COMPOSITIO MATHEMATICA

V. B. MEHTA A. RAMANATHAN Schubert varieties in $G/B \times G/B$

Compositio Mathematica, tome 67, nº 3 (1988), p. 355-358 <http://www.numdam.org/item?id=CM_1988_67_3_355_0>

© Foundation Compositio Mathematica, 1988, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Schubert varieties in $G/B \times G/B$

V.B. MEHTA & A. RAMANATHAN

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Bombay 400005, India

Received 1 December 1987; accepted 11 February 1988

Introduction

Let G be a semi-simple, simply connected algebraic group defined over an algebraically closed field of characteristic p > 0. Let $T \subset G$ be a maximal torus, $B \supset T$ a Borel subgroup and W = N(T)/T the Weyl group. G acts on the homogeneous space G/B and also on $G/B \times G/B$ by the diagonal action: for $g, x_1, x_2, \in G, g(x_1B, x_2B) = (gx_1B, gx_2B)$. By Schubert Varieties in $G/B \times G/B$ we mean the closures of the G-orbits in $G/B \times G/B$. It is known ([11, 12]) that these orbit closures are in 1–1 correspondence with the elements of W, the element $w \in W$ corresponding to the closure of the orbit of (eB, wB), where $e \in G$ is the identity element. In particular, taking w = e, G/B gets imbedded diagonally in $G/B \times G/B$.

In this paper we prove that these Schubert Varieties are Frobenius-split in the sense of [4, Def. 2]. Our method is as follows: fix $w \in W$ with l(w) = iand denote the Schubert variety in G/B corresponding to w by X_i. Then B acts on X_i on the left and one may form the associated fibre-space \tilde{X}_i = $G \times^{B} X_{i}$. The map $f: \tilde{X}_{i} \to G/B \times G/B$ given by f(g, x) = (gB, gxB) is an isomorphism onto the G-orbit closure of (eB, wB) (cf. [11]). Hence we may work with \tilde{X}_i instead. Express w as a product of reflections associated to the simple roots, $w = s_{\alpha_1} s_{\alpha_2} \dots s_{\alpha_i}$ and $Z_i \to X_i$ be the corresponding Demazure desingularization of X_i (cf. [2, 3]) and let $\psi_i: Z_i \to X_i$ be the birational map. B acts on Z_i on the left and we may construct the associated fibre-space $\tilde{Z}_i = G \times^B Z_i$. The map ψ_i is *B*-equivariant and descends to a birational map $\tilde{\psi}_i: \tilde{Z}_i \to \tilde{X}_i$. Since X_i is normal [1, 5, 7, 10] and $\tilde{X}_i \to G/B$ is a fibrespace with fibre X_i it follows that \tilde{X}_i is also normal and that $\tilde{\psi}_{i_*}(\mathcal{O}_{\tilde{Z}_i}) = \mathcal{O}_{\tilde{X}_i}$. So to prove that \tilde{X}_i is Frobenius-split, it is sufficient to prove that \tilde{Z}_i is Frobenius-split. We calculate the canonical bundle $K_{\tilde{Z}_i}$ of \tilde{Z}_i (this has been done, without detail, in [11]). From this description of $K_{\tilde{Z}}$ it follows from [4 prop. 8] that \tilde{Z}_i is Frobenius-split. It also follows from [6, 8] that \tilde{X}_i is Cohen-Macaulay and has rational singularities. We first recall the basic

356 V.B. Mehta and A. Ramanathan

facts about the standard resolutions of Schubert Varieties in G/B and Frobenius-splitting from [4, 8] and then we prove the main result. Our result should prove useful in the study of the decomposition of the *G*-module $H^0(G/B, L) \times H^0(G/B, M)$, where *L* and *M* are line bundles on G/B, see [11].

Section I

Let G, B and W be as in the introduction, let $w \in W$ with l(w) = i and denote by X_i the Schubert variety in G/B corresponding to w. Then according to [2, 3, 8] there exists a smooth projective variety Z_i , and a map ψ_i : $Z_i \to X_i$ with the following properties:

(1) ψ_i is birational.

(2) There exists *i* smooth subvarieties of codim 1 in Z_i , denoted by $Z_{i,1} \ldots Z_{i,i}$ intersecting transversally. Further if we denote $\bigcup_{i=1}^{i} Z_{i,i}$ by ∂Z_i , then $\psi_i^{-1}(\partial X_i) = \partial Z_i$, where ∂X_i is the union of the codim 1 Schubert varieties in X_i .

