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Abstract. We compute the maximal and the minimal value of Il M2 over the class of 0-1 valued
N x N matrices M with K entries equal to one for fixed K and N, where II ’ II denotes the sum of
the entries. This result has applications to graph theory and probability theory.

Compositio Mathematica 71: 139-179, 1989.
© 1989 Kluwer Academic Publishers. Printed in the Netherlands.

1. Introduction

1.0. A despotic problem

A country has 38 airports. Between these airports exist 639 direct flights. The
despot of this country wants to get more control over the population by
diminishing the interlocal traffic. Because of the public opinion in the rest of the
world, he can not change the number of airports or the number of direct flights.
How should the despot distribute the 639 direct flights over the (ordered) pairs

of airports, such that the number of different flights with one transit is

minimized?

This problem can be solved by applying Theorem 2 of this paper. The minimal
number of flights with one transit is 6239.

1.1. The matrix problem

Let Il M Il denote the sum of the absolute values of the entries of a matrix M. Let

vit N,K be the set of 0-1 valued N x N matrices with II M Il = K.
In this paper we compute the maximal and minimal value of ll M 2ll Il I over

M N,K for fixed N and K(0  K  N2). So we are looking for

AMS 1980 classification

primary 05B20

secondary 60G10, 28D05, 15A36, 15A45, 26D15, 28A75



140

and

We give an application of this problem to graph theory and to stochastic
processes.

1.2. The problem in terms of graphs

Let G be a directed graph consisting of N vertices and K edges. Solving the matrix
problem is equivalent (as [F.] remarks) to solving the problem of finding for
fixed N and K the maximal and minimal number of paths of length two, i.e.
pairs of edges a = (v, v’), b = (v’, v").

1.3. The problem in terms of two-correlations of stochastic processes

Let (Y,,)nc-z be an i.i.d. sequence of random variables. A two-block factor (X n )n of
this sequence is defined by

for some function f
The process (X")" has the property of one-dependence, i.e. for each integer time

t the future (Xn)n&#x3E;t is independent of the past (Xn)nt, as is easily checked.
[A.G.] and [A.G.K.V.] have shown that not all one-dependent two-state
processes are two-block factors (this was conjectured for several years).
We return to our matrices by restricting our attention to two-block factors of

an i.i.d. sequence (Dn )n, each D. uniformly distributed over a finite set {1,..., N}.
A matrix M E JI N,K yields a two-block factor as follows

Define Hj:= s’y 1 Mij and Vj:= EL 1 Mji(i,j = 1,..., N). We have

and for the two-correlation P[Xn = X n + 1 = 1 ] we have
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We conclude that the matrix problem above is equivalent to the problem of
computing the maximal and minimal two-correlation, for fixed probability of
a one, over the class of two-block factors of i.i.d. sequences (Dn)n, where Dn is
uniformly distributed over {l,... , N}.

Let (Y.). be an i.i.d. sequence, each Yn uniformly distributed over the unit
interval. Given a Lebesgue-measurable set A in the unit square we construct
a two-block factor (the corresponding indicator process) (Xn)n by taking f equal
to the indicator function of A (see [V.] for more details).

Let max(a) and min(a) be the maximal, minimal resp., two-correlation over the
class of indicator processes for fixed probability a of a one. An approximation
argument (approximation of the uniform distribution by discrete distributions)
shows that the connection between max(a) and max(N, K), min(a) and min(N, K)
resp., is

and

The discretization of the variational problems max(a) and min(a) was the
motivation for this research.

We associate to a matrix M E vU N,K a subset AM of [0, N] x [0, N] by setting

We remark that the class of two-block factors of an i.i.d. sequence (Dn)n (each Dn
uniformly distributed over {l,..., N}) is a subclass of the class of indicator
processes, by taking A = ( 1 /N) AM for the associated matrix MEJ/(N,K.

1.4. Previous results

For the class of two-block factors the problem of the maximal two-correlation
(max(a)) was solved in [Ka.] and [F.] and the problem of the minimal
two-correlation min((x)) was solved in [V.] (a denotes the fixed probability of
a one). The results are
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and

with m := int(l/(l - 2ex» and ô:= /1 - 2oc((yM + 1)/m). (Here int(x) is the integer
part of x).
The upper bound max(a) also holds for the wider class of one-dependent

processes. For a * -1 there is a unique one-dependent process with two-correlation
max(a), and for a = 2 there are exactly two such processes. These processes are all
two-block factors, determined by the sets

and

For proofs see [G.K.V.].

