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Introduction

The point of this paper is to indicate how recent results of Cassou-Nogues
[3, 4] and Sargos [8], concerning poles of meromorphic continuations of
"generalized" Dirichlet series of the form

can be extended by means of a b-function at infinity which can be associated
to the data of the polynomial P(z1, ... , zn ) and "test" function ç.

(Implicitly, the summation in (0.1) is taken only over the lattice points m in
Nn or Z" at which P(m) ~ 0.)

In their work, the polynomial P must satisfy the positivity condition that
the real part of each coefficient of P is positive. This is for technical reasons,
as discussed in Section 1. Moreover, it also allows use of the principal
branch of the logarithm to define the quantity P(m)s. On the other hand, it
suffices for our purposes to impose a simple growth condition on Re (P) at
infinity (cf. (2.1), (2.6)).
The essential idea here is to exploit the Cauchy residue theory, as done by

Sargos, but to do so in a convenient conical neighborhood r of the divisors
at infinity in the compactification Cn  (P1 C)n . Then (0.1) is written as a
finite sum of integrals I03C3(s, ~). The integrand is given by an expression
RS 03C8~E/(x1 ...xn)N+2 dxl ... dxn where:

i) R(x1, ..., xn) = 1/P(1/x1, ... , 1/xn) and the principal branch of
log P also determines RS .

ii) N characterizes the order of growth of 9 at infinity inside r.
iii) E is the summatory kernel converting lattice points to simple poles.
iv) t/J qJ is a bounded holomorphic function in r.
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The b-functions are minimal monic non-zero polynomials bN(s) for which
a functional equation is shown to hold for the expression Rs(1/x1 ... xn)N+2,
considered as a generator for a suitable module over the Weyl algebra,
corresponding to the chart at infinity (cf. Proposition 3).

Thus, if BN = {03BB - n: bN(Â) = 0, n = 0, 1, 2, ...}, the main result of
this paper is the following.

THEOREM 1: If P satisfies the growth condition (2.1), then the poles of (0.1 ) are
contained in 81 N.

The precise connection between poles of the Dirichlet series and roots of the
b-function to be introduced here is similar to that encountered in studying
the poles of the generalized function |P|2s and their relation to the roots of
the standard b-function for P [1]. Note however that much subsequent
work extending [1] (works of Barlet, Loeser, Malgrange) has exploited a
cohomology theory that is not yet available in this subject.

Section 1 briefly describes the work in [3, 4, 8]. Sections 2-4 describe the
meromorphic continuation of (0.1). Section 5 considers a class of real

polynomials which satisfy a positivity condition on their coefficient.
Theorem 2 characterizes the largest pole of -9p(s, cp) in terms of the poly-
hedron and is reminiscent of a theorem of Varcenko [11].

Indeed it states, for cp a non-zero constant (a generalization to cp a mon-
omial is also proved but the statement is slightly more technical to state here)

THEOREM 2: Let 0393~(P) be the polyhedron of P at infinity (cf. (5.1)). Assume
that P is a real polynomial satisfying the positivity condition and that condition
(5.9) holds. Let t0 be the value of t at which the diagonal y1 = ... = yn = t

intersects roo(p). Then 1/to is the largest pole of (0.1).

REMARK: Sargos has independently proved a more general version of this
theorem [10]. On the other hand, we obtain (5.14) a more precise expression
for the polar part of -9p (s, ~) at any possible pole, not just the largest. This
might be of subsequent interest.

In a second paper on this subject, D module techniques are used to obtain fur-
ther information about the poles and their relation to monodromy at infinity.

Section 1

This section briefly summarizes the works of Cassou-Nogues and Sargos.
The techniques used in [3, 4] are based on a theorem of Mellin. As such
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there is an assumption required on P called the
(+) condition: the real part of all non-zero coefficients of the complex

polynomial P(zl , ... , zn) are positive.
The statement of Mellin’s theorem can be conveniently split into two

parts.