(3) Put $v = ws_{\alpha_i}$ and $X_{i-1} = \overline{BvB/B}$. Then there exists a map $f_i: Z_i \to Z_{i-1}$ such that f_i is a locally trivial \mathbb{P}^1 fibration with a section $\sigma_i: Z_{i-1} \to Z_i$. Further, $\partial Z_i = f_i^{-1}(\partial Z_{i-1}) \cup \sigma_i(Z_{i-1})$.

(4) The canonical bundle K_{Z_i} is given by the formula $K_{Z_i} = \mathcal{O}_{Z_i}(-\partial Z_i) \times \psi_i^* L_{\varrho}^{-1}$ is the line bundle on $X_i \subset G/B$ associated to half sum of the positive roots.

The varieties Z_i and the morphisms ψ_i are constructed by induction on l(w), see [3, 8] for more details. We recall one proposition from [8].

PROPOSITION 1. Z_i is Frobenius-split and any sub-intersection of the divisors in ∂Z_i is compatibly split in Z_i .

Proof. This is [8, Remark 2.5].

Now consider the varieties $\tilde{Z}_i = G \times {}^B Z_i$ as in the introduction. The maps $f_i: Z_i \to Z_{i-1}$ and $\sigma_i: Z_{i-1} \to Z_i$ are *B*-equivariant, hence we get maps $\tilde{f}_i: \tilde{Z}_i \to \tilde{Z}_{i-1}$ and $\tilde{\sigma}_i: \tilde{Z}_{i-1} \to \tilde{Z}_i$. It follows that there exist *i* smooth subvarieties of \tilde{Z}_i denoted by $\tilde{Z}_{i,1} \dots \tilde{Z}_{i,i}$, intersecting transversally, whose union we denote by $\partial \tilde{Z}_i$. Let p_1 and p_2 denote the two projections of $G/B \times G/B$ and for any pair of line bundles *L*, *M* on G/B, denote $(p_1^*L \times p_2^*M)$ by (L, M).

PROPOSITION 2. The canonical bundle $K_{\tilde{z}_i}$ is given by

 $K_{\tilde{Z}_i} = \mathcal{O}_{\tilde{Z}_i}(-\partial \tilde{Z}_i) \times \tilde{\psi}_i^*(L_{\varrho}^{-1}, L_{\varrho}^{-1}).$

Proof. (See also [11]). We prove this by induction on l(w). If l(w) = 0 then $\tilde{Z}_0 = G/B$ and $\partial \tilde{Z}_0 = \emptyset$. So $\mathcal{O}_{\tilde{Z}_0}(-\partial \tilde{Z}_0) \times \tilde{\psi}_0^*(L_{\varrho}^{-1}, L_{\varrho}^{-1})$ is the linebundle L_{ϱ}^{-2} on G/B, as $\tilde{\psi}_0: G/B \to G/B \times G/B$ is the diagonal imbedding. Assume the result for l(w) = i - 1. Now it follows from [8, Lemma 3] that $K_{\tilde{Z}_i/\tilde{Z}_{i-1}} = \mathcal{O}_{\tilde{Z}_i}(-\sigma_i(\tilde{Z}_{i-1})) \times \tilde{\psi}_i^*(1, L_{\varrho}^{-1}) \times \tilde{f}_i^*\tilde{\sigma}_i^*\tilde{\psi}_i^*(1, L_{\varrho})$. Denote this line bundle on \tilde{Z}_i by A. Then $K_{\tilde{Z}_i} = A \times \tilde{f}_i^*(K_{\tilde{Z}_{i-1}}) = A \times \tilde{f}_i^*$ $[\mathcal{O}_{\tilde{Z}_i}(-\partial \tilde{Z}_i) \times \tilde{\psi}_{i-1}^*(L_{\varrho}^{-1}, L_{\varrho}^{-1})], = \mathcal{O}_{\tilde{Z}_i}(-\partial \tilde{Z}_i) \times \tilde{\psi}_i^*(1, L_{\varrho}^{-1}) \times \tilde{f}_i^*\tilde{\sigma}_i^*\tilde{\psi}_i^*$ $(1, L_{\varrho}) \times \tilde{f}_i^*\tilde{\psi}_{i-1}^*(L_{\varrho}^{-1}, L_{\varrho}^{-1})$. But $\tilde{\psi}_{i-1}^*: \tilde{Z}_{i-1} \to G/B \times G/B = \tilde{\psi}_i\tilde{\sigma}_i: \tilde{Z}_{i-1} \to G/B \times G/B$. Hence we get $K_{\tilde{Z}_i} = \mathcal{O}_{\tilde{Z}_i}(-\partial \tilde{Z}_i) \times \tilde{\psi}_i^*(1, L_{\varrho}^{-1}) \times \tilde{f}_i^*\tilde{\psi}_{i-1}^*$ $(L_{\varrho}^{-1}, 1)$. But $\tilde{f}_i^*\tilde{\psi}_{i-1}^*(L_{\varrho}^{-1}, 1) = \tilde{\psi}_i^*(L_{\varrho}^{-1}, 1)$ as both of them are isomorphic to $q^*(L_{\varrho}^{-1}, 1)$ where q is the projection $\tilde{Z}_i \to G/B$. Hence we get $K_{\tilde{Z}_i} = \mathcal{O}_{\tilde{Z}_i}(-\partial \tilde{Z}_i) \times \tilde{\psi}_i^*(L_{\varrho}^{-1}, L_{\varrho}^{-1})$.

