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§0. Introduction

Let K be a finitely generated extension field of Q, let r be a finitely generated
subgroup of the multiplicative group K* of non-zero elements of K, and let
0(j, ... , a,, E K*. Many problems of number theory lead to equations of the
types

or more generally

where, in particular, 0393 is the unit group of a subring of K which is finitely
generated over Z. Hence the above equations are called unit equations and
weighted unit equations, respectively. For a general survey on these equations
and their applications we refer to Evertse, Gyôry, Stewart and Tijdeman [7].

For n = 2, several results are known about the number of solutions of ( 1 ).
In 1985, Evertse and Gyôry [6] derived in case n - 2 an explicit upper bound
for the number of solutions of (1) which is independent of a, and a2. Two
tuples (03B11, ... , 1 y,), (03B21, ... , 03B2n) with non-zero entries in K* are called
F-equivalent if there are El’ ... , e, E F such that 03B2l = 03B1l03B5l for i = 1, ..., n.

Obviously, the number of solutions of ( 1 ) does not change when (03B11, ... , 03B1n)
is replaced by a r-equivalent tuple. In 1987, Evertse, Gyôry, Stewart and
Tijdeman [8] proved that in case n = 2 ( 1 ) has at most two solutions for all
but finitely many r-equivalence classes of pairs (03B11, e(2) e (K* )2.

In the present paper we shall partly generalize the results mentioned above
to the case n &#x3E; 2. We shall prove (cf. Theorem 1 in §1) that the number of
solutions of (1) with

03A3 03B1Jxj ~ 0 for each non-empty subset J of {1, ... , n) (2)
/e7
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can be bounded above by a number (not explicitly computable by our
method) which does not depend on a, , ... , 1 ot,. This provides a refinement
of a theorem of Evertse [2] and van der Poorten and Schlickewei [ 11 ] which
says that (1) has only finitely many solutions with property (2). By using
Theorem 1 we shall also extend our result on equation (1) to systems of
weighted unit equations (cf. Theorem 2). Our Theorem 1 will be deduced in
§4 from the following generalization (cf. Theorem 4 in §1) of the result of
Evertse, Gyôry, Stewart and Tijdeman [8] mentioned above: apart from the
tuples (a, , ... , Lln) belonging to at most finitely many r-equivalence classes
depending only on n and r, the set of solutions of (1) is contained in the
union of fewer than 2(n+1)! proper linear subspaces of Kn. We shall derive this
bound in §3, by combining a generalization of the method applied in [8] for
the case n = 2 with the result of [2] and [11] quoted above. Finally, we shall
give an application of Theorem 4 to the case n = 3 (cf. Theorem 5 in §1).
We shall consider equation (1) also over function fields. Let K be a

function field of transcendence degree 1 over an algebraically closed field Ik
of characteristic 0, let r be the group of S-units in K where S is a finite set
of valuations on K, and let a, , ... , an be non-zero elements of K. A solution

(x, , ... , xn) of (1) is called degenerate if 03B11x1, ..., 03B1nxn belong to Ik. As

an analogue of Theorem 4, we shall derive an explicit upper bound for the
minimal number of proper linear subspaces of Kn in the union of which the
set of non-degenerate solutions of ( 1 ) is contained (cf. Theorem 6 in §2). This
bound is also independent of a, , ... , OCn - In deriving our bound we shall use
an effective upper bound of Brownawell and Masser [1] for the heights of
solutions of (1) and a "higher dimensional gap principle".

Applications of our results are given in the recent papers [13] and [5].

§1. Weighted unit équations over finitely generated fields

Let K be a finitely generated extension field of Q, n ~ 1 an integer,
a, , ... , an elements of K*, and r a finitely generated multiplicative sub-
group of K*. A solution (x, , ... , xn) of the weighted unit equation

is called non-degenerate if

L 03B1JxJ ~ 0 for each non-empty subset J of {1, ... , n}
/e7
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and degenerate otherwise. It is clear that if F is infinite and if (1) has a
degenerate solution then (1) has infinitely many degenerate solutions. For
non-degenerate solutions we have the following result.

THEOREM 1. The number of non-degenerate solutions of (1) is at most

Cj = C, (n, F), where CI is a nuinber depending only on n and r.

