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Abstract. The eta invariant of Atiyah et al is a R/Z valued invariant of equivariant unitary
bordism completely detecting MU*(BG) for spherical space form groups G. We use the eta
invariant to compute the additive structure of MU*(BQ2 ) for Q2 = {± 1, ± i, ±j, ± kl.
MOS 58G12 (primary) 57R85 (secondary).

0. Introduction

Let G be a finite group with classifying space BG. G is a spherical space form
group if there exists a fixed point free representation i: G - U(k) for some
k. We assume henceforth G is such a group; these groups have been classified

by Wolf [13]. Let MU*(BG) and M Spinc*(BG) be the reduced equivariant
unitary and Spin’ bordism groups. If A is an Abelian group, let A(p) denote
the p-primary torsion of A. The Anderson-Brown-Peterson splitting
expresses M Spinc*(BG)(2) in terms of homology and in terms of connective
K-theory bu*; see [3, 4, 7] for details:

The corresponding splitting of the spectrum MU at any prime or MSpinc at
odd primes is in terms of the Brown-Peterson homology BP* and not bu*:

so [3, 4, 7] do not give MV*(BG)(2)’ We conjecture nevertheless:

CONJECTURE 0.1: There exists an additive splitting
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The Sylow subgroups of G are given as follows. Let Zn = {03BB E C: Ân . 1}
be the cyclic group of order n and let Qs(03BB) = 03BBs be the irreducible rep-
resentations of lLn for 0  s  n; Qs: Zn ~ U(1) is fixed point free for s
coprime to n so Zn is a spherical space form group. Identify SU(2) with the
unit sphere S3 of the quaternions. Any finite subgroup G of S3 is fixed point
free. If m a 2, let Qm ~ S3 be the group of order 2m+

1 generated by
{cos (203C0/2m) + 1 . sin (203C0/2m), j} and let LO: Qm ~ SU(2) be the natural
embedding; Q2 = {± 1, ± i, ±j, ± k}. Let Hp be a p-Sylow subgroup of G.
HP is cyclic if p is odd and either cyclic or one of the Qm for p = 2.

There is one other group we shall need. Embed the alternating group A4 on
4 letters as the orientation preserving isometries of the tetrahedron. The 2-fold
cover of A4 in SU(2) is a group with 24 members isomorphic to the special
linear group of 2 x 2 matrices on the field with 3 elements SL(2, 3). This group
may be identified with {± 1, ±i, ±j, ±k, (± 1 ± i ± j ± k)/21 g SU(2).
We will use the eta invariant to study MU*(BG). Let R(G) be the group

representation ring of G and let Ro(G) be the augmentation ideal. Let R(U)
be the (stable) group representation ring of the unitary group. If M E

MU*(BG) and if 0 E Ro(G) Qx R(U), let ~(03B8, M) E R/Z be the eta invariant
of the tangential operator of the Dolbeault complex on M with coefficients
in the bundle 0(M) defined by 0; see [1, 8]. The map M - ~(03B8, M) extends
to a map in bordism q: MU*(BG) (8) Ro(G) (8) R(U) ~ R/Z taking values
in Q/Z as MU*(BG) is finite in each dimension. We will prove in section 2

THEOREM 0.2: If M ~ MU*(BG) and ~(03B8, M) = 0 ~ 03B8 E Ro(G) ~ R(U),
M = 0.

We also refer to a similar result by Wilson [12]. The Hattori-Stong theorem
plays an essential role in the proof and Theorem 0.2 is the generalization of
the Hattori-Stong theorem to equivariant unitary bordism.
The connective K-theory groups bu* can be computed in terms of the

representation theory. If G is cyclic,

If G is quaternionic, let We showed in [7]

If G = Zp for p prime, 0.1 follows from arguments of Conner-Floyd [5].
We have constructed an analytic proof for G = Z4 and G = Z9. Bendersky
and Davis [2] proved 0.1 for cyclic groups which proves 0.1 at the prime p
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if H, is cyclic (which is always the case if p is odd). Mesnaoui [11] has studied
BP*(BQm) in terms of the Gysin sequence. We will prove in sections 3 and
4:

THEOREM 0.3:

REMARK: If H2 = Q2, and X* = , MU*, bu*, or BP*, then

so this proves conjecture 0.1 at the prime 2 if H2 = Q2.
We believe the analytic approach we shall use to prove Theorem 0.3 is of

independent interest since it has a very différent flavor from the standard
topological methods.*

It is a pleasant task to acknowledge the help and encouragement of A.
Bahri at every step of the way. We also acknowledge the suggestions of the
referee in shaping the final form of this paper and the help of G. Seitz.