Now, set Sj(s) = ~1 z-sj dzj and 03A3~mJ=1 mj-S = ((s).
Integrating (1.1) with respect to dZI ... dzn and changing the order of

integration (always with Re (s) &#x3E; el + ... + 03B8R) gives the following two
identities.

and
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Similar expressions are obtained if one includes a function, say a poly-
nomial, ç, multiplying the P-s term.
One knows the analytic continuation of S; (s) and «s) to contain a single

pole at s = 1. Thus the possible poles of Sj(uj) resp. 03B6(uj) are given by the
union of the loci {uj(s, Zi, ... , zR) = 1}.
For fixed z, , ... , zR, the locus consists of only finitely many points in

any vertical strip of finite width contained in the s-plane. By using this
observation and repeating it R times, Mellin was able to show

THEOREM B. The left hand sides (1.2) and (1.3) are meromorphic functions of
s with at most finitely many poles in any vertical strip of finite width. In
addition, since for any such vertical strip it is the case that for any e &#x3E; 0

e-03B5|s| Sj(s) ~ 0 (resp. e-03B5+|s|03B6(s) ~ 0) as Isi ~ 00, s inside the strip, it follows
that this same "sub-exponential decay" property holds for the left hand sides
of (1.2), (1.3).

What Mellin did not do was determine and thus be able to compare the

actual set of poles for the left hand sides of (1.2), (1.3).
This was done 82 years later in the case of n = 2 by Cassou-Nogues. Her

main result [4] can be summarized as

THEOREMC. When n = 2, the set of possible poles of the left hand side of (1.3)
is contained in the set of possible poles of the left hand side of (1.2).

In fact, the relation between the two sets of poles can be made much more
precise.

Sargos [10] has extended this to the case n &#x3E; 2 via a certain Newton

polyhedron at infinity (cf. Section 5 for the definition).
Instead of using Mellin’s theorem and (1.1), Sargos uses a summatory

formula based on Cauchy residue theory.
In one variable this is expressed as follows. Define the region ro =

a + {z E C: |Arg(z)|  03B8} where a E (0, 1) and 0  03B8  n/2. Set e(z) =
e203C0iz. Then, if f (z) is holomorphic in an open set containing the region ro and
f satisfies a bound of the form

where e &#x3E; 0 and C are independent of z, one has



85

In n-variables, (1.4) is extendable if f(z1, ..., zn ) is holomorphic in Fn,
for some 0, and satisfies a growth property (C, e independent of z)

If (1.6) is satisfied, then

This is useful by the

LEMMA (1). When P satisfies the (+) condition there is a 0 E (0, n/2) so that
f(z) = (IIP(z»’is single valued and I/P(z) satisfies (1.6) for some e &#x3E; 0 and

all z ~ 0393n03B8.

Proof. cf [8, Lemma 5.1]

REMARK : In fact more is proved in [8]. Given any rational function

R(z) = Q(z)/P(z), where Q and P satisfy the (+)-condition, and given any
monomial zul ... zunn, Uj  1 for each j , there exist positive numbers a, 0 and
Q, Q  n/2, so that

and

for all z = (zl , ... , zn ) E 0393n03B8. This is generalized in Section 2.
To perform the analytic continuation, one first decomposes the ori-

ented n-chain ~039303B8  ··· x are = 03A303C3(-03C3(1))03B303C3(1)  ··· x ( - 03C3(n)) · 03B303C3(n)
where

Define the functions, on |03B3+| resp. |03B3_| (|*| denotes the support of the
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chain *),

These satisfy the crucial convergence properties:
There exists ô &#x3E; 0 so that

For given choice function u set
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and define

fo r z c- F, .
Then, one has for f (z) satisfying (1.6),

Using a detailed combinatorial argument (similar to that used in section
(5)) to find a "largest monomial" in a Newton polyhedron at infinity for P)
Sargos was able to determine the analytic continuation of each integrand
in the right side of ( 1.10) when f(z) = P(z)-s · zl’ ... zann, an E N ~ {0}. His
result was

THEOREM D. For P satisfying the (+) condition there is a rational number a
and integer N so that the poles of the analytic continuation of (0.1) (with
~(z) = za11 ... zann) are contained in the set {03C3 - u/N : u = 0, 1, 2, ...}.

Section 2

There are three parts to the proof of Theorem 1, distributed across the next
three sections. Section 2 contains the analytic but preliminary part. Here the
growth condition on P is defined and used to establish a summatory formula
valid in a halfplane of analyticity between a-tail-of (0.1 ) and a finite sum of
values of "generalized currents" (cf. (2.10)). This establishes the analog of
(1.10). Section 3 gives an algebraic derivation of the functional equation that
will lead to the proof of the theorem in section 4. Note that in the following
we will treat the series (0.1) where the summation is over the tuples m in Nn
at which P(m) ~ 0. An obvious extension to the case of Zn is left to the
reader.
The basic idea in this paper is to use the coordinate inversion zi = 1/xi,

i = 1, ... , n, to analyze each of the integrals of the summatory formula
(2.10). In this way, one thinks of Cn with coordinates (z, , ... , zn ), denoted
Cn (z), as being compactified via the inclusion Cn  (P1C)n, and one
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works in the coordinate chart Cn(x) with overlap equations as above. The
divisors Di which one adds to Cn (z) to compactify it are evidently defined in
Cn (x) by xl - 0, i = 1, ... n. On the other hand for certain polynomials,
toroidal compactifications may be more useful in that they allow one to
describe the first pole of (0.1) in terms of a combinatorial object, the Newton
polyhedron of P at infinity. This is the idea behind Section 5 and [10].

In the following the norm on any copy of Cn is defined in this way. If, for
example, z = (zl , ... , zn) then ~z~ = max{|zi|}. The growth condition on
Re ( P) is the following.
There exists a B E (0, 1) such that (with zj = Xj + iyj for each j )

For each differential monomial DA = DA‘ DA2 ... DA2n-1 xn DA2nyn,

This is the hypoellipticity condition on [B, oo)" of Hôrmander [pg. 99,6].
Thus, one concludes from the proof of lemma 4.1.1 [6] that there exists a
positive rational number e so that the function

defines a region r(e)

such that Re(P) satisfies the growth condition

In the following, we assume 03B5  1. From (2.3) one concludes

PROPOSITION 1: If (2.1) is true, then there exist D, c, c’, l1 &#x3E; 0 such that

for all

Note: We subsequently assume that D is not integral and D &#x3E; B. This is
without loss of generality.
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Proof: This follows from the argument presented in [6, appendix]. Since
r(O)n is a semialgebraic set the function

has the form

Evidently, (2.3) implies that a must be positive. This shows (2.4).

EXAMPLE: P(z1, z2) = (Z, - Z2 )2 + z, is a real hypoelliptic polynomial that
does not satisfy the non-degeneracy conditions in Section 5.

Setting (xl , ... , Xn) = (1/z1, ..., 1/zJ (abbreviated as x = 1/z
below), (2.4) implies

Thus, if R(x) = 1/P(1/x) and x = 1/z with z E 0393(03B8)n n {~z~  D}, one
concludes that constants C, C’ exist so that

NOTATION: Because 0 is fixed in the discussion we subsequently denote 0393(03B8)n
by rn. Set 0393nD = {~z~  D} n 0393(03B8)n.
(2.6) It follows that in the region rz a single valued branch for log P exists
and is used to define P’ and (1/P)s in 0393nD as single valued holomorphic
functions. Inded, because Re (P) satisfies the condition (a) Re (P)(z) &#x3E; 0

for each z E n or (b) Re (P)(z)  0 for each z E rD, it follows that if (a)
holds then the principal value of the logarithm is used to define not only each
term P(m)S in (0.1) but also the functions PS, (1/P)’ in 0393nD. If (b) holds, then
one understands P(m)s to mean the quantity (-1)s(-P(m))s (where
Arg (-1) = n) and uses the principal branch of log to define ( - P(m))s.
Similarly, one defines the functions Ps, (1/P)S in rz by the identities P(z)s =
(-1)s(- P(z))s, (1/P(z))s = (-1)s(-1/P(z))s. As such, all the analysis will
be done in 0393nD. Thus, with these conventions, our considerations will apply
to the "tail" of the series, defined as
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Because only finitely many terms from (0.1) are lost in (2.7), all the infor-
mation about the poles of the meromorphic continuation of (0.1) is pre-
served in (2.7). To proceed, the summatory formula (1.10) needs to be
adapted to the situation here.

Let A = Z n [B, D] = {1, 2, ... , a}. For each i E A set y(i) to be a
small circle oriented counterclockwise and centered at i in the plane. The
radius of each circle is the same and is taken to be less than 1/2.
Now set C = (D - B, ... , D - B) E C" and consider the translation

C + rn. Evidently, C + 0393n ~ rD. One can express ~(C + rn) as follows.
In one coordinate plane, one has

where

One orients these chains by increasing x.

Let W = {03B3(1), ..., y(a), -03B3+(D), 03B3-(D)} be a finite collection of oriented
arcs in the complex plane. Define

at least one Q(u) is an unbounded arc}.

For 03C3 E !Y set

REMARK: We do not distinguish notationally between the unbounded chain
A, in the chart Cn (z) and the compact chain 039403C3 in Cn(x) unless the context
does not make clear which is being considered.
The collection {039403C3}03C3~J is the finite set of oriented n-chains replacing the

set {039303C3} in (1.10). Observe that the supports of the A, are mutually pairwise
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disjoint. Set

Next, define for each u E 1

and

REMARK: The class of polynomials P satisfying (2.1) is exactly the class for
which the summatory formula (cf. 2.10)) can be obtained via Cauchy residue
theory using the product 03A0(1/(e(zj) - 1). This is because the function

1/(e(z) - 1) resp. [1/(e(z) - 1)] + 1 is integrable over the arc y_ (D) resp.
y+ (D), formed from the function 0, iff the exponent e in the definition of 0
is positive. Indeed, one has that

and

In order to define generalized currents associated to each chain 039403C3, it is first
necessary to define the space of test functions F. This is done for each

N  0 as follows.

DEFINITION: Given N E N, let
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i) Supp (cp) contains an open neighborhood of JAI in C"(z), in which cp is
holomorphic

ii) Icp(z)1 = 0 (IZI ... Zn lN) as Izl - ~, z E JAI
iii) In an open neighborhood V of |0394| in Cn (X) there exists a bounded

holomorphic function 03C8(x1, ... , xn) such that

for all points (Xl’ ... , xn) E f - U Di 1.
Set 3v = u FN. One notes that F contains the ring of rational functions
in (zl , ... , zn). For most purposes, it probably suffices to work with this
ring.
For a ~ J, set

One now shows that there exists a halfplane of analyticity.

PROPOSITION 2: If P satisfies (2.1), then for each N there exists B(N) such that
if Re(s) &#x3E; B(N) then I03C3(s, qJ) is analytic in s fôr all qJ E FN and each a E 5.

where arg (P) is determined according to (2.6) and is therefore uniformly
bounded over 0393nD. Now if K is a compact set in {Re (s) &#x3E; B(N)} there exist
CK &#x3E; 0 such that for all z E rz

Thus, for s E K there exists CK &#x3E; 0 such that for all z E |039403C3| and each

Clearly, 0394 |z1 ... zn|N-03B103C9/n dz converges and is analytic in s if N -

am/n  - 1 - 03B5 for some e &#x3E; 0. Choosing e = 1 and setting B(N) =
[n(N + 2)/03B1] suffices to prove the proposition.
Thus, if 9 E 57,, we obtain an equality between two analytic functions in
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(2.11) REMARK: Note that the branch for log P used to define the integrand
in each 1(T(s, cp) is the same (cf. (2.6)) as that used to define each term P(m)s.
However, if one only imposed the growth condition (2.1) on P, not Re (P),
then one could not insure that. Indeed, it would not be so easy to specify a
piori one branch of log with respect to which each P(m)S is defined ans so
that (2.10) is an identity between functions of s. This unpleasant prospect
forces (2.1) to hold for Re (P).

Section 3

For a polynomial P the existence of a b-function b(s) =1= 0 for which there
is a functional relation

was proved by Bernstein using purely algebraic techniques [1]. For the
reader’s convenience this is now briefly summarized.

Let K be a field of characteristic zero. It is not necessary to force K to

be algebraically closed but is useful to assume that K is uncountable in
cardinality.

Let Dn(K) = K[xl , ..., xn , Dx1, ..., Dxn be the Weyl algebra over K
[2]. The Dxj, xj satisfy the relations

Let

be the filtration of Dn(K) by total order of the operators.
A filtration on a left Dn(K) module X is a sequence of finite dimensional
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K vector spaces

so that

A left Dn(K) module X is holonomic [2] if .K admits a filtration {Nj }~0
such that there are positive integers c,c’ so that

holds for all j.
The most basic examples of such modules are the following two. Here, P

will be a polynomial in K[xl, ... , xn with deg P = d.

A) Set M = K[x, 1/P] to be the ring of fractions. Define Dx,(q/pj) via the
standard quotient rule formula.

Set Mj to be the K vector space. generated by the elements

with deg

Then {Mj} is a filtration of A satisfying (3.3). So, -o7 is a holonomic left
Dn(K) module.

B) Let s be a transcendental over K. Let Ps be a generator of a module X
over K(s)[x1, ..., Xn, I/P]. Define a left Dn(K(s)) action on N where
the main ring action is given by the rule

Set Aj to be the K(s) vector space generated by the elements

Then {Nj} is a filtration of % satisfying (3.3).
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From the finiteness of the length of JV follows the existence of a poly-
nomial b(s) =1= 0 so that (3.1) is satisfied. One need only consider the necess-
arily stabilizing sequence of submodules g; = Dn(K(s)) · (Pi · PS).
One can extend B) to any rational function R = Q/P in an evident way.

Of interest here however, is a modification of B) which concerns both Rs and
another polynomial T. Thus, we show

PROPOSITION 3: Let R = Q/P resp. T be a rational function resp. polynomial
in xl, ... , Xn’ Then for each integer N there exist a non-zero polynomial
bN(s) and elements Pi(s, x, Dx), i = 0, ... m, of Dn(K[s]) so that

Proof: Fix A. = K(s)[x1, ... , xn, 1/PQT]. Set N0 to be the free R0
module of rank one generated by Rs . Define a left Dn(K(s)) action on N0 as
follows.

One checks that it is holonomic by using the filtration of K(s) vector spaces
N0(j) generated by

Let JIN be the Dn(K(s)) submodule generated by K(s)[x1, ... ,
x,,, R](T-N Rs). It is therefore holonomic. Let JlN(j) be the decreasing fil-
tration of MN defined by

Because it stabilizes, there exists a j such that MN(j) = A N(j + 1). This
implies there exist P0 ~ Dn(K(s)) and elements ao (s, x),..., am(s, x) E
K(s)[x1, ... , xn such that

Clearing denominators of polynomials in s and replacing s + j by s yields
a functional equation of the type (3.4). The monic generator bN(s) of the ideal
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of polynomials in s for which an identity (3.4) holds is called the b-function
for T-N Rs. One observes that (3.4) is purely algebraic. There is no impli-
cation of any analytic significance to (3.4) when K = R or C. ~

(3.5) REMARK: It is easy to generalize (3.4) as follows.
There exist a non-zero polynomial b(s,, sz) and operators &#x26;’0’ ... , &#x26;’m in
Dn(K[s1, S2]) such that

Evidently, bN(s) divides b( - N, s) for each integer N.

(3.6) REMARK: A different functional equation involving only polynimials is
this.

If P1, ... , Pk are polynomials in x = (xl , ... , xn), then there exist
a non-zero polynomial b(s1, ..., Sk) and operators P1, ..., Pk ~
Dn(K[s1, ..., Skl) such that simultaneously, one has

Proof. 1 One first shows that

determines a holonomic Dn(K(s)) module. This is done as in example (A)
above. Thus, the k-fold direct sum

is also holonomic. Set

an element of Jtk. Let Jtk(j) denote the Dn(K(s)) submodule generated by
Cj. Multiplication by Pl ... Pk shows that Mk(j) contains Mk(j + 1) for
each j. Thus, there exist j such that Mk(j) = Mk(j + 1) .... This implies
the existence of an element Y E Dn(K(s)) such that for each i
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For each i, set

Evidently, the denominator of each 9fl is the same. Clearing this one denomi-
nator from the k identities

and replacing each si + j by sl yields a set of functional equations of 
form (3.7).

Section 4

In the chart Cn(x) for (Pl C)n , write

Let Uo = 1/(xj ... xn)2 be the Jacobean (up to sign) of the overlap
equations for Cn(x) n C" (z). For each N  1 set

For and

From Section 3, there exists a non-zero minimal polynomial b,(s) and oper-
ators P0, ... , Y,,, in Dn(C[s]) so that

The coordinate inversion x = 1 /z maps the chains in W to compact
(taking closures of the infinite arcs in W) chains in the x plane. Denote these
chains by y’(1), ... , y’(a), y" (D), y" (D). They are characterized by the
following orientations and descriptions.
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y% (D) is an arc in the halfplane Im (x)  0 from the (initial) point
x = 1/D to the (terminal) point x = 0.
03B3’- (D) is an arc in the halfplane Im (x)  0 from the point x = 0 to the
point x = 1/D.
Each 03B3’(j) is a loop traversed counterclockwise about x = 1/j.

For e &#x3E; 0, set S03B5 to be the circle of radius e and center x = 0. Define

03B3’+(03B5) = subarc of 03B3’+(D) from x = 1/D to the point on Se .

y- (E) = subarc of 03B3’-(D) from the point on S, to x = 1/D.

(4.3) Let b1,j resp. b2,j denote the initial resp. terminal point for 03B3’± (e) when
considered as lying in the xj coordinate plane. Set

where the orientations are as above. Each choice function u E 1 determines
a unique choice function a, on W, by the rule

Let 039403C3(03B5) = 03C303B5(1) x ... x u, (n). It is an oriented n-chain with boundary.
For each a e 1 and j for which (JE(j) = + y+ (E) write

One then denotes the component in the xj plane as b1,j(03C3) resp. b2,j(03C3). Set

One has


