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Abstract. The aim of this paper is to define and study "rational" Puiseux expansions of a plane
curve, and to describe a variant of Newton’s algorithm to compute them. The rational Puiseux
expansions of a curve give the same information as the classical ones, and in addition they
give results of arithmetical nature about the curve. One major result is the easy determination
of the residual field of the places of a curve over a non-algebraically closed field. This leads
for example to a simple description of the real branches of curves defined over the real
numbers.

My goal when 1 began studying Puiseux expansions simply was to implement Newton’s
algorithm on a computer algebra system. It happens that the rational Puiseux expansions are
much easier to compute than the classical ones, mainly because less algebraic numbers are
needed.

Introduction

Let F(X, Y) denote a polynomial with coefficients in a field K of characteris-
tic 0. Let us assume that F is monic in Y and absolutely irreducible, i.e.,
irreducible in R[X, Y] for any algebraic closure Ék of K. It is a classical fact
due to Newton [Ne], that the roots of F (considered as a Y-polynomial) are
Puiseux series in X, i.e., formal series in Xile (for some positive integer e) with
coefficients in R.
For example, if K is the field Q of rational numbers, the roots of the

Y-polynomial

are 6 Puiseux series, beginning as follows:
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In this case, the rational Puiseux expansions of F give a description of these
roots by pairs of formal series with rational coefficients:

In Section 1, the notion of a system of rational Puiseux expansions of F
over fM is defined, and it is proved that it easily gives the classical Puiseux
expansions of F. These rational Puiseux expansions of F correspond bijec-
tively to the branches of the plane curve of equation F(x, y) = 0 which pass
through a point (0, fi) of the curve, i.e. to the places of the field K(X)[Y]/
(F(X, Y)) which lie above the place Po of R(X) corresponding to 0 E R. But
the existence of systems of rational Puiseux expansions of F over K is not
proved in this section.

In the two following sections, we show that rational Puiseux expansions
give more information than the classical ones:
Complete factorization of F as a Y-polynomial is obtained over any

algebraic closure !K((X)) of IK((X)), and over IK((X)), from classical Puiseux
expansions of F. It is proved in Section 2 that from rational Puiseux
expansions of F is got complete factorization of F over K((X)), K((X)), and
K«X». 

In section 3 are considered the places of K(X)[Y]/(F(X, Y)). We have yet
noticed that they correspond bijectively to the rational Puiseux expansions
of F. In addition,
e two such places are conjugated over K if and only if the corresponding

rational Puiseux expansions are conjugated over K, and thus the places of
the field K(X)[Y]I(F(X, Y)) correspond bijectively to the conjugacy classes
over K of the rational Puiseux expansions of F;
0 the ramification index of a place of either K(X)[Y]I(F(X, Y)) or

K(X)[Y]/(F(X, Y)) is obtained as easily as in the classical case;
e and the residual field of a place of !K(X)[Y]j(F(X, Y)) is, up to K-

isomorphism, the extension field of K that is generated by the coefficients of
any of the corresponding rational Puiseux expansions.

In the example above, the curve

has 4 branches at (0, 0) over Q, or over C. Two of them are unramified, the
two others have ramification index 2, and each branch corresponds to
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exactly one place over Q, with residual field Q, since all coefficients are
rational.

In Section 4 is described a variant of Newton’s algorithm for computing
Puiseux expansions, and it is proved that this "rational" Newton’s

algorithm computes a system of rational Puiseux expansions of F over K,
thereby proving its existence. In addition, this rational algorithm is cheaper
than the classical one because the coefficients of the series are in a smaller
extension field of K.
The implementation of the rational Newton algorithm has been per-

formed on the computer algebra system Reduce, using the D5 method (cf.
[D-D]) to handle algebraic numbers. This method does not use any fac-
torization algorithm, and actually no such algorithm is needed as long as
one asks only for results over K. For results over K, factorization algorithms
may be needed (for example when K = Q), but Sturm sequences are
sufficient when K = R. These points are detailed on examples in section 4,
too.

In Section 5, we prove that the number of elementary operations over
K that are needed for the computation of a system of rational Puiseux
expansions of F is "polynomial", when the D5 method is used.

Basic references are: Walker [Wa] for parameterizations and classical
Puiseux expansions, Fulton [Fu] for a more geometric point of view, and
Chevalley [Ch] for arithmetical points.