1. Topological preliminaries

If Q c- R(G) and M E MU*(BG), let (!(M) be the associated vector bundle;
extend this by linearity to define ring homomorphisms n : R(G) - K(M)
and n: Ro(G) - (M). If T: G ~ U(k) is fixed point free, let N(G, r) =
S2k-I/T(G). The underlying real bundle of 03C0(03C4) is T(N(G, 03C4)) EB 1 so N(G, r)
inherits a natural stable complex structure. Since N(G, i) is odd dimensional,
it bounds in MU* so N(G, i) belongs to the reduced group MU*(BG).

Let X( - ) be one of the functors H, MU, bu, or BP and let X be the
associated coefficient ring:

* (added in proofs) Recently a proof by Bahri, Bendersky, and Davis has been given of 0.1 
using entirely different methods.
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(If X = H, let the coefficient ring be Z). There is a slight notational diffi-
culty, here since by X( - ) we mean the reduced theory while the coefficient
ring is the un-reduced theory evaluated at a point, but in practice this causes
no problems. If X = MU, BP, or bu, there is a spectral sequence for
X*(BG) with E2p,q term p(BG; Xq). By Landweber [10], all the differentials
in the spectral sequence vanish. This is the crucial topological fact we shall
use to derive information for these functors from information about H. For
example, fle,en(BG; Z) = 0 implies Xeven (BG) = 0.

Let H be a subgroup of G. Induction and transfer define maps

We need to study i and t in some detail on MU*. Let A, B ~ G ; we wish
to describe tA - iB{N(B, 03C4)} in terms of double cosets. Let B ~ S2k-1 H

N(B, r) be the left principal B-bundle defining the B-structure on N(B, 03C4).
Then G H G x B S2k- H N(B, T) is the left-principal G-bundle defining
iB (N(B, 03C4)) and A H G x B S2k-1 H AB{G x B S2k-1} is the left-principal A
bundle defining tA · iB(N(B, 03C4)). Induction changes the total space but not
the base while transfer changes the base but not the total space. Decompose
G = UiAgiB into double cosets. Let Ai = gi - B - · g-1i n A and let 03C4i(a) =
03C4(g-1i · a · gi): At H U(k). The connected components of AB{G B S2k-1}
are S2k-1/03C4i(Ai) and the total space is A x A(i) S2k-1. This proves:

LEMMA 1.1: Let A, B g G and 03C4: B - U(k). Let {gi} be representatives for
the double cosets ABG/B. Let Ai = gl B - · g-1i ~ A and 03C4i(a) = 03C4(g-1i · a - gi).
Then tA · iB{N(B, 03C4)} = 03A3iiA · N(Ai, 03C4i).

Let NG (Hp) = {g ~ G : g · Hp · g-1 = Hp} be the normalizer of the p-Sylow
subgroup. Let aut (Hp) be the group of automorphisms and let m: NG(Hp) ~
aut (Hp) by m(g)h = ghg-’ . Any automorphism of Hp induces an auto-
morphism of X*(BHp); let mx: NG(Hp) ~ aut (X*(BHp)).

LEMMA 1.2: Let X*(-) = (-; Z), MU*( - ), BP*( - ), or bu*( - ).
(a) 1 Xa(BG) | = 03A0b+c=a|b(BG; Z) |rankZ(Xc).
(b) 2k(BZn; Z) = 0, H2k+ (BZn) = 71n,

H2k (BQm; Z) = 0, 4k+1 (BQm) = Z2 O Z2, 4k+3(BQm) = Z2m+1,
2k(BSL(2, 3); Z) = 0, H4k+ 1 (BSL(2, 3)) = 7L3, H4k+3 (BSL(2, 3)) = Z24 -

(c) {i · N(H, 03C3)} for H ~ G and 03C3 a fixed point free representation of H
generates MU*(BG) as an MU*module.