1.5. 1 ntroductory remarks

Let 1 be the N x N matrix with all entries equal to one.
The following lemma shows that we may restrict our attention to the case

K  -1 2and that the maximum (c.q. minimum) is attained in M (for K) iff it is
attained in 1 - M (for N 2 - K).
We will use this observation in Theorem 2.

COMPLEMENT LEMMA. For a matrix MC-’#N,K we have

We omit the straightforward proof. (see also the Complement Lemma in [V.])

REFLECTION LEMMA. Let M C-’ffN,K. Let M’, M"C-’#N,K be the matrices
obtained by reflecting M with respect to the diagonal, the cross-diagonal resp., i.e.,
Mi,j = Mj,i and M’i,j = MN+I-j,N+I-i. Then Im, = IM" = im.
We omit the straightforward proof.
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2. The results

THEOREM 1 (Maximum). Let J( N,K be the class of 0-1 valued N x N matrices
with K entries equal to one. Then lM = Il M2 attains its maximal value max(N, K)
over J( N,K in (at least) one of the types I, II, III and IV.

THEOREM 2 (Minimum). Let J( N,K be the class of 0-1 valued N x N matrices
with K entries equal to one. The following table gives the possible types where

IM = Il M2 can attain its minimal value min(N, K) over MN,K for the correspond-
ing ranges of K.

In each matrix of these types IM = min(N, K) and for each pair (N, K) there
exists a matrix of these types. In case (c) there exists a unique matrix of the
described type. In cases (b) and (d) there exists exactly one or exactly two matrices
of the corresponding types.
The solution to the despotic problem is found by computing the corresponding

parameters of the type VI, VII and VIII. It turns out that only type VIII is suitable
for the despotic problem. We shall give the solution in the Appendix.

The types of matrices where lM attains its maximal and minimal value

Type 1: (Maximum)

Figure 1
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Type II: (Maximum)

Figure II

Type III: (Maximum)

This type is the complement of type 1 reflected
in the diagonal through (0, N).

Figure III

Type V : (Minimum)

This type is the complement of type II reflected
in the diagonal through (0, N).

Figure 1 V

Type V: (Minimum)

AM c [int( 1/2N), N] x [0, int( 2 N)],

im = min(N, K ) = 0.

AM is as in Figure V.

Figure V



145

Type VI: (Minimum)

d divides N such that

AM is as in Figure VI.

Figure VI

e and R are defined by N = (e + 2)d and N 2 - 2K = (l + 4)d 2 - 2R. This

implies R E {d 2 - 1, d21.
There are R ones within the d x d square with corners at (d, 0) and (2d, d).

Further Vj,,+i=jd for 2,j,e + 1 and 1  i  d.

d3
IM = min(N, K) = Red + d3 e(î - 1)(e + 4).6

Type VII: (Minimum)

such that

for some integer e and

Am is as in Figure VII.

Figure VII
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R is defined by N’ - 2K = ed 2+ (d + S)2 - 2R.
This implies 1 , R and (s - l)(d + 1)  R  (s + 1)(d - 1).
There are R ones within the (s + 1) x (d - 1) rectangle with corners at (d - 1,0)
and (d+s,d- 1).
Further V. + jd + = s + jd for 1  j  E and 1  i  d.

d2
Im = min(N, K) = Rtd + d2 tl(?- 1){(,/ + l)d + 3s}.

Type VIII: (Minimum)

such that

Figure VIII
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and

AM is as in Figure VIII.

R is defined by N2 - 2K = q(d + 1)2 + pd 2 + (d + s) 2 - 2R.
This implies 1  R and (s - 1)(d + 1)  R  sd.
There are R ones within the s x d rectangle with corners at (d, 0) and (d + s, d).

Further VS +;d + = s + jd for 1  j  p and 1  i  d, and Vs+(p+l)d+j(d+l)+i =

s + (p + l)d + j(d + 1) for 0 % j % q - 1 and 1  1  d + 1.

Type IX: (Minimum)

Figure IX
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and

AM is as in Figure IX.

3. Proof of Theorem 1

Fix natural numbers N and K.

In several steps we will show that solutions to the problem belong to smaller
and smaller subclasses of the class .aet N,K. To facilitate reading we refer to the
appendix for technical details.

3.1. PERMUTATION LEMMA. Let ME.aet N,K’ let T be a permutation of
{i,... N}. Then lM is invariant under T x T.

We omit the easy proof.

Step 1. Permutation. By taking T such that {H T.}f= 1 is a non-increasing
sequence, we may assume that M is such that (HJf= 1 is non-increasing.

3.2. STANDARDIZATION LEMMA. Let M E.aet N,K be a matrix such that
(HJf= 1 is non-increasing. Then there exists a matrix M’ E.aet N,K in standard form,
i. e.,

such that lm, &#x3E; lM.
Proof. Let M be a matrix, M not in standard form, such that the horizontal

sections are non-increasing. Then there exist indices il  i2, j such that

Let M’ be the matrix obtained by interchanging this 0 and 1. We claim that

I,, &#x3E; lM. We have

By repeating this argument (moving squares horizontally to the left) we obtain
a matrix in standard form, while I, does not decrease. D
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Step 2. Standardization. We conclude that we may assume that M E vU N,K is in
standard form.

3.3. SYMMETRIZATION LEMMA. Let M E vU N,K be a matrix in standard
form. Then there exists a matrix M’ E vU N,K in standard form that is symmetric or
nearly-symmetric, i.e.,

Mi,j = Mj,i i for all (i, j) except one pair (i, j),

such that Im, &#x3E; Im.
Proof. Assume that M is not of this kind. Then there exit a, b, c, d such that

Ma,b = Mc,d = 1 and Mb,a = Md,c = 0. Let M’ be the matrix obtained by inter-
changing Mc,d and Mb,a . We claim that Im, &#x3E; Im. (See Appendix 1.) D

Step 3. Symmetrization. We conclude that we may assume that M E vU N,K is in
standard form and symmetric or nearly-symmetric.

With a matrix M in standard form we associate a left-continuous function

fM: [0, N] -&#x3E; [0, N] given by

This implies that

Assume fM(a) &#x3E; d, fM(b) &#x3E; c, fM(c) &#x3E; b, fm(d) &#x3E;, a, b  c.
Let H"’ and VW be the sections corresponding to the set

So, Hw - H - c on (a, b], Hw - H - a on (c, d] and H"’ = 0 else, the same holds
for V"’.

3.4. WINDOWING LEMMA. When we rearrange ones ( preserving K that is the
total number of ones) within (a, b] x (c, d] u (c, d] x a, b] (obtaining M’) then

Conclusion. So, when we compute the influence of this rearrangement on I,,
we can pass over from H and V to Hw and Y"’. (Proof.- see Appendix 2.)
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3.5. LOCAL REFLECTION LEMMA. Assume that:

and also that b - a = d - c.

When we (obtaining M’) reflect AM n (a, b] x (c, d] with respect to the line
y = x + c - a and AM n (c, d] x a, b] with respect to the line y = x + a - c,
then Im is invariant. (See fig. XI). (Proof : see Appendix 3).

Figure XI

3.6. CONTRIBUTION OF A SQUARE LEMMA. Let M E MN,K be in standard
form and symmetric or nearly-symmetric. Let (a, b) (a, b E {l, ... , N 1) be a corner
point of M, i.e., fM(a) = b and fM(a + 1)  b or a = N. Let M’ be the matrix
obtained from M by removing (a, b)(Mi,j = Mi,j - ba,i. bb,j). Then

Proof. See Appendix 4.
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From now on all rearrangements of ones in M will be done such that M remains
in standard form and (nearly-)symmetric. This means that a rearrangement of
ones within a, b] x c, d] (above the diagonal) is attended with a (in some sense
reflected rearrangement within c, d] x a, b] (under the diagonal).

This will not lead to confusion.

Spreading out

We will consider quasi-blocks and we will decrease the number of these
quasi-blocks and so we will diminish the class of matrices.
Let

be the function associated with M as defined in step 3 (0 = xo  x 1 ...  xm = N).
We call a rectangle xk _ 1, xk] x yk + 1, Yk] a block if it is disjoint with the
diagonal. Note that the points (xkl Yk) are corner points.
We call a set xk _ 1, xk] x yk + 2, yk] u xk, xk + 1 ] x Yk + 21 Yk + 1 1 (disjoint

with the diagonal) a quasi-block if Yk - yk + 1 = 1 or xk + 1 - Xk = 1. We call in
these cases xk - xk - 1 c.q. Yk + 1 - Yk + 2 the remainder of the quasi-block.

Figure XII. A quasi-block with yx - yk + 1 = 1.

We consider blocks as special quasi-blocks (with remainder equal to zero).
We shall spread out a quasi-block along the longest segment (xx _ 1, xx + 2 ] or
YK + 21 YK - 1 1), using the Local Reflection Lemma and the Contribution of
a Square Lemma.
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3.7. SPREADING-OUT LEMMA. Let fM = E"‘__ 1 yi - 1,,, assume that

is a quasi-block. Assume YK + 2 &#x3E; XK+2. Then this quasi-block can be replaced by
a quasi-block of the type

or by a quasi-block of the type

such that lM does not decrease.
Proof. See Appendix 5. D

3.8. TWO QUASI-BLOCKS LEMMA. Let fm = £fi=i Yi lx;_,,x;j, assume
that

Figure XII a-d (4 cases)
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and

are quasi-blocks. Assume YK+4 &#x3E; XK+4. Then these two quasi-blocks can be joined
to one quasi-block, preserving standard form and (near-)symmetry, such that IM
does not decrease.

Figure XIII Figure XIV

Figure XVI (EXAMPLE) Figure XV
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We use the Spreading-out Lemma and the Local Reflection Lemma. There are
4 cases (see Fig. XII), depending whether the two remainders are horizontal or
vertical strips.
To avoid a long and detailed list of cases and subcases, we restrict ourselves to

the case of a quasi-block with horizontal remainder with at its right lower side
a quasi-block with vertical remainder.
The given example is typical for this case. Just as in Appendix 5 we may

assume that the remainder of a quasi-block is a horizontal strip if xK + 1- XK - 1
Yx - Yx + 2 and a vertical strip if xK + 1 - xx -1  YK -YK+2-

First we spread out horizontally the left upper quasi-block (Fig. XIII). Then, by
a reflection, we obtain one quasi-block consisting of one strip and a remainder
(Fig. XIV). We spread out this quasi-block and we are finished (Fig. XV).
We spread out the quasi-blocks marked with (thin lines before the

transformation, thick lines after the transformation) (Computation: see

Appendix 6).

COROLLARY. Let M e MN,K be a matrix in standard form and (nearly-)sym-
metric. Then there exists a matrix M’ C- -I#N,K of t ype A or B such that Im, &#x3E; Im.

Proof. Apply Lemma 3.8 iteratively. D

Type A:

Figure XVIIC

Type B:

Figure XVIIC



155

3.9. Last Step. To complete the Proof of Theorem 1 we will reduce this class of
matrices to the types I, II, III, IV. (see Appendix 7). D

REMARK. If K = m2 &#x3E; 2N2 for some integer m, then the maximal value of Im is
attained when we take AM equal to m x m square of ones, and if K = N’ _ M2 
-IN 2for some integer m, then we obtain the maximal value of Im by taking the
complement of a m x m square. This directly follows from the fact that in these
cases IM assumes the value N3  max(a) (with a = K/N2).

In other cases I M is strictly less than N 3 · max(a).
Generally, if a = K/N 2 &#x3E; -1 the maximal value of Im is attained in type 1 or II,

and if a  1/2 in type III or IV, because in these types (1/N)AM is an approximation
of the corresponding / x /a- square (the solution of the continuous version for
a &#x3E; 2) c.q. the complement of a @ x 1 - a square (the solution of the
continuous version for a  1/2). However, for a z § this can be different, as the
following example shows. (See also the table at the end of this paper, before the
appendix.)
EXAMPLE. Take N = 10 and K = 49, then ce = 0.49  1/2. The maximal value of
Im is attained in type 1 (see Figure 1 ) where IM = 7 x 7 x 7 = 343, and not in type
III (see Figure 2) where 1 M = 339.

Figure 1 Figure 2

EXAMPLE. We show the existence of three sequences (N1 )° 1. (Ki)t’= 1, (vi)t’= 1
(each tending to infinity) such that

(1) Ki = 2N2 - vi, and
(2) IM attains its maximal value max(Ni, KJ in type 1 and not in type III or IV.

From the theory of continued fractions follows the existence of increasing integer
sequences (p,),?’= 1, (qi)l’= 1 such that

and all qi are odd.