Contents

1. Classical and rational Puiseux expansions

From now on, K denotes a field of zero characteristics, K an algebraic
closure of K, F(X, Y) a bivariate polynomial with coefficients in K, monic
in Y, irreducible in R[X, Y], and M (resp. N) the degree of F in X (resp. in
Y), with N &#x3E; 0. Actually, these assumptions may be much weakened, as
explained in the conclusion.
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Generally, F will be considered as a Y-polynomial with coefficients in
IM[X]

where the ai(X)’s are in K[X], the ai,j’s in K, and by assumption aN(X) = 1.

As usual, the power series field in one variable T and with coefficients in
some field L is denoted by L((T)). And the domain formed by the elements
of L((T)) of non-negative T-order by L[[T]]. For every positive integer q, a
root Xllq of X of order q is chosen in an algebraic closure of K(X), in such
a way that (X1/q1q2)q2 = XI/ql.

DEFINITION: The Puiseux series field R over K is the union of all the

fields K((X1/q)). It is an algebraically closed field, by Puiseux theorem
[Wa, 4 thm 3.1.].

DEFINITION: The (classical) Puiseux expansions of F(X, Y) are the roots of
the Y-polynomial F in the field R.

Since F is irreducible in R(X)[Y] (by Gauss’ lemma) and since R is

algebraically closed and of characteristic 0, the Y-polynomial F has N
distinct classical Puiseux expansions. They are denoted

It will always be assumed that each ék is as small as possible, i.e. that ék and
the nk,h (for h  1) have no common factor greater than 1. This ék is called
the ramification index of the series k . In addition, yk is in K[[X1/ek]] because
F has been assumed monic in Y.

Let us now recall the definition of the parametrizations of the plane afiine
curve C of equation F(x, y) = 0 over K, following Walker [Wa, 4-2].

DEFINITION: A parametrization of the curve C is a pair (x, y) of elements of
K[[T]] for some new variable T, such that F(x, y) = 0 in R[[T]J, and x and
 are not both in K.
The center of the parametrization (x, ) is the point (xo, yo ) of the affine

plane such that xo (resp. Yo) is the constant term of the series x (resp. ).
It is a point of the curve C. The parametrization (x, ) is irreducible if
there is no integer k &#x3E; 1 such that both x and  are in K[[Tk]]. And
two parametrizations (1, YI) and (X2’ 2) are equivalent if there is some
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z E K[[T]], of T-order 1, such that 2(T) = x1(z(T)) and Y2 (T) =
l (z(T)). If such is the case they have the same center, but the reciprocal is
false.

In addition, the coefficient field of (x, ) over K is the extension field of
K generated by all the coefficients of the series x and . It is a subfield
of K.
A branch of C is then defined as an equivalence class of irreducible

parametrizations of C, and its center as the common center of the param-
etrizations of the class. We say that a branch of C lies above a point xo of
K if the center of the branch is (xo, yo) for some yo in IK.
For each classical Puiseux expansion

of F, let

Since k=- vk(X1/ek), it follows that F(uk(X1/ek), vk(X1/ek)) =F(X, yk) = 0
in R. The pair (uk(T), vk(T)) is thus a parametrization of C, which is

irreducible because ék has been chosen minimal. We say that (uk(T), vk(T))
is the parametrization of C corresponding to the Puiseux expansion Yk. And
that two classical Puiseux expansions of F are equivalent if their corresponding
parametrizations are equivalent. 

If 03B6k denotes a primitive root of unity of order ék in À , the classical Puiseux
expansions of F that are equivalent to k are the

All of them have the same ramification index ék .
Thus is obtained a partition of the set {y1, 2, ... , yN} in equivalence

classes, which are in one-to-one correspondence with the branches of C lying
above 0. Let g be the number of these classes, and assume that the number-
ing of the Puiseux expansions is such that y1, 2, ... , g are in différent
classes. It follows that
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DEFINITION: As above, let g denote the number of branches of C lying above
0. A system of rational Puiseux expansions of F over IM is a set

of g pairwise non-equivalent irreducible parametrizations of C, which is
invariant under the action of the Galois group  of K over K, and such that,
for each k, Xk is a monomial 03BBkTek with ek &#x3E; 0 and 03BBk ~ 0.