(d) i : X*(BHP) X*(BG)(p) is 1 - 1 ; t: X*(BG)(p) ~ X*(BHp) is onto.
(f) t{X*(BG)(p)} ~ {y E X*(BHp): mx(g) . y = y ’if g E NG(Hp)}. If equality

holds for X* = H, it follows for the other functors.
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Proof: (a) follows from Landweber [10] since the spectral sequence has
trivial differentials. (b) is an easy calculation using characteristic classes and
is therefore omitted. If M E MU*(BG), let M(M) E H(BG; Z) be the image
of the fundamental class. Since {03BC(i · N(H, 03C4)} generate H(BG; 71), (c) follows.
H*(BHp; Z) and hence X*(BHp) is p-primary. Since i · t is multiplication by
1 G: Hp| on H, (d) follows for X* = * and hence for the other functors as
the relevant spectral sequences degenerate. Since transfer commutes with
group isomorphism and since conjugation by g is inner on G,

We now suppose equality for X = H. To prove equality for the other
functors, we recall some facts from representation theory. Let A be an
Abelian p-group and let mA : B H aut (A). Define

and

If 1 mA(B) is coprime to p, A = A0 ~ A’ is a direct sum decomposition of
A into the invariant and non-invariant pieces.

If h E H, then mX(h) = 1 since h acts by inner automorphisms. This
implies |mX(NG(Hp))| = |mX(NG(Hp)/Hp)| is coprime to p. We split X*(BHp)
and the bordism spectral sequence for X*(BHp) as above. Since H*(BG;
Z)(p) ~ H*(BHp ; Z)0, t is an isomorphism from Ep,q (BHp )° . Therefore t is an
isomorphism from X*(BG)(p) to X*(BHp)o. Il

The Smith homomorphism is used to perform induction on the dimension.
Let T: G ~ U(k) be fixed point free. Embed N(G, j · T) in N(G, ( j + 1) · 03C4)
by embedding C2k’ in C2k(j+ 1) using the first 2kj coordinates. The classifying
space BG = LlMi-.o N(G, j · r). If M E MU*(G), let f: M ~ N(G, ( j + 1) - T)
be the classifying space for j large. Make f transverse to N(G, j · 03C4) and let
039403C4(M) = f-1(N(G, j · 03C4)); 039403C4 is a well defined MU* module morphism
called the Smith homomorphism. As 039403C4 (i(N(H, T EB 03C41))) = i(N(H, 03C41)),
039403C4 is onto by Lemma 1.2. Conner-Floyd [5] discuss the Smith homomorphism
for MSO*(BG) at odd primes; the situation here is similar. This proves

LEMMA 1.3: 039403C4 extends as an MU* module morphism
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2. The eta invariant

If M ~ MU* and if 03C8 E R(U), let index(03C8, M) E Z be the index of the
Dolbeault complex with coefficients in 03C8; this is a bordism invariant. In

particular the arithmetic genus ag(M) is index (1, M). If A’ is the ith exterior
representation and if det is the determinant representation, then R(U) =
Z[039Bi, det, det- 1 ] modulo the obvious relations.
We study the eta invariant on Cartesian products as follows. Let set) =

~j+k=i Ai Qx Ak define a comultiplication on R(U). If 03C8 E R(U), decompose
s(03C8) = £;§1,; Qx 03C82,i. If M = MI x M2 for Mv E MU*, then 03C8(M) =
~i03C8l,i(M1) (D 03C82,i(M2). We refer to [7, Lemma 4.3.6] for the proof of:

LEMMA 2.1: If M, E MU*(BG) and M2 E MU*, let M = MI x M2. If 0 E
Ro(G) OO R(U), let (1 Qx s)(03B8) = Liei ~ 03C8i. Then ~(03B8, M) = 03A3i~(03B8i, MI) -
index (03C8i, M2). If Q E R0(G), ~(Q, M) = ~(Q, MI) ag(M2).