THEOREM 1. \tilde{Z}_i is Frobenius-split and any sub-intersection of the divisors in $\partial \tilde{Z}_i$ is compatibly split in \tilde{Z}_i .

Proof. From Prop. 2, we know that $K_{\overline{Z}_i}^{-1} = \mathcal{O}_{\overline{Z}_i}(\partial \widetilde{Z}_i) \times \widetilde{\psi}_i^*(L_\varrho, L_\varrho)$. From [8, Remark 2], we know that $\sigma = D + \widetilde{D}$ is an element of $H^0(G/B, L_\varrho^2)$ such that σ^{p-1} splits G/B. Consider the section $t = \partial \widetilde{Z}_i + \widetilde{\psi}_i^*(D, \widetilde{D})$ of $K_{\overline{Z}_i}$. It follows from [4, Prop. 8] that t^{p-1} splits \widetilde{Z}_i and that any sub-intersection of the divisors in $\partial \widetilde{Z}_i$ is compatibly split in \widetilde{Z}_i by t^{p-1} .

COROLLARY 1. Let N be the length of the maximal element $w_0 \in W$. Then by the above, \tilde{Z}_0 is compatibly-split in \tilde{Z}_N . So it follows from [4, Prop. 4] that $\tilde{\psi}_0(\tilde{Z}_0) = G/B$ is compatibly-split in $\tilde{\psi}_N(\tilde{Z}_N) = G/B \times G/B$, where G/B is imbedded diagonally in $G/B \times G/B$.

This was first proved by the second author by other methods (cf. [9]).

COROLLARY 2. From Corollary 1 and [9, Cor. 2.3] it follows that any imbedding of G/B by a complete linear system is projectively normal.

This was first proved in [7] (see also [9]).

COROLLARY 3. It follows from [6, 8] that the Schubert varieties \tilde{X}_i in $G/B \times G/B$ are Cohen–Macaulay and have rational singularities.

Remark. It can be proved, using the methods of [9], that these Schubert varieties in $G/B \times G/B$ are scheme-theoretically defined by quadrics. This will be taken up in a later paper. Analogues follow for $G/P_1 \times G/P_2$.

References

1. H.H. Andersen, Schubert Varieties and Demazure's character formula. *Invent. Math.* 79 (1985) 611-618.

358 V.B. Mehta and A. Ramanathan

- Demazure, M., Desingularization des Varietes de Schubert generalisees. Ann. Sc. Ec. Norm. Super. 7 (1974) 53-88.
- 3. G. Kempf, Linear systems on homogeneous spaces. Ann. Math. 103 (1976) 557-591.
- 4. V.B. Mehta and A. Ramanathan, Frobenius splitting and cohomology vanishing for Schubert varieties. Ann. Math. 122 (1985) 27-40.
- 5. V.B. Mehta and V. Srinivas, Normality of Schubert varieties. Amer. Jour. Math. 109 (1987) 987-989.
- 6. V.B. Mehta and V. Srinivas, A note on Schubert varieties in G/B. Preprint.
- 7. S. Ramanan and A. Ramanathan, Projective normality of flag varieties and Schubert varieties. *Invent. Math.* 79 (1985) 217-224.
- 8. A. Ramanathan, Schubert Varieties are arithmetically Cohen-Macaulay. *Invent. Math.* 80 (1985) 283-294.
- 9. A. Ramanthan, Equations defining Schubert Varieties and Frobenius-splitting of the diagonal. Publ. I.H.E.S. 65 (1987) 61-90.
- 10. C.S. Seshadri, Line bundles on Schubert varieties Vector bundles on Algebraic Varieties, Proceedings of the Bombay Colloquium 1984.
- 11. Kumar, Shrawan, Proof of the Parthasarathy-Ranga Rao-Varadarajan conjecture. Preprint.
- 12. T. Springer, Quelques applications de la cohomologie d'intersection. Seminaire Bourbaki Expose 589, Vol. 1981/1982.