This is a refinement of a result of Evertse [2] and van der Poorten and
Schlickewei [11] (cf. Lemma 1 in §3 and the Remark made after the lemma)
on the finiteness of the number of non-degenerate solutions of (1).

For n = 1, Theorem 1 is trivial. For n = 2, the solutions of (1) are all
non-degenerate. In the case n = 2 an explicit expression for C, has been
evaluated by Evertse and Gyôry [6]. As we mentioned above, for n &#x3E; 2 we

are not able to make explicit the bound C, occurring in Theorem 1.

Let k ~ 1 be an integer. As a generalization of equation (1), consider the
system of’ weighted unit equations

where 03B1lJ E K for i = 1, ... , k and j = 0, ... , n, and at least one of the

a,o is different from zero. We shall say that a solution. (xl, ..., x,,) of (3) is
degenerate if 03A3J~J 03B1lJxJ = 0 for i = 1, ... , k and for a proper non-empty
subset J of {1, ..., nl, and non-degenerate otherwise. In §4 we shall deduce
from Theorem 1 the following

THEOREM 2. The number of non-degenerate solutions of’ (3) is at most

C2 == C2(n, F), where C2 is a number depending only on n and r.

For k = 1 Theorem 2 reduces to Theorem 1, hence Theorem 2 and
Theorem 1 are equivalent.

In the remainder of this section it will be assumed that n ~ 2. In §4 we
shall prove in an elementary way that Theorem 1 is equivalent also to the
following theorem.

THEOREM 3. All solutions of (1) are contained in the union of at most
C3 - C3(n, r) (n - 1 )-dimensional linear subspaces of K’, where C3 is a

number depending only on and F.
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The tuples (a, , ... , 1 Y,), (03B21, ... , 03B2n) in (K*)" are called r-equivalent if
03B2l = 03B1l03B5l for some e, E F for i = 1, ... , n. It is obvious that the number of

(non-degenerate) solutions of ( 1 ) as well as the minimal number of (n - 1 )-
dimensional subspaces of K’t containing all the solutions of (1) remain
unchanged if (a, , ... , 03B1n) is replaced by a r-equivalent tuple. The main
result of this section is as follows.

THEOREM 4. For all but finitely many F-equivalence classes of tuples
(03B11, ... , 03B1n) E (K*)n, the set of solutions of (1) is contained in the union of
fewer than 2(n+1)! (n - 1 )-dimensional linear subspaces of Kn.

As we shall see in §4, Theorem 3 easily follows from Theorem 4 and
Lemma 1 of §3.

It is possible to generalize Theorems 1 to 4 to the case that K is any
subfield of C and r is any subgroup of finite rank of C*. For the proofs it
sufHces to replace Lemma 1 of §3 on unit equations as we use it by a more
general version due to Laurent [9] (cf. Remark 2 in §3).

For n - 2, Theorem 4 implies that apart from finitely many T-equivalence
classes of pairs (03B11, OC2) E (K*)2, the equation

has fewer than 26 solutions. We note that Evertse, Gyôry, Stewart and
Tijdeman [8] proved a similar result with the upper bound 2 which is already
best possible.
For n = 3, a result of similar type can be deduced from Theorem 4. To

state this result we need some further notation. Let {z1, ... , Z, 1 be a
transcendence basis of K over Q. Then K is a finite extension of degree d, say,
of the field K0 = Q(z1, ..., zq). The polynomial ring O - Z[z1, z,] 
is a unique factorization domain in which the prime elements are the rational
primes and the primitive irreducible non-constant polynomials in Cc. To

every prime element of (Ç corresponds an (additive) valuation v03C0 on Ko with
the property that v03C0(03C0) = 1 and vn(alb) == 0 if a, b are elements of O not
divisible by n. Thus we have a set of pairwise inequivalent valuations on Ko
with value group Z. Each of these valuations can be extended in at most d
différent ways to K. Let mK denote the set of these extensions, and let S be
a finite subset of mK of cardinality s. One can show that

is a finitely generated multiplicative subgroup of K*. Moreover, every
finitely generated multiplicative subgroup of K* can be embedded in some
subgroup TS of K*.
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THEOREM 5. For all but, finitely many is-equivalence classes ofa. = (LlI’ Ll2, 03B13) E

(K*)3, the equation

has fe»’er than 226 x 73d+2B non-degenerate solutions.

Theorem 4 implies that apart from finitely many Fs-equivalence classes of
a E (K*)3, the solutions of (6) are contained in the union of at most 24!
proper linear subspaces of K3. However, the non-degenerate solutions
(x, , X2’ x3) contained in such a subspace satisfy a weighted unit equation of
the form

for some distinct il, i2 ~ {1, 2, 3} and some 03B2l1, y2 E K*. Now Theorem 1 of
Evertse and Gyôry [6] implies that the number of solutions of (7) is at most
4 x 73d+2B and hence Theorem 5 follows.
We note that in view of an example given by Evertse, Gyôry, Stewart and

Tijdeman (cf. [8], §§0,5) the bound occurring in Theorem 5 cannot be
replaced by a bound which is polynomial in terms of s.
The above results suggest the following

CONJECTURE. It is possible to give an explicit expression C(n), in terms of n
only, such that for every a, , ... , 03B1n E K*, the number of non-degenerate
solutions of the equation

is at most C(n)"’.

§2. Weighted unit equations over function fields

Let K be a function field of transcendence degree 1 with algebraically closed
constant field Ik of characteristic 0. Thus K is a finite extension of |k(t), where
t is a transcendental element of K over Ik. The field K can be endowed with

a set MK of additive valuations with value group Z for which

holds. Let S be a finite subset of MK . An element a of K is called an S-unit
if v(a) - 0 for all v in MKBS. The S-units form a multiplicative group which
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is denoted by Us. The group Us contains Ik* as a subgroup and Us/lk* is

finitely generated. We shall prove the following analogue of Theorem 4 for
the function field case. As usual, e denotes the number 2.71828 ....

THEOREM 6. Let K, Ik, S be as above. Let g be the genus of Kllk, s the

cardinality of S, and n ~ 2 an integer. Then for every 03B11 , ..., 1 Y, E K*, the
set of solutions of

is contained in the union of at most

(n - 1 )-dimensional l inear subspaces of ’ Kn .

Note that when oc,, ... , an are not all S-units, the condition that

03B11x1, ... , anxn do not all belong to Ik holds for all S-units x1 , ... , x,,. If
03B11, ... , an are all S-units, then the solutions of (9) with 03B11x1, ... , an xn E Ik

are not contained in the union of finitely many (n - 1 )-dimensional linear
subspaces of Kn.

For n = 2, Theorem 6 gives the upper bound

for the number of solutions of (9). We note that in case n = 2 Evertse [4]
established the upper bound 2 x 72s for the number of solutions, a bound
which is better and independent of g.
Theorem 6 will be proved in §5. The proof will involve the following

results: a "gap principle" by which one can estimate the minimal number of
(n - 1 )-dimensional subspaces of Kn containing all solutions of (9) with
bounded heights; and an explicit upper bound, due to Brownawell and
Masser [1], for the heights of the non-degenerate solutions of (9). (We
mention that, independently, J.F. Voloch [15], Thm. 4) derived the same
upper bound for the heights of the solutions je,, ... , xn of (9), but subject
to the slightly stronger condition that al xl , ..., 03B1nxn are linearly independent
over Ik. The bound obtained in [1] and [ 15] sharpens an earlier inequality of
Mason [10].) We remark that by using the method of proof of Theorem 4
instead of the gap principle just mentioned it is possible to get a bound
similar to that of Theorem 6, but with a much worse dependence on the
number of unknowns n.
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REMARK. The higher dimensional gap principle for weighted S-unit equations
over function fields has an analogue for number fields (cf. §5, Lemma 6)
which gives an upper bound for the number of subspaces containing the
solutions of (1) with small height if F is the group Us of S-units in some
algebraic number field K. By combining this gap principle with a mean to
deal with the large solutions, such as a quantitative version of Schlickewei’s
p-adic subspace theorem over number fields, it would be possible to obtain
an explicit upper bound, independent of the coefficients, for the number of
subspaces containing all solutions (or for the number of non-degenerate
solutions) of (1) with 0393 = Us. Just before this paper went to press, at
the Conference on Diophantine Approximations in Oberwolfach (14-18
March, 1988), Schlickewei announced that he succeeded in making his
subspace theorem quantitative. He used this together with a gap principle
that he obtained independently of us, to show that (1) has at most

(C(n, d)s)s6 non-degenerate solutions, where r = Us as above, s is the

cardinality of S, d - [K:Q] and C(n, d ) is some explicit function of n
and d.

§3. Proof of Theorem 4

We shall use the same notation as in Section 1. Theorem 4 will be proved
by an extension to the case n &#x3E; 2 of the method used in [8] for the case
n = 2. The basic idea of our proof is as follows. Any n + 1 solutions

xl = (x,, , ..., Xln), i = 0, ... , n, of (1) satisfy the equation

We shall show that if the set of solutions of (1) is not contained in the
union of fewer than 2(n+1)! proper subspaces of K", then there are a

subsum 1 = 10 + 03A31Xn-1 + ··· + LnXnn of the polynomial 0394, solutions
x0, ... , Xn - of (1) with Î, = 03A3k(x0, ... , xn-1) ~ 0 (k = 0, ..., n),
and n linearly independent solutions yo, ... , yn-1 of(l) such that 1r.(yJ == 0,
l03A3’(yl) ~ 0 for each proper non-empty subsum E of 03A3 for i = 0, ..., n - 1,
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where IL = i, + 1Xn1 + ··· + nXnn and l03A3’ is defined similarly. But
l03A3(yl) is the sum of at most (n + 1)! elements from r, hence, applying
Lemma 1 below with i = 0,..., n - 1 one can prove that the yij/y0j
(i = 0,..., n - 1 ; j = 1,..., n) belong to a finite subset of K* depend-
ing only on n and 0393. Since (yi1/y01,..., 1 Y,nIYOn) for i = 0, ..., n - 1 are

linearly independent and, by (1),

it will follow that the Y,yo, ( j = 1, ... , n) belong to a finite subset of K*
which depends only on n and r. This will prove the assertion of Theorem 4.
We now turn to the detailed proof of Theorem 4. We shall need two

lemmas.

LEMMA 1. Let n ~ 1 be an integer. The equation

has only finitely many non-degenerate solutions.

REMARK 1. In case that r is contained in an algebraic number field (algebraic
number field case), this lemma has been proved independently by Evertse [2]
and van der Poorten and Schlickewei [11]. In their paper, van der Poorten
and Schlickewei gave a rough sketch of a specialization argument by which
this lemma in the general case can be deduced from Lemma 1 in the algebraic
number field case. Up to now, no complete exposition of this specialization
argument has been published. For the sake of completeness only, we shall
show in the Appendix how to derive Lemma 1 in the general case from
Lemma 1 in the algebraic number field case. However, our arguments will
be différent from those of van der Poorten and Schlickewei. Instead of a

specialization argument we shall use our Theorem 6 on S-unit equations
over function fields.

REMARK 2. Using the above version of Lemma 1, Laurent [9] generalized
Lemma 1 to the case that K is any subfield of C and r is any subgroup of
finite rank of C *.

To state Lemma 2 we need some further notation. Next let n ~ 2 be an
integer. For every ce = (OC’ ... , an) E (K*)n, denote by l03B1 the linear
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polynomial a, X, + ··· + 03B1nXn - 1 and by Hrx the (n - 1 )-dimensional
linear subvariety (i.e., a hyperplane not necessarily containing 0) of K"
which consists of y e K" with la ( y) - 0. For every subset Y of H03B1 we define
M(Y, Ha) as the smallest number of hyperspaces (i.e. (n - 1)-dimensional
linear subspaces) of Kn, the union of which contains Y. If k ~ 1 is an

integer and

with a finite, non-empty subset I of k-tuples of non-negative integers, then
by a subsum of P we mean a polynomial

where J is a non-empty subset of I.

LEMMA 2. Let a E (K*)n and let Y be a subset of Ha with M(Y, H,,) ~
2(n+1)!. Then for k = 1, ... , n the following holds: there are xo -

(x01,..., x0n),..., xk-1 = (xk-1,1,..., Xk-1,n) E g such tha t all subsums
of all (k x k) subdeterminants of the matrix

are non-zero for Xol - X01, ..., Xk -Ln = Xk -Ln’
Proof of Lemma 2. We shall proceed by induction on k. For k = 1 the

lemma is obvious. Suppose that the lemma holds for k = p - 1 where

p ~ 1 (induction hypothesis). We shall prove it for k = p.
For convenience, we shall assume throughout this section that Xoo -

X10 = ··· = Xno - 1 and x00 = ··· = xn0 = 1. By the induction hypo-
thesis there are xo = (xo, , ... , x0n), ... , xp-2 = (Xp-2,1,..., xp-2,n) ~ Y
such that all subsums of all ( p - 1) x ( p - 1) subdeterminants of Ap-1,n
are non-zero at xo, , ... , xp-2,n. Let B be a subsum of some p x p sub-
determinant of Apn,
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say. Then B can be written as B,, Xp- 1,1l + ... + BtpXp-1,lp, where each B,,
is either identically 0 or, up to sign, a subsum of some ( p - 1) x ( p - 1)
subdeterminant of Ap-1,n. To the subsum B we associate the linear polynomial

where Bl, is obtained from B,, by replacing Xoo,..., Xp-2,n by x00,..., Xp-2,fp
respectively. At least one of the polynomials B,, is not identically 0, whence
is, up to sign, a subsum of some ( p - 1)  (p - 1) subdeterminant of

Ap-1,n. Therefore, none of the polynomials lB is identically 0. Moreover, each
polynomial 1, is linearly independent of l03B1, since each 1, has at most p ~ n
non-zero terms, whereas l03B1 has n + 1 non-zero terms. There are at most

(n+1p) p x p subdeterminants of Ap"P and each subdeteminant has less

than 2p! subsums. This implies that there are at most (n+1p) 2P’ polynomials
IB’ But (n+1p 1)2P’  2(n+1)’, hence, by the assumption M (!/, H03B1) ~ 2(n+1)!,
there must be an xp-1 in Y with 1, (xp ~ 0 for each subsum B of each
p x p subdeterminant of Ap,n. This implies at once that B(xo, ... , xp-1) ~ 0
for each subsum B of each p x p subdeterminant of Ap,n. D

Proqf of Theorem 4. We have to prove that M(F" n H03B1, H03B1)  2(n+1)’ for
all but finitely many T-equivalence classes of 03B1 E (K*)n. Suppose that
M (r" n H03B1, H03B1) ~ 2(n+1)’ for some a E (K*)". We shall show that the set of
oc having this property is contained in the union of at most finitely many
r-equivalence classes.
Each subsum E of the determinant

can be written as 03A30Xn0 + LI Xnl + ··· + 03A3nXnn where Y-, is either

identically 0 or, up to sign, a subsum of some n x n subdeterminant of
An,n for i = 0, ... , n. L is called full if none of the polynomials Lo, ... , Ln
is identically 0. By Lemma 2 there are xo - (xo, , ... , x0n), ... , xn-1 =
(Xn-1,1, ... , xn-1,n) in rn n H« such that each subsum of each n x n sub-
determinant of An,n is different from zero in xo 1 ..., xn-I,n’ To each subsum
E of 0394 we associate the linear polynomial 1, = 0X0 + 1X1 + - - - + nXn
where i, is obtained from 03A3l by substituting xoo, ... , xn-,,n for Xoo, ... ,
Xn-1,n, respectively. By our choice of x0,..., Xn -1’ none of the polynomials
IL is identically 0. Further, for every y in 0393n n Ha there is a subsum E
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such that

for each subsum with

This follows from the fact that A(xo, ... , Xn-1, y) = 0 for each y in
0393n ~ H(1.’ Elements y of F" n Ha with property (10) are said to be E-
associated.

The set of subsums of A is divided into three classes:

(I) the subsums which are not full;
(II) the full subsums Y- for which the set of E-associated y in hn n H« is

contained in a single hyperspace of K",
(III) the full subsums Y- for which rn ~ H03B1 contains n linearly independent

L-associated elements yo , ... , yn-1.
if Y- is not a full subsum of A, then obviously 1, is linearly independent of
1(1.’ Further, A has fewer than 2(n+1)’ subsums. Hence the set of elements y in
F" ~ H03B1 which are 03A3-associated for some £ in class 1 or II is contained in
the union of fewer than 2(n+1)! hyperspaces of Kn. Therefore, class III is

non-empty. We shall show that this implies that 03B1 must belong to one of at
most finitely many r-equivalence classes depending on n and r only.

Let 03A3 be a subsum of A in class III. Then Y- can be written as

where each Pk is a monomial, multiplied by 1 or - 1, and each index set J,
is non-empty. Consider the equation

for each tuple of subsets

respectively, for which
at least one L, is non-empty and at least one

L, is different from J,

The number of terms in equation (11) is at most (n + 1)!. Hence, by
Lemma 1, each quotient Z,k 1 Z/I must belong to a finite set f, c K* which
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depends only on n and r. Let y = (y1, ..., yn) be a E-associated

element of rn n H03B1, and let yo - 1. Then zik = Pk(x0, ... , xn-1)yl
(i = 0, ..., n, k E Ji ) is a solution of (11). Hence for each i, k, j, 1,

But this implies that for any two E-associated y = (y1, ..., Yn)’ y’ =
( y,, ... , yn ) in I-’n n Ha and all i, j in {0, ... , 1 nl we have

where yo - 1 and f, is a finite subset of K*, depending only on n
and r, which is obtained by taking all quotients of the elements of A. Let
now yo, ... , Yn-, be n linearly independent, E-associated elements of
rn n H,,,. These exist, since by assumption, Y- belongs to class III. Let

yi = (yi1, ... , Yin) for i = 0, ..., n - 1, and put

and

Then 03B2 = (03B21, ... , 03B2n) is 0393-equivalent to 03B1. Further, w0, w1, ... , wn-1 are
linearly independent in Kn, and, in view of y0 , ... , yn-1 ~ H03B1,

By Cramer’s rule, 03B21, ... , 03B2n are uniquely determined by the wij. But, by
(12), each Wij belongs to Y2. Hence the tuple 03B2 = (03B21, ... , 03B2n) belongs
to a finite subset of (K*)n which depends only on n and F. Since ce is

r-equivalent to fi, this implies that a belongs to one of at most finitely many
r-equivalence classes depending only on n and r. This completes the proof
of Theorem 4. 0
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§4. Equivalence of Theorem 1 and Theorem 3. Proofs of Theorems 3 and 2

In this section we shall first show that Theorems 1 and 3 are equivalent.
Then we shall deduce Theorem 3 from Theorem 4, and Theorem 2 from
Theorem 1.

We shall use the notation introduced in §1. In particular, K is a finitely
generated extension field of Q, and r is a finitely generated multiplicative
subgroup of K*. Our aim is to prove that the following two statements are
equivalent:

(i) For n ~ 1, and for every (03B11, ... , 03B1n) E (K*)n, the equation

has at most C1 (n, F) non-degenerate solutions, where CI (n, 0393) depends only
on n and r;

(ii) For n ~ 2, and for every (al, Yn) E (K*)n, the set of solutions of
equation (1) is contained in the union of at most C3(n, r) (n - 1 )-dimensional
linear subspaces of Kn, where C3(n, r ) depends only on n and F.

Proof. First we shall prove the implication (i) ~ (ii). By (i), the set of
non-degenerate solutions of (1) is contained in at most Cl (n, r ) (n - 1)-
dimensional linear subspaces of Kn. Further, the set of degenerate solutions
of ( 1 ) is contained in fewer than 2n (n - 1 )-dimensional linear subspaces of
Kn. This proves (ii).
We shall now show that (ii) ~ (i). We shall prove (i) by induction on the

number of unknowns n of (1). For n = 1, (i) is trivially true with

C1(1, F) = 1. Let p ? 2, and suppose that (i) has been proved for all

positive integers n  p. We shall show that this implies (i) for n = p.
By (ii), the set of non-degenerate solutions of ( 1 ) is contained in the union

of at most C3( p, 0393) ( p - 1 )-dimensional linear subspaces of KP. Let V
denote one of these subspaces, and consider the non-degenerate solutions
(x1, ... , xp) of ( 1 ) contained in V. There exist yi, ... , yp E K, not all zero,
such that

identically on V.

This implies that each solution (x, , ... , Xp) ~ V of (1) satisfies

for some positive integer s with s  p, where 03B4i1, ... , 03B4is are non-zero
elements of K. For every non-degenerate solution (xl , ... , xp ) of ( 1 ) which