The eta invariant is closely related to R(G). Embed R(G) in the class
functions C(G) and let (f1, f2)G = |G|-1 · 03A3g~Gf1(g) · f2(g) define a non-
degenerate symmetric bilinear form on C(G). Restriction r: C(G) ~ C(H)
and induction ind: C(H) ~ C(G) are dual; (fl, ind (f2»G = (r(f.), f2)H by
Frobenius reciprocity if f, E C(G) and f2 ~ C(H). If s is fixed point free, let

We note Finally define

LEMMA 2.2: Let H ~ G.

(a) If Q E Ro (G), then ~(Q, N(G, 03C4)) = (Q, 03B2(03C4))G.
(b) If M ~ MU*(BH) and 0 E Ro(G) (8) R(U), ~(03B8, i(M)) = ~((r (8) 1)0, M).
(c) If M E MU*(BG) and 0 E Ro(H) Qx R(U), ~(03B8, t(M)) = ~((ind ~ 1)

0, M).
(d) i : ker (~, H) H ker (~, G) and t: ker (~, G) ~ ker (~, H).
(e) 039403C4: ker (~, G) - ker (~, G).

Proof An analogous formula for the tangential operator of the signature
compex appears in Atiyah et al. [1, II-(2.9)]; the calculations for the tangential
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operator of the Dolbeault complex are the same which proves (a); this

expresses the eta invariant in terms of trignometric sums. The bundles
03B8(i(M)) and (r ~ 1)(0)(M) agree which proves (b). To prove (c), we may
suppose M = 1(N(J, s)) x M, for J ~ G and Ml E MU* by Lemma 1.2.
We use Lemma 2.1 and (a, b) to deduce (c) from Frobenius reciprocity; this
gives the duality of (r, i ) and (ind, t) with respect to the pairing of the eta
invariant. (d) follows from (b, c). Let A correspond to L. The normal bundle
of 0394(M) in M is given byr. Define an algebra isomorphism u of R0(G) (D
R(U) by u(1 0 det) = det (L) (D det, u(1 ~ A’) = La+b=IAa(L) O Ab,
u(Q Q 1) = Q (8) 1. Then if 03C8 E R0(G) (8) R( U),

We use Lemmas 1.2, 2.1, and 2.2 to see

Since u is an isomorphism, M E ker (~, G) implies 0394(M) E ker (~, G). ~

We prove Theorem 0.2 one prime at a time. Let HP be a Sylow subgroup of
G. Since t: MU*(BG)(p) ~ MU*(BHp)(p) is 1 - 1 and since t(ker (G, ~)) ~
ker (~, Hp), it suffices to prove Theorem 0.2 for G = Hp . Let 03C4: Hp H U(k)
be fixed point free and irreducible. Suppose inductively ker (q, Hp) n
MUv(BHp) = {0} for v  j. Let M E ker (~, Hp ) n MUj(BHp). Then

039403C4(M) E ker(q, Hp ) n MUj-2k(BHp) = {0} so A(M) = 0. We complete
proof of Theorem 0.2 by showing ker (~, Hp ) n ker (039403C4) = 0. Suppose first

Hp is cyclic.

LEMMA 2.3: Let MI = N(Zn, Q1) and let 0394 correspond to Q1.
(a) ~(Q0 - ol , M1) = n-1. MU1(BZn) = 7 n is generated by MI.
(b) Let N E MU2k . If M1 x N E ker (1, 7 n ), then N ~ n · MU2k and Ml x

N = 0.

(c) ker(A) n MU2k+1 (BZn) = Mi x MU2k and ker (0394) n ker (1, 71n) = 0.

Proof: By Lemmas 1.2 and 2.2, ~(Q0 - Q1, M1) = n-’ and |MU1(BZn)| = n
which proves (a). Let 03C8 e R(U) and decompose s(03C8) = 03A3i03C81,i ~ 03C82,i. Since
T(Mi) = 1, 03C8(M1 x N) = 03C8’(N) for 03C8’ = li dim (03C81,i)(M1) Q 03C82,i. If