The fact that such systems exist will be proved in section 4. For a given
F, there are different systems of rational Puiseux expansions of F: for

example if F = Y2 - X there are

It must be noticed that the parametrizations (uk (T ), vk(T)) (for
1  k  g) defined above from classical Puiseux expansions usually do not
form a system of rational Puiseux expansions of F, because they do not form
an invariant set under the action of :

In the example of the introduction, the only classical Puiseux expansion
equivalent to

which is conjugated to (U3’ V3) over K = Q.
On the contrary, it is very easy to determine the classical Puiseux

expansions of F from a system of rational Puiseux expansions: Let

(for 1  k  g) be a system of rational Puiseux expansions of F over K, let
03B6k denote a primitive root of unity of order ek in lÉ, and 03BB-1/ekk a root of order
ek of Âk in R for each k. Then:

THEOREM 1: The classical Puiseux expansions of F are the series

for k = 1, 2, ..., g and i = 1, 2, ..., ek.
The ramification index of k(03B6ik03BB-k I/ek Xl/ek) is exactly ek.
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Pro of. Consider some k between 1 and g. Then

Now if we set X = 03BBTe, i.e., T = 03B6ik03BB-k Ilek X1/ek for some i, we get

This proves that each of the

for 1  k  g and 1  i  ek is a classical Puiseux expansion of F.
They are mutually distinct: for different k because the rational Puiseux

expansions are pairwise non-equivalent, and for the same k and different i
because the rational Puiseux expansions are irreducible as parametrizations
of C. For the same reason, ek is the ramification index of k(03B6ik03BB-1/ekkX1/ek) for
any i.

The fact that every classical Puiseux expansion of F is obtained in this way
now comes from the identity N = 03A3gk=1ek, and thus theorem 1 is proved.
Now, let g denote the number of -orbits in a given system of rational

Puiseux expansions of F over K, and suppose that (xk, k) are in different
orbits for 1  k  g. For each k from 1 to g, let us denote by Lk the
coefficient field of (Xk, k). Because of the -invariance property of the
set {(k, k)}1kg, the field Lk is a finite extension of K. Let .fk denote
the dimension of Lk over K, i.e., the number of k’ in {1, 2, ... , gl such that
(k’, k’) is in the -orbit of (k, k), and let {03C31, 03C32,..., 03C3fk} be the set of
K-isomorphisms from Lk into K. For every j from 1 to fk, let 03BBk,j = 03C3j(03BBk)
and Yk,J = 03C3j(k) = 03A3+~h=103C3j(03B1k,h)Tnk,h. By definition, the given system of
rational Puiseux expansions of F over K is made of the

for 1  k  g and 1  j  fk , and theorem 1 can be expressed as follows:

THEOREM 1 bis: The classical Puiseux expansions of F are the

for 1  k  g, 1  j  fk, and 1  i  ek. The ramification index of the
expansion above is ek.
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It follows that g = 03A3gk=1 fk and that

In the following diagram, the first line corresponds to the N classical
Puiseux expansions of F, the second line to their g equivalence classes, or to
a system of rational Puiseux expansions of F over K, and the third line to
the g orbits of this system under the action of :

2. Factorization of F over series fields

By definition of the classical Puiseux expansions of F, the factorization of F
in R[Y] is

And if the classical Puiseux expansions are grouped according to

equivalence, a refinement of the above factorization is obtained:

where

In addition, this factorization over K((X)) is complete in the sense that each
Fk(X, Y) is irreducible in K((X))[Y]: If the norm in the field extension
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K((X1/ek))/K((X)) is extended to polynomials, then Fk(X, Y) is the norm of
(Y - yk), which is irreducible in K((X1/ek))[Y], and it follows that Fk(X, Y)
is a power of some irreducible polynomial of K((X))[Y] [Trl, thm 2.1]. But
Fk(X, Y) has distinct roots in Si, and thus it is irreducible in R«X»[Y].

REMARK: If some classical Puiseux expansion of F is "finite", say

k E K[X1/ek], then Fk E R[X, Y], and since F is absolutely irreducible it

follows that F = Fk and g = 1.

Thus, complete factorization of F over R and over !K((A")) is obtained
from the classical Puiseux expansions of F. The next result proves that it can
also be obtained from a system of rational Puiseux expansions of F over K,
together with the complete factorization of F over K((X)).

