\Gamma_2(2)) \xrightarrow{\varphi_2} S(6) \supseteq A(\Gamma_2) \xrightarrow{\varphi_2} S(6)^{S_5} \supseteq A(\Gamma_2) \xrightarrow{\varphi_2} S(2, 6) = S(6)^{S_6}.$$

In particular, there is no proper intermediate field between $F_0(A(\Gamma_2^2))$ and $F_0(A(\Gamma_2))$, and hence $F_0(A(\Gamma_2^2)) = F_0(A(\Gamma_2))$ for any $\psi \in A(\Gamma_2^2) - A(\Gamma_2)$.

Lemma 1. Let β be a modular form for Γ_3 of order v with $v \equiv 2$ or 6 mod 8. Let us fix $z_3 \in H_1$ so that $\psi(z_1) := (\Psi(4v)\beta^4)(z_1, z_3)$ is not identically zero. Then $\psi \notin A(\Gamma_2)$. In particular, $F_0((A(\Gamma_2) \otimes A(\Gamma_1))[\Psi(4v)\beta^4]) = F_0(A(\Gamma_2) \otimes A(\Gamma_1))$.

Proof. We treat only the case $\nu \equiv 2$ mod 8, since a similar argument is applicable to the case $\nu \equiv 6$ mod 8. By the argument [19], Sect. 14, the proof of Lemma 12, $\varphi_2 \phi$ is the form $H^4\mathcal{D}_0$ where H is an $(s + 2, s)$-covariant and \mathcal{D}_0 denotes the $(0, 8)$-covariant $\Pi_{1 \leq i < j \leq 5}(\xi_i - \xi_j)^2$. It is enough to show that $H^4\mathcal{D}_0 \not\in S(2, 6)$. Suppose otherwise. Dividing H^4 by a power of the discriminant $\Pi_{0 \leq i < j \leq 5}(\xi_i - \xi_j)^2 \in S(2, 6)$ if necessary, we may assume that H is not divisible by $\Pi_{0 \leq i < j \leq 5}(\xi_i - \xi_j)^2$. Since $H^4\mathcal{D}_0$ obviously has factors $(\xi_i - \xi_j)^2$ ($1 \leq i < j \leq 5$) and since $H^4\mathcal{D}_0$ is symmetric in ξ_0, \ldots, ξ_5 by our assumption, it has a factor $\Pi_{i=1}^5(\xi_0 - \xi_i)^2$. Then H is divisible by $\Pi_{i=1}^5(\xi_0 - \xi_i)$, and hence $H^4\mathcal{D}_0$, by $\Pi_{i=1}^5(\xi_0 - \xi_i)^4 \times \Pi_{1 \leq i < j \leq 5}(\xi_i - \xi_j)^2$. Again by symmetry $H^4\mathcal{D}_0/\Pi_{i=0}^5(\xi_0 - \xi_i)^4 \times \Pi_{1 \leq i < j \leq 5}(\xi_i - \xi_j)^2$ is still divisible by...
Let Λ be a graded subring of A such that $A(2) \otimes A(1)$ is finite integral over $\overline{\Lambda} := \Psi \Lambda$, and that $\chi_{28}, \chi_{18} \in \Lambda$.

Lemma 2. A is finite integral over Λ.

Proof. $\Psi(v)A(v)$ is a finite $\overline{\Lambda}$-module for every even $v \geq 0$. Let $\{f_{i,v}\}_i$ be a finite number of modular forms in $A(v)$ such that $\{\Psi(v)f_{i,v}\}_i$ generates $\Psi(v)A(v)$ over $\overline{\Lambda}$. We show that A is generated as a Λ-module, by $f_{i,v}$’s with $v \leq v_0$, v_0 being as in (3).