MI x N ~ ker (~, Zn), by Lemma 2.1, 
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The map 03C8 ~ 03C8’ is an algebra isomorphism of R( U), so index (03C8, N) is
divisible by n V gl E R(U). We now come to the essence of the matter. By the
Hattori-Stong theorem, N E n MU2k proving (b). Consequently Ml x
MU2k ~ Zn Q MU2k has n’ elements for u = rankz MU2k . Furthermore
MI x MU2k n ker (1, 71n) = {0} and Mi x MU2k g ker(A). By Lemma 1.3,
0394 is onto so ker(0394) n MU2k+, (B7Ln) = MU2k+, (B7Ln) |/| MU2k-1 (B7Ln) | =
n u M

If Hp is not cyclic, then p = 2 and HP = Qm . Let 03C40: Qm ~ SU(2) be
the canonical representation and let x = cos (2n/2m) + i sin (203C0/2m) and
y = j generate Qm. There are 4 linear representations of Qm defined by:

If m = 2, we will denote these by {Q0, Qi, Qj, Qk} since x = 1, y = j, xy = k
in that instance. If z E Qm , let Hz be the cyclic subgroup generated by z. The
restriction of ro to Hx or Hy is Q1 EB O3. Let

LEMMA 2.4: Let à correspond to LO.
(a) MU, (BQm) = 712 EB 712 with basis {Mx, My}.
(b) MU3(BQm) Z2 EB 712 QQ 712m+1 with basis {Mx x CP1, My x CP1, M,
(c) If M E MU3(BQm) and ~(Q, M) = 0 ~ Q E R0(Qm), then M = 0.
(d) If M = Mx x Nx + My x Ny + Mq x Nq E ker (~, Qm), then Nx E

2· MU*, Ny ~ 2 · MU*, Nq E 2m . MU*, and M = 0.
(e) ker(0394) n MU2k+1(BQ2) = Mx x MU2k EB My X MU2k EB Mq X

MU2k-2 ~ H1(BQ2; MU2k-2) O H3(BQ2; MU2k-4).

Proof. By Lemma 2.2,

This gives a map from MU1(BQ2) ~ 7L2 EB Z2 ~ 0 which proves (a) since
|MU1(BQ2)| = 4. Let ao - 2QO - 03C40. By Lemmas 2.1 and 2.2,
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which proves (b, c). The rest of the proof is essentially the same as that of
Lemma 2.3 and so is omitted. This completes the proof of Theorem 0.2.
The eta invariant is closely related to K-theory as well.

LEMMA 2.5: Let 1:, 03C4’ be fzxed point free and let Q E Ro(G).
(a) If deg (03C4) = deg (03C4’), then 03B1(03C4) · R(G) = 03B1(03C4’) · R(G). If deg (03C4’) 

deg(03C4), then 03B1(03C4) ~ l1(1:I) . R0(G). R0(G)/03B1(03C4) · R(G) - K(N(G,7:)).
(b) Q ~ 03B1(03C4) · R(G) iff ~(Q Qx a, N(G, 7:)) = 0 VUE R0(G). ~ is a perféct pairing

l: K(N(G, 1:)) ~ K(N(G, 1:)) ~ Q/71 exhibiting K(N(G, 7:)) as its Poincare
dual. If Q E 03B1(03C4) · Ro(G), then ~(O, N(G, 03C4)) = 0.

Proof. See Gilkey [9, Theorem 3.6].

We use Lemma 2.5 to relate define a map from MU* to K-theory.

LEMMA 2.6: Let 1: be fixed point free of degree k and let v  2k - 1.

(a) If M E MUv(BG) and 0 E 03B1(03C4) · R(G) Qx R(U), then ~(03B8, M) = 0.
(b) 31 gI ’ MUv(BG) ~ R0(G)/03B1(03C4) · R(G) so ~(Q, M) = ~(Q · g03C4(M), N(G, 1:))