THEOREM 2: With the notations of section 1, the complete factorization of F
(as a Y-polynomial) over the fields K((X)), K((X)) and Si, is given by:

REMARK: The last equality can also be written:

Pro of. Theorem 1 bis proves that the complete factorization of F over R is

But notations are such that a set of g non-equivalent classical Puiseux
expansions of F is given by the k(03BB-1/ekk,jX1/ek) for 1  k  g and
1  j  fk, and thus the Fk,j’s for 1  k  g and 1  j  fk are exactly
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the Fk’s for 1  k  g. So, it has been proved above that the complete
factorization of F over K((X)) is

Now, for a given k between 1 and g, if aj is the identity of 03A3k, then Fk(X, Y)
is the norm of Fk,03C31(X, Y) in the extension Lk((x))/K((X)). It follows, as
above, that Fk(X, Y) is a power of some irreducible polynomial of
K((X))[Y], and that it is itself irreducible in K((X))[Y] since it has distinct
roots in Si. Thus the complete factorization of F over K((X)) is

and theorem 2 is proved.
Those différent factorizations of F can be visualized by the following

diagram, where Fik,j = Y - k,j(03B6ik03BB-1/ekk,jX1/ek), and where the first line corre-
sponds to the factorization in R[Y], the second line over K((X))[Y], and the
third line over K((X))[Y]:

3. The places of K( C) and of K(C)

Since Fis irreducible over K, the quotient K(X)[Y]/(F(X, Y)) is an exten-
sion field of R(X) of degree N, that will be denoted by K(C). This notation
comes from the interpretation of K(C) as the function field of the plane
curve C of equation F(x, y) = 0. The extension K(C)/K(X) corresponds to
the projection of C on the "x-axis" [Fu, 6-3]. In the same way, since Fis also
irreducible over K, the quotient IK(X)[Y]j(F(X, Y)) is a field K(C), exten-
sion of K(X) of degree N.
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The branches of C have been defined in section 1 as the equivalence classes
of irreducible parametrizations of C. To each parametrization (, ) of C are
associated two subsets C and 03B2 of K(C), such that 6 is a ring and 03B2 a
maximal ideal of (i. By definition, 03B2 is a place of K(C) and (9 is the ring of
03B2. They may be defined as follows:

Consider the [K-algebra homomorphism

Notice that Ker(g) contains no non-zero element of R[X]: If ~(G) = 0 with
G E K[X] and G ~ 0, then x would be a root of G in K, and would
be a root of the univariate polynomial F(x, Y) of R[Y] of positive degree
N. But then  would be in R too, which contradicts the definition of a
parametrization.

It is thus possible to extend ~ to a R-algebra homomorphism still denoted
by 03C8:

Since (x, ) is a parametrization of C, the polynomial F is contained in
Ker(cp). And since F is irreducible in the principle ring R(X)[Y], we get
Ker«p) = (F).
Thus is obtained an injective !K-algebra homomorphism

Now, à and 03B2 are defined by

Two parametrizations of C gives the same 6 and 13 if and only if they are
equivalent, which proves that each branch of C corresponds to exactly one
place of K(C).

Actually, we do not get in this way all places of rK(C). We should have,
in addition, considered parametrizations centered at the "points at infinity"
of C in order to get all places of lÉ(C). It does not matter here, because we
are only interested in the places of (C) that "lie above" po (cf. below), and
all of them are finite since F is monic in Y.

In the case of F = Y, we have R(C) = R(X). The curve C is the x-axis,
and has only one branch lying above 0. One of its parametrizations is

(0, 0) = (T, 0), and the corresponding ring and place are respectively
K[X] and p0 = XK[X].
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In the general case, a place 03B2 of fM(C) lies above the place Po of R(X) if
03B2 n R[X] = p0. Those places correspond to the branches of C lying above
0. We have seen that such a branch of C is the equivalence class of e classical
Puiseux expansions of F, each with ramification index e. This integer e is
called the ramification index of the corresponding place 03B2.
The places of K(C) are now defined as the intersections 03B2 n K(C) of the

places of n«C) with K(C). In this situation too, we say that 13 lies above
i3 n K(C). Let 03B21 and 03B22 be two places of R(C) lying above the place Po
of K(X). It is not easy to decide, from classical Puiseux expansions of F,
whether 03B21 and 03B22 lie above the same place of K(C). But we shall see in
theorem 3 that, on the contrary, it is very easily done from any system of
rational Puiseux expansions of F over K.