We prove that any modular form f of weight k is written as a linear combination of $f_{i,v}$’s ($v \leq v_0$) over Λ, by induction on k. $\Psi f \in \Psi A(0)$ is written as $\Psi f = \Sigma \Psi(P_i f_{i,0})$ with $P_i \in \Lambda$. By taking $f - \Sigma P_i f_{i,0}$ instead of f, we may assume $\Psi f = 0$, namely $\nu(f) \geq 2$. Then $\Psi(2)f$ is written as $\Sigma \Psi(2)(P'_i f_{i,2})$ with $P'_i \in \Lambda$. By a similar argument as above, we may assume $\Psi(2)f = 0$, and by a recursive argument, we may assume $\nu(f) > \frac{k}{2}$, where we make use of such elements as $\chi_{28} f_{i,v}$ ($m > 0$) instead of $f_{i,v}$ if the order $\nu(f)$ exceeds v_0. Then $f|_v$ vanishes identically and f is written as $f = g \chi_{18}$ for some $g \in A$. By the induction hypothesis g is a linear combination of $f_{i,v}$’s ($v \leq v_0$) over Λ, and hence f is.

Q.E.D.

Corollary. $A(v)$ is a finite Λ-module for any even $v \geq 0$.

Proposition 1. Let Λ be a graded subring of A containing χ_{28}, χ_{18} such that $A(2) \otimes A(1)$ is finite integral over $\overline{\Lambda} := \Psi \Lambda$, and that $g.c.d \{k | \chi_k \neq 0\} = 2$ for $\overline{\Lambda} = \bigoplus \chi_k$. If β is a modular form of order two such that $F_0(\Psi(8)\beta^2) = F_0(A(2) \otimes A(1))$, then the modular function field of degree three is given by $F_0(\Lambda[\beta])$.

Proof. At first we show that there are a positive integer v_1 and a modular form $P \in \Lambda$ of order 0 such that

$$\Psi(v + v')(\beta^{v/2}PA(v)) \subset \Psi(v + v')(\beta^{v/2}(\Lambda[\beta] \cap A(v)))$$

for any even $v \geq v_1$ where $v' \in \{0, 2, 4, 6\}$ is determined by $v + v' \equiv 0 \mod 8$. By our assumption, we can take $P \in \Lambda, \neq 0$ such that $\overline{P}(A(2) \otimes A(1))$ is contained in a $\overline{\Lambda}$-module generated by $\Psi(8)\beta^4, (\Psi(8)\beta^4)^2, \ldots, (\Psi(8)\beta^4)^m$ with $m = [F_0(A(2) \otimes A(1)) : F_0(\Lambda)]$. Since $\Lambda[\beta] \cap A(v)$ has as a subset

$$\sum_{2n_1 + 5n_2 \geq v} \beta^{n_1} \chi_{28} \Lambda,$$
\(\Psi(v + v')(\beta^{v/2}(\Lambda[\beta] \cap A(v)) \) contains the \(\tilde{\Lambda} \)-module generated by \(\Psi(8)\beta^t, \ldots, (\Psi(8)\beta^t)^m \) if \(v \) is large enough. If \(P \in \Lambda \) is such that \(\tilde{P} = \Psi P \), then \(\Psi(v + v')(\beta^{v/2} PA(v)) = \tilde{P}\Psi(v + v')(\beta^{v/2} A(v)) \subset \tilde{P}(A(\Gamma_2) \otimes A(\Gamma_1)) \).

Thus we have proved (5).

\(A(2) \) is the prime ideal of \(A \) defining the reducible locus of \(H_3/\Gamma_3 \), and hence \(A(2) \cap \Lambda[\beta] \) is prime in \(\Lambda[\beta] \). Let us take the ring \(\Lambda_0 := \Lambda[\beta, \chi_{18}/\chi_{28}^k (k = 0, 1, 2, \ldots)] \). The ideal of \(\Lambda_0 \) generated by \(A(2) \cap \Lambda[\beta], \chi_{18}/\chi_{28}^k (k = 0, 1, 2, \ldots) \) is prime since \(\tilde{\Lambda} = \Lambda_0/(A(2) \cap \Lambda[\beta], \chi_{18}/\chi_{28}^k (k = 0, 1, 2, \ldots)) \) is an integral domain. Let \(\Lambda' \) be the localization of \(\Lambda_0 \) at the prime ideal. Let \(v_2 \) be an even integer equal to or greater than each of \(v_0 \) and \(v_1 \), \(v_0 \) being as in (3). Since \(\Lambda \subset \Lambda'_0 \), by Corollary to Lemma 2 there are a finite number of holomorphic modular forms \(f_1, \ldots, f_t \in A(v_2) \) such that \(A(v_2) \subset \Lambda'_0 f_1 + \cdots + \Lambda'_0 f_t \). We may assume that \(\{f_1, \ldots, f_t\} \) is a minimal system with this property. Then we show \(t = 1 \). Suppose \(t \geq 2 \). Since \(v := v(f_i) \) is larger than \(v_1 \), we have \(\Psi(v + v')\beta^{v/2} P f_i = \Psi(v + v')\beta^{v/2} q \) for some \(q \in A(v) \cap \Lambda[\beta] \). Since \(\Psi(v + v')\beta^{v/2} (P f_i - q) = 0 \), the order of \(P f_i - q \) is at least \(v + 2 \). By repeating the similar argument four times, it is shown that there is \(Q \in \Lambda[\beta] \) satisfying the inequality \(v(P^4 f_i - Q) \geq v + 8 \). Since \(v \geq v_0 \), by (3) there are \(g, h \) such that \(P^4 f_i - Q = g\chi_{28}^k + h\chi_{18}^k \). \(v(g) \) is obviously greater than or equal to \(v \), and in particular \(g \in A(v_2) \) because \(v \geq v_2 \). \(h\chi_{28}^k \) is also involved in \(A(v_2) \) if \(k \) is sufficiently large. \(g, h\chi_{28}^k \in A(v_2) \subset A'_0 f_1 + \cdots + A'_0 f_t \) is written as \(g = \Sigma_{i=1}^t a_i f_i, h\chi_{28}^k = \Sigma_{i=1}^t b_i f_i \) with \(a_i, b_i \in \Lambda'_0 \). Hence we have

\[
(P^4 - a_i\chi_{28}^k - b_i\chi_{18}/\chi_{28}^k) f_i = Q + \sum_{i=1}^{t-1} a_i\chi_{28} f_i + \sum_{i=1}^{t-1} b_i(\chi_{18}/\chi_{28}^k) f_i.
\]

Since \(P \) is of order 0, \(P^4 - a_i\chi_{28}^k - b_i\chi_{18}/\chi_{28}^k \) is a unit of the ring \(\Lambda'_0 \). So \(f_i \) is written as a linear combination of other \(f_j \). This contradicts to the minimality of a system of \(\{f_1, \ldots, f_t\} \). Thus \(t = 1 \).

Now we have \(A(v_2) \subset A'_0 f_1 \). \(A(v_2) \) and \(A'_0 \) have a common non-trivial element (e.g., \(\chi_{18} \)). This implies that \(f_1 \) is contained in the field of fractions of \(\Lambda'_0 \), and that \(A(v_2) \) is a subset of the field of fractions of \(\Lambda[\beta] \). Since \(\chi_{28}^k A \subset A(v_2) \) for large \(k \), the modular function field \(F_0(A) \) is equal to \(F_0(\Lambda[\beta]) \).

Q.E.D.

Combining Proposition 1 with Lemma 1, we have the following corollary.

Corollary. Let \(\Lambda \) be a ring as in Proposition 1 satisfying the additional condition that \(F_0(\tilde{\Lambda}) = F_0(A(\Gamma_2) \otimes A(\Gamma_1)) \). Let \(\beta \) be any modular form with \(v(\beta) = 2 \). Then the modular function field is given by \(F_0(\Lambda[\beta]) \).
4. Main theorem

$\mathcal{A}(\Gamma_1)$ is generated by two algebraically independent modular forms j_4, j_6 of weight 4, 6 respectively where

$$j_4 = \frac{1}{2} \sum_{m: \text{even}} \vartheta[m]^8, \quad j_6 = \sum_{M: \Gamma_1/\Gamma_1(2)} M(\theta[0010]\theta[10]^4).$$

As Igusa [3], [4] showed, $\mathcal{A}(\Gamma_2)$ is generated by four algebraically independent modular forms $\psi_4, \psi_6, \psi_{10}, \psi_{12}$ with their subscript as their weight where

$$\psi_4 = \left(\frac{1}{4} \sum_{m: \text{even}} \vartheta[m]^8, \quad \psi_6 = \frac{1}{2} \sum_{M: \Gamma_1/\Gamma_1(2)} M(\theta[0010]\theta[10]^2 \theta[0101]^2 \theta[111]^2), \right.$$

$$\psi_{10} = \prod_{m: \text{even}} \vartheta[m]^2,$$

$$\psi_{12} = \frac{1}{288} \sum_{M: \Gamma_1/\Gamma_1(2)} M(\theta[0010]\theta[0101]^2 \theta[0101]^2 \theta[111]^2\theta[101]^4)$$

(note that we are considering only modular forms of even weight). Let $\alpha_4, \alpha_6, \alpha_{10}, \alpha_{12}, \alpha_{20}, \alpha_{30} \in A$ be as in Section 5, and let $\alpha'_{20} = (\alpha_{20} - 5\alpha_{10})/7$, $\alpha'_{30} = (7\alpha_{30} - 313\alpha_{10}\alpha_{20} + 865\alpha_{10}^2)/7$. By [19], Section 23, we have

$$\Psi\alpha_4 = \psi_4 \otimes j_4, \quad \Psi\alpha_6 = \psi_6 \otimes j_6, \quad \Psi\alpha_{12} = 3^{-3}\psi_{12} \otimes (-j_6^2 + 4j_4^3),$$

$$\Psi\alpha'_{12} = 2^43^{-3}\psi_4^3 \otimes (-j_6^2 + 4j_4^3)$$

$$- 3^{-3}\psi_6^2 \otimes (-j_6^2 + 4j_4^3) + 3^2\psi_{12} \otimes (j_6^2 + 8j_4^3),$$

$$\Psi\alpha'_{20} = \psi_{10} \otimes j_6^5, \quad \Psi\alpha'_{30} = \psi_{10}^3 \otimes j_6^5.$$

Lemma 3. Let Λ denote a graded \mathbb{C}-algebra generated by Ψ-images of i) $\alpha_4, \alpha_6, \alpha_{12}, \alpha_{20}, \alpha_{30}$, or ii) $\alpha_4, \alpha_6, \alpha_{12}, \alpha_{12}', \alpha_{20}, \alpha_{30}, k$ being any fixed positive integer. Then $A(\Gamma_2) \otimes A(\Gamma_1)$ is finite integral over Λ, and $F_0(\Lambda)$ equals $F_0(A(\Gamma_2) \otimes A(\Gamma_1))$.

Proof. The first assertion follows from the fact that $\Psi\alpha_4, \Psi\alpha_6, \Psi\alpha_{12}, \Psi\alpha_{12}', \Psi\alpha_{20}, \Psi\alpha_{30}$ do not vanish simultaneously at any point of the projective variety $(H_2/\Gamma_2)^* \times (H_1/\Gamma_1)^*, (H_n/\Gamma_n)^*$ denoting the Satake compactification,
which is not difficult to see. We treat only the case ii), because the similar argument is applicable to the case i). Put \(s = (j''_6/j''_3)(\zeta_3) \). Then \(s \) is an element of degree five over \(\mathbb{C}[\Psi \zeta_{30}^2/\Psi \zeta_{20}^3] \). As easily seen, \(F_0(\Lambda(\Gamma_2) \otimes A(\Gamma_1)) \) is an extension over \(F_0(\mathbb{C}[\Psi \zeta_4, \Psi \zeta_6, \Psi \zeta_{12}, \Psi \zeta_{20}, \Psi \zeta_{30}]) \) of degree five, since the former is obtained from the latter by adding \(s \). In particular, the extension is simple. Since an element \(\Psi(\zeta_{12}^k/\zeta_{3}^k) \) is not contained in the latter one, \(F_0(\Lambda) \) equals \(F_0(\Lambda(\Gamma_2) \otimes A(\Gamma_1)) \). Q.E.D.

Theorem 1. Let \(\lambda \) be any modular form of weight twenty with \(\nu(\lambda) = 2 \), and let \(c \) be a constant. Let us put \(\Lambda := \mathbb{C}[\zeta_4, \zeta_6, \zeta_{12}, \zeta_{12}', (\zeta_{20} - 5\zeta_{10}^2)/7 + c\lambda, (7\zeta_{30} - 313\zeta_{10}\zeta_{20} + 865\zeta_{10}^3)/7, \chi_{28}, \chi_{18}] \). Then the modular function field of degree three is given by \(F_0(\Lambda) \), except at most one value of \(c \). (See Sect 5 for the definition of modular forms.)

Remark. Our argument will show that the assertion of Theorem 1 holds even if we replace \(\Lambda \) by other rings such as \(\mathbb{C}[\zeta_4, \zeta_6, \zeta_{12}, \zeta_{12}', \zeta_{30}, \chi_{28}, \chi_{18}], \mathbb{C}[\zeta_4, \zeta_6, \zeta_{12}, \zeta_{12}', \zeta_{20}, \zeta_{30} + c\lambda, \chi_{28}, \chi_{18}] \) and so on, \(\lambda \) being a modular form of appropriate weight with \(\nu(\lambda) = 2 \).

Proof. Let us find an algebraic relation among \(\Psi \zeta_4, \Psi \zeta_6, \Psi \zeta_{12}, \Psi \zeta_{12}', \Psi \zeta_{20} = \Psi(\zeta_{20} + c\lambda), \Psi \zeta_{30} \). Let \(s \) be as in the proof of Lemma 3. If we put

\[
\begin{align*}
 p_0 &= 16\zeta_4^3, \\
 p_1 &= -128\zeta_4^3 - \zeta_6^3 + 243\zeta_{12} + 27\zeta_{12}', \\
 p_2 &= 256\zeta_4^3 + 8\zeta_6^2 + 1944\zeta_{12} - 108\zeta_{12}', \\
 p_3 &= -16\zeta_6^2,
\end{align*}
\]

then we have

\[
(\Psi p_0)s^3 + (\Psi p_1)s^2 + (\Psi p_2)s + \Psi p_3 = 0 \tag{6}
\]

by a direct computation. For an indeterminate \(X \), we put

\[
L(X) = p_3^5(\zeta_{20} + X)^0 + (p_2^5 + 5p_0p_2p_3^2 + 5p_1^2p_2p_3^2 - 5p_0p_1p_3^3 - 5p_1p_2p_3)\zeta_{30}^3(\zeta_{20} + X)^0 + (p_1^5 + 5p_0^2p_1p_3^3 + 5p_0^2p_1p_3^3 - 5p_0^3p_2p_3 - 5p_0^2p_1p_2)(\zeta_{20} + X)^3 + p_0^5\zeta_{30}^6.
\]

\(1 \) Such a detail is not necessary to prove merely Theorem 1. However, it (or \(L(X) \)) will be used for other purposes later.
Then $\Psi L(0)/\Psi_{2 \alpha}$ = 0 is a minimal algebraic relation among Ψ_4, Ψ_6, Ψ_{12}, Ψ_{14} and $(j_2/j_3)^5 (= s^4)$, given by eliminating s from (6). Hence $\Psi L(0) = 0$, which is an algebraic relation among $\Psi_4, \ldots, \Psi_{20}$.

By Lemma 3 Λ satisfies the condition in Corollary to Proposition 1. $\beta := L(c)\lambda$ is a modular form contain in Λ, which equals $L(0) + cL'(0)\lambda$ up to $\Lambda(4)$ where L' is the derivative of L in terms of X. Since $L(0), \lambda \in A(2)$, β is a modular form of order at least two. Since $L'(0) \in A(0) - A(2)$, we have, except for at most one value of c

$$\Psi(2)L(0) + c\Psi L'(0)\lambda \neq 0,$$

i.e., $v(\beta) = 2$. Then by the Corollary to Proposition 1, the modular function field is given by $F_0(\Lambda[\beta]) = F_0(\Lambda)$. Q.E.D.

Let us make $c\lambda$ explicit for which the assertion of Theorem 1 holds. By the above proof it is enough to find $c\lambda$ satisfying (7). From the definition, α_4, $2^{-3}\alpha_6, 23^2\alpha_{12}, 2^4 3^{-1} \alpha_{14}, 2^9 3^2 5 \cdot 7 \cdot 11 \alpha_20, 2^{12} 3^3 5^2 7^2 11^2 \alpha_30$ are easily checked to have integral Fourier coefficients. By the way, $30\chi_{28}, \chi_{18}$ have too. Let N be the rational number given in the last part of Section 2. Since $2^{106} 3^{24} 5^{16} 7^{16} 11^{24} L(0)$ has integral Fourier coefficients, also $2N$ times its $\Psi(2)$-image does. So (7) holds if $2N \cdot 2^{106} 3^{24} 5^{16} 7^{16} 11^{24} c\Psi L'(0) \Psi(2)\lambda$ has a non-integral Fourier coefficient.

We take as $\lambda, \alpha_{6} \beta_{14}$ where β_{14} is a cusp form of weight 14 and of order two which is defined in Section 5 (or, also in [19], Sect. 24). $\Psi(2)\alpha_{6} \beta_{14}$ equals $\Psi_{24} \Psi(2) \beta_{14}$. Now we must find a rational number c such that $2^{106} 3^{24} 5^{16} 7^{16} 11^{24} c\Psi L'(0) \Psi_{24} \beta_{14}$ has a non-integral Fourier coefficient, F_2 being the one given for $f = \beta_{14}$ in (4), which implies (7). α_6 has the Fourier expansion starting from the constant term 8, and a direct calculation shows that $\Psi L'(0)$ has the Fourier expansion starting from

$$-2^{34} 3^7 5^2 \{2e(\text{tr}(Z_1)) - e(\text{tr}(\pm_1 Z_1))\}^{16} e(2z_3).$$

Let a be the Fourier coefficient of β_{14} for $e(\text{tr}(Z))$. Combining the above calculation with that of the last part of Section 2, $2^{106} 3^{24} 5^{16} 7^{16} 11^{24} c\Psi L'(0) \Psi_{24} \beta_{14}$ is shown to have $2^{34} 3^{17} 5^7 7^{16} 11^{24} ac$ as a Fourier coefficient. Here we give a rough estimate of a. β_{14} is written as a sum of 2160 products with sign, of 28 theta constants, where each of products has the Fourier expansion starting from the terms corresponding to positive semi-integral ternary matrices with their diagonal components ≥ 1. From this, $a \in Z$, and a rough estimate shows $|a| < 2160 \times 2^{3 \times 8} = 2^{28} 3^4 5$. On the other hand $a \neq 0$ is shown in the following way. So if c is a rational number such that
Let us prove $a \neq 0$. Let $E_{k,n}$ denote the normalized Eisenstein series of degree n and of weight k, where 'normalized' implies that its constant term is one. By the structure theorem of $A(\Gamma_2)$ (Igusa [3], [4], [5]) and by the formulas for the Fourier coefficients of Eisenstein series of degree two in Maass [7], Satz 1, the identity $3\cdot 7 \cdot 11 \cdot 659E_{4,2}^2E_{6,2} - 2^2269 \cdot 43867E_{4,2}E_{10,2} + 53 \cdot 657931E_{14,2} = 0$ follows. Hence

$$3^37 \cdot 11 \cdot 659E_{4,3}^2E_{6,3} - 2^2269 \cdot 43867E_{4,3}E_{10,3} + 53 \cdot 657931E_{14,3}$$

(8)
is a cusp form of weight fourteen where $E_{4,3}$ is well-defined by Raghavan [10]. By virtue of Ozeki and Washio [8], [9], the Fourier coefficient of (8) for $e(tr(Z))$ can be calculated, namely $-2^33^5\cdot 7^2 \cdot 11 \cdot 79973$. By [19], the vector space of cusp forms of weight 14 is one-dimensional, and hence (8) and β_{14} are proportional. Thus $a \neq 0$. We have proved the following theorem.

Theorem 2. The Siegel modular function field K_3 of degree three over \mathbb{Q} is generated by the following seven modular functions; α_{12}/α_3, α_{12}/α_2, α_{12}/α_1, $(\alpha_{20} - 5\alpha_{10}^2 + 7c\alpha_6\beta_{14})/\alpha_4$, $(7\alpha_{30} - 313\alpha_{20}\alpha_{10} + 865\alpha_{10}^3)/\alpha_6\alpha_4$, χ_{28}/α_4, $\chi_{18}/\alpha_2\alpha_6$ where c is any rational number exclusive of at most one value. If c is such that $2^{364}3^{31}5^{17}7^{16}11^{24}ac \notin \mathbb{Z}$ for any positive integer a less than $2^{28}3^45$, then our assertion holds. (see Sect. 5 for the definition of modular forms).

Remark

i) In Theorem 2, we may replace α_{12}/α_3 or α_{12}/α_2 by its power for general $c \in \mathbb{Q}$. This implies for example, that K_3 is not a cyclic extension of $\mathbb{Q}(\alpha_6/\alpha_3, \alpha_{12}/\alpha_4, (\alpha_{20} - 5\alpha_{10}^2 + 7c\alpha_6\beta_{14})/\alpha_4, (7\alpha_{30} - 313\alpha_{20}\alpha_{10} + 865\alpha_{10}^3)/(\alpha_4^2\alpha_6, \chi_{28}/\alpha_4, \chi_{18}/\alpha_2\alpha_6)$ unless the extension is trivial.

ii) In Theorem 2 we can replace β_{14} by the cusp form (8). Then c is taken to be a rational number such that $2^{371}3^{39}5^{19}7^{18}11^{25}79973c \notin \mathbb{Z}$, e.g., $c = 1/13$.

5. Modular forms

We give definition of modular forms α_6, α_{10}, α_{12}, α_{20}, α_{30}, β_{14}, χ_{28} with their subscripts as their weight. We denote by E_k, the Eisenstein series of degree three and of weight k.
i) \(\alpha_4 = 2^{-3} \sum_m \theta[m]^8 \), \(m \) running over the set of all even theta characteristics (mod 2). \(\alpha_4 \) is equal to the Eisenstein series \(E_4 \).

ii) \(\alpha_6 = 2^{-6} 3^{-1} 7^{-1} \Sigma_{M: \Gamma_3(2)} M(\theta[000000] \theta[100001] \theta[100011] \theta[101011] \theta[101111] \theta[111111]) \), which is equal to \(8E_6 \).

iii) \(\alpha_{10} = -2^{-4} 3^{-2} 5^{-1} 11^{-1} \Sigma_{M: \Gamma_3(2)} M(\theta[010101] \theta[100101] \theta[101011] \theta[101111] \theta[100000] \theta[100010] \theta[100011] \theta[100100] \theta[100101] \theta[100111] \theta[110011] \theta[110111]) \), which is proportional to \(E_4 E_6 - E_{10} \).

iv) \(\alpha_{12} = 2^{-3} 3^{-2} \sum (\theta[m_1] \cdots \theta[m_6])^4 \) where \(\{m_1, \ldots, m_6\} \) runs through all the maximal azygetic sequences of even theta characteristics. Such an azygetic sequence is characterized by the property that a sum of any distinct three elements is odd (cf. Igusa [5]). \(\alpha_{12} \) cannot be written as a polynomial of Eisenstein series. Indeed \(\alpha_{12} \) is a cusp form, however, no non-trivial elements of the vector space spanned by \(E_4, E_6, E_{12} \) are cusp forms.

v) \(\alpha'_{2} = 2^{-8} 3^{-5} 5^{-1} \Sigma_{M: \Gamma_3(2)} M(\theta[101000] \theta[100100] \theta[100101] \theta[101011] \theta[101111] \theta[100010] \theta[100001] \theta[100111] \theta[100001]). \) In the summation, the same term appears \(2^{23} 3 \cdot 7 \) times, so \(\beta_{14} \) is actually a sum of \(2^{-5} 3^{-1} 7^{-1} \Gamma_3: \Gamma_3(2) \) (= 2160) terms. \(\beta_{14} \) is proportional to the cusp form \(\chi_8 \).

vi) Let \(P \) denote the product \(\theta[101111] \theta[101101] \theta[101110] \theta[101100] \theta[101011] \theta[101010] \theta[101001] \theta[101000] \theta[100111] \theta[100110] \theta[100011] \theta[100010] \theta[100001] \theta[100000] \theta[100101] \theta[100100] \theta[100010] \theta[100001] \theta[100000]). \) Then \(\alpha_{20} = 2^{-3} 3 \cdot 5^{-1} \Sigma_{M: \Gamma_3(2)} M(\chi_{18}/P^2) \), \(\chi_8 \) denoting as before the product of all theta constant with even characteristics.

vii) \(\alpha_{30} = 2^{-8} 3^{4} 5^{-1} \Sigma_{M: \Gamma_3(2)} M(\theta[000000] \chi_{18}/\theta[100000])^2 P^3). \)

viii) \(\beta_{14} = 2^{-5} 3^{-1} 7^{-1} \Sigma_{M: \Gamma_3(2)} M(\theta[101111] \chi_{18}/\theta[100101] \theta[100100] \theta[101011] \theta[101111] \theta[100011] \theta[100010] \theta[100100] \theta[100101] \theta[100111] \theta[100001]). \) In the summation, the same term appears \(2^3 3 \cdot 7 \) times, so \(\beta_{14} \) is actually a sum of \(2^{-5} 3^{-1} 7^{-1} \Gamma_3: \Gamma_3(2) \) (= 2160) terms. \(\beta_{14} \) is proportional to the cusp form \(\chi_8 \).

ix) \(\chi_{28} = 2^{-10} 3^{-2} 5^{-1} 7^{-1} \Sigma_{M: \Gamma_3(2)} M(\chi_{18}/\theta[100000] \theta[100010] \theta[100011] \theta[100001] \theta[100000] \theta[100010] \theta[100100] \theta[100101] \theta[100111] \theta[100001]). \) In the summation, the same term appears \(2^2 3 \cdot 7 \) times.

Correction to [19]

- p. 802 line 1 should be read as \(\psi_{10} = \Pi_{k: \text{even}} \theta[k]^2 \).
- Sect. 23, (1) should be read as follows:

\[
\alpha_4 = \frac{1}{8} \sum_{k: \text{even}} \theta[k]^8 = \sum_{i=1}^{135} ((i)) = \frac{1}{21504} \sum_{M: \Gamma_3(2)} M((131) \cap (132)).
\]

\[
\Sigma(1234, 5678)^2 = 8 \Sigma D^{1/2}/(12)(34)(56)(78) = \frac{8}{7} \Sigma D^{1/2}/(12)(36)(45)(78)
\]

\[
+\frac{8}{7} \Sigma (34)(56) D^{1/2}/(12)(78)(35)(46)(36)(45).
\]

- p. 847 line 7 should be read as \(+8 \Sigma_{M: \theta[\Gamma_3(2)]} M(((115))^2((135))^2/214^2 24^4). \)
Acknowledgements

The author wishes to express his gratitude to Sonderforschungsbereich 170, Göttingen for the hospitality and for financial support.

References