V Q E Ro(G). ker(gt) = {M E MUv(BG): ~(Q, M) = 0 V Q E R0(G)}

Proof. We apply Lemmas 1.2, 2.1, 2.2 and 2.5. Let 0 = Q (8) t/J E 03B1(03C4) · R(G) (8)
R(U). If M = N(G, 03C4’), choose 03C3 e R(G) so 03C3(M) = 03C8(M). Since Q · 6 E
a(i)R(G) z 03B1(03C4’) · Ro(G), ~(03B8, M) = ~(Q · a, M) = 0. If M = i · N(H, 03C4’),
then ~(03B8, M) = ~(r(03B8), N(H, 03C4’)) = 0 since r(e) E 03B1(r(03C4)) · R(H) (8) R(U).
Since the comultiplication s is R(G) linear, (1 ~ s)(03B8) E a(1) . Ro(G) ~
R(U) Qx R(U) so q(0, i · N(H, 03C4’) · N1) = 0. Such manifolds generate
MU*(BG) which proves (a). Define fM: R0(G)/03B1(03C4) · R(G) ~ Q/71 by fM(Q) =
~(Q, M). 3! gs(M) E R0(G)/03B1(03C4) · R(G) so ~(Q · g03C4(M), N(G, 7:)) = fM(Q);
g,(M) = 0 ~ ~(Q, M) = 0 V Q E R0(G). ~

3. bu*(BQ2) and bu*(BSL(2, 3)).

In Lemma 1.2, we showed it sufficed to study the Sylow subgroups of G. In
fact, MU*, BP*, and bu* are determined by the maximal cyclic subgroups.

LEMMA 3.1: Let X* = MU*, BP*, or bu*. Let {Cv} be the family of maximal
cyclic prime order subgroups of G. If M E MU*(BG) and tv(M) = 0 V v,
then M = 0.
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Proof. If X* = bu*, this follows by [9, Theorem 4. 1 (a)]. Let X* = MU*. By
Lemma 1.2 and the transitivity of transfer, we may assume G = Hp .
Lemma 3.1 is trivial if HP is cyclic so let G = Qm . Let H, = z&#x3E; and
suppose tz(M) = 0 for z = x, y, or xy. By Lemma 2.2, q(0, M) = 0 V 0 E
indz {R0(Hz) 0 R(U)}. We showed

[9, Lemma 4.6] so ~(03B8, M ) E ker (q, G) = 0. We use the splitting of MU*
in terms of BP* to prove this for BP*. Lemma 3.1 is false for X = fi and
G = Qm. Il

We begin by studying R0(Z4):

Proof: (a) is immediate. (b) is true for n = 0 so we proceed by induction.

We note R0(Z4)2n+2 = R(Z4). un+1. Therefore R0(Z4)2n+2 is spanned by

where a(n) ~ 0. This proves (c, d). Finally m - u E R0(Z4)2n+2 means

or m = 4n al and al (2n - 1) = 2a2 or equivalently m ~ 0 mod 22n+l. Il
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Let {Q0, Qi, Qj, Qk, 03C40} be the representations of Q2 and let ao - 03B1(03C40). Define
an action of Z3 on Q2 by the cyclic permuation i H j H k H i. Decompose
X*(BQ2) = X*(BQ2)(0) ~ X*(BQ2Yl) under this action. Then

so X*(BQ2YO) = X*(BSL(2, 3))(2) for X* = bu*, MU*, or BP* by Lemma 2.1.
Furthermore, Xl (BSL(2, 3))(2) = 0. If n &#x3E; 1, then

R0(Q2) has 4 generators so bu*(BQ2) has 4 generators. Since no element
of bu*(BQ2Yl) is Z3 invariant, bu*(BQ2Yl) has at least 2 generators so
bu*(BQ2YO) = bu*(BSL(2, 3))(2) has at most 2 generators. We wish to apply
Lemma 3.1 and 3.2. Let x E bU4n-s(BSL(2, 3))(2). Then tz(X) E bu4n-5(BHz) =
R0(Z4)2/R0(Z4)2n for z = i, j, k. Since u generates Ro(7L4)2, 22n-1 . - &#x26; (Z4 )2 - -
R0(Z4)2n so 22n-1. tz (x) = 0 and therefore 2 2n-1 . X = 0. As tz(03B10) = u, oco
has order 22n-1. Thus there are exactly 2 generators of bu*(BSL(2, 3))(2) and

Consequently bu*(BQ2)(1) has exactly two generators and admits a free Z3
action. If we can show bu*(BQ2)(1) = Za(v) e Za(v), then a(4n - 5) = 2n-2
and a(4n - 3) = 2n-1 which will complete the proof of Theorem 0.3(a, b).

LEMMA 3.3: Let A be an Abelian 2-group on 2-generators with a fixed point
free Z3 action. Then A = 7La EB 71a.

Proof. Let À E 7L3 be the generator and let A = 7La EB 71b with generators
x, y where b  a. Since the action is free, (1 + 03BB + 03BB2) · x = 0. If

03BB · x = cx + dy, 0 = x + 03BBx + 03BB2x = (1 + c + c2) · x + cd · y + d · 03BB(y)
so d(03BB · y) = (-1 - c - c2) · x + d · y. As (1 + c + c2) is odd,
b = ord (y)  ord (d03BBy)  ord (x) = a. ~

The remainder of this section is devoted to the proof of two techni-
cal lemmas we will need in the next section to study MU*(BQ2) and
MU*(BSL(2, 3))(2)’ The reader may wish to skip the proofs until they are
needed. Let
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LEMMA 3.4: Spanz {Mi} n ker (~, R0(Z4)) = 0.

Pro of. We use Lemmas 2.5 and 2.6. Let i’ = 6) EB Q3 EB t and N = N(Z4, 03C4’).
Let g: MU2n-1(BZ4) ~ R0(Z4)/R0(Z4)n+1 so ~(Q, M) = (Q · g(M), N) ~ Q E
R0(Z4). Let

Let M = Lini. Mi e ker (q, R0(Z4)) = ker (g). We show M = 0 by showing
1(o, M) = 0 V 0 E Ro(714) (8) R(U). Let 0 = 03C3 (8) 03C8. We want to get rid of
the dependence on 03C8 E R(U) to use Lemma 2.5. We can express 03C8(Mi) in
terms of the representation theory;

Thus we may assume and

If x(b) = Lini. · xi(b), then ~(03B8, M) = ~(03C3 · x(b), N ). If x(b) e R0(Z4)n+1,
~(03B8, M) = 0 which will complete the proof. As x(b) = Qb · g(M) +
Qb · (Q2b - Q0) · n2 . x2, we must show (Q2b - Q0) · n2 . X2 E R0(Z4)n+1. Let
x = g(M) e R0(Z4)n+1. We argue as follows. Ro(7L4) is invariant under the
involution Qs ~ Q*s = Q-s so
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Next let and let

LEMMA 3.5: Spanz {M1, 2 · M2 + M3 + M4} n ker (~, R0(Z4)) = 0.

Proof: Let N = N(Z4, (n + 1) · 03C4). Let g(M) E R0(Z4)/R0(Z4)2n+2 so

~(Q, M) = ~(Q · g(M), N ) V Q E &#x26;(Z4). Let u and v be as in Lemma 3.2.
If xi = g(Mi), then:

Let M = n1 M1 + n2 (2M2 + M3 + M4) ~ ker (~, R0(Z4)) so g(M) ~ R0 (Z4)2n+2.
Let 0 = 03C3 (8) t/J E Ro(7L4) ~ R(U). We must show ~(03B8, M) = 0. As before,
we must eliminate the dependence upon 03C8. We compute:

so we may suppose O(Mi) has the form:
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Since o2b ’ (go + Q2) = (go + Q2) and Q2b · x2 = x2 , we can multiply xi(a, b)
by Q2b:

4. MU*(BQ2) and MU*(BSL(2, 3))

Let ao - 03B1(03C40) and I = 03B10 · R(Q2). We recall bu4n-5 (BQ2) = Iljn and
bu4n-3(BQ2) = R0(Q2)/In. Let gn: MUv(BQ2) ~ bu4n-3(BQ2) for v  4n - 3
be defined by using Lemma 2.6 so ~(Q, M) = il(Q - · gn(M), N(Q2 , n To) V Q E
R0(Q2). If v = 4n - 5, image (gj c I so

We will split gn to embed bu*(BQ2) in MU*(BQ2) equivariantly with respect
to the action ofZ3 defined previously. Let r = (n - 1). ro, LI = (n - 1).
To ED Q1, and 03C42 = (n - 2) . ro ~ 2 - Q1. Let a = 4n - 5 and b = 4n - 3.
For a, b &#x3E; 0 define