If i3 is a place of K(C), 03B2 a place of -K(C) lying above 03B2, and if
(9 = 6 n K(C) where 6 is the ring of 03B2, then L = W1i3 is a field. It is a
finite extension of K, called the residual field of 03B2, and its degree f is the
residual degree of 03B2. This integer f is also equal to the number of places 03B2
of K(C) lying above 03B2. If F = Y, then po = XK[X] is a place of K(X); the
only place of fM(C) lying above po is po, and the residual field of po is K. Now,
when i3 is a place of K(C) lying above po, we shall see that L and f are easily
obtained from a set of rational Puiseux expansions of F over K, which is not
true for classical Puiseux expansions.

Let us denote by 03B21, 03B22,..., 03B2g*, the places of K(C) lying above the
place po of K(X). For 1  k  g*, let et be the ramification index, fk* the
residual degree, and L*k the residual field of 03B2k. The integers et and f*k are
related to N by the formula

The following result proves that the *’s are useless:

THEOREM 3: For k = 1, 2,..., g, let ek , fk and Lk be defined as in section 2,
from a set {(xk, yk)}1kg of representatives of the -orbits in a system of
rational Puiseux expansions of F over K.
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For k = 1, 2, ... , g*, let et, fk* and L*k be defined as above, from the

places {03B2k}1kg* of K(C) lying above Po.
Then g* = g, and (up to reordering the places 03B2k) e* k = ek , fk* = fk , and

L*k is K-isomorphic to L k for k = 1, 2, ... , g.

Proof.- (using Chevalley’s book [Ch]).
It has been proved in theorem 2 that the complete factorization of F in

K((X))[Y] is F = 03A0gk=1 Fk. It follows, by the Chinese remainder theorem,
that the K((X))-algebras

are isomorphic, and that each K((X))[Y]/(Fk) is a field.
On the other hand, K((X))[Y]/(F(X, Y)) is equal to the po-adic com-

pletion K(C) ~K(X) K((X)) of K(C), it is thus isomorphic to the product of
the 03B2k-adic completions of K(C) for k = 1 to g*, which are fields.

This proves that g* = g, and that the places 03B2k can be numbered in such
a way that K((X))[Y]/(Fk) is the 03B2k-adic completion of K(C).
The fact that Fk is the product of fk irreducible factors of the same degree

ek in K((X))[Y] proves that there are fk places of !K(C) lying above 03B2k, each
of them with ramification index ek. This means that fk is the residual degree
of 03B2k and ek its ramification index, i.e. that f*k = fk and e*k = ek .

It remains to prove that the coefficient field [lk of (k, k) is K-isomorphic
to the residual field L*k of 03B2k. Since we have just proved that they both have
the same degree over K, we only have to get an injective K-algebra homo-
morphism from L*k into Lk. From now on, a K-algebra homomorphism is
always one that preserves 1. Thus, since L*k is a field, we only need a
K-algebra homomorphism from L*k in [lk. This is given by the following
lemma:

LEMMA: Let 03B2 be a place of [K(C) and L* its residual field. Let (, ) be a
parametrization of any place 03B2 of K(C) lying above 03B2, and let L be the
coefficient field of (x, ).

Then there is a K-algebra homomorphism from L* into IL.

Pro of. Let us come back to the [K-algebra homomorphism
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The restriction 03C8 of ~ to K[X, Y] is a K-algebra homomorphism with values
in L[[T]]. As for ç, it induces a K-algebra homomorphism

and if O is the ring of i3 then ’F«9) c L[[T]].
On the other hand, the application

. such that

is a K-algebra homomorphism. And since the K-algebra homomorphism
039803A8|o from O to L has 03B2 in its kernel, it induces a K-algebra homo-
morphism from W1i3 = L* to L. This proves the lemma, and theorem 3.

REMARK: The fact that the -orbits of rational Puiseux expansions of F are
in one-to-one correspondence with the places of K(C) lying above po is

simply a different statement of theorem 2.
In the following diagram, ramification indices are on the first line, places

of K(C) lying above po are on the second line, and places of K(C) lying
above po on the third line:

In addition, theorem 3 proves that the residual field of a place is K-iso-
morphic to the coefficient field of any rational Puiseux expansion of F in the
corresponding -orbit. Among the consequences of this property are:
0 The fact that the coefficient field of the rational Puiseux expansion of

a given branch of C is "the smallest one" among the coefficient fields of the
parametrizations of this branch (by the lemma above). It will be seen in
section 4 that the computations can be made in this field.

2022 When K is the field R of real numbers, since a branch of a complex
curve (defined by a real polynomial) is real if and only if its residual fields
is the field of reals, we get the following result:


