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Section 1. Introduction

If one classifies functions of finite codimension one encounters series of functions.

Well known examples in C {x, y, z) are:

Sce Arnold [ 1 ] .
Deleting the part which varies with the indices one gets a function one is

inclined to call the stem of the series. For instance:

See Siersma [15].
The same phenomenon occurs if one classifies map germs f : (R’, 0) --+ (RI, 0) of

finite A-codimension, see [10]. The word stem is used in [11] by Mond without
giving a definition, but he suggested the following definition.
A function f is a stem if it is not finitely determined and if for some k, every

function g with the same k-jet as f is either finitely determined or right-equivalent
with f.

It still is a problem to define a series, see [1] page 153 or [13], but the notion of
a stem seems to be a first step in understanding series in the classification of
singularities, see Van Straten [16] for another approach.
The results of this paper are the following.
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THEOREM 1.1. Let f : (C"", 0) -+ (C, 0) be a germ of an analytic function. Then
f is a stem if and only f f has an irreducible curve Y- as singular locus and f has
transversal A 1 singularities on SB{0}.

Following J. Montaldi we give an inductive definition of a stem of degree d.

THEOREM 1.2. Let f : (C"’ 1, 0) be a germ of an analytic function. If f is a stem of
degree d then the singular locus E of f is a curve with at most d branches. If
moreover the number of branches of E is equal to d then f has transversal A1
singularities on EB{0}.

THEOREM 1.3. Let f : (C" 0) be a germ of an analytic function. If the singular
locus £ of f is a curve with d branches and f has transversal A1, singularities on
XB{0}. Then f is a stem of degree d.

In Section 2 we collect known results, which we need in the sequel. In Section
3 we proof Theorem 1.2 and part of 1.1. In Section 4 we proof Theorem 1.3 and

part of 1.1. We conclude with some questions.
We denote by (9 the local ring of germs of analytic functions f : (Cnl l@ 0) -+ C,

and m its maximal ideal. The germ in (Cnl l@ 0) of the zero set of an ideal I in (9 is
denoted by V(I). We denote by J f the ideal (Dflôzo,..., ôflôz.) (9.

Section 2. Finite determinacy

DEFINITION 2.1. Let jk: (9 , (O /mk + 1 be the projection map. We call jk f the
k-jet of f, for an element f E (9. In the same way we denote by Jk f the k-jet of
a mapping f c- (9’ or a matrix f c- (9P "1.

DEFINITION 2.2. We denote by -9 the group of all germs of local analytic
isomorphisms h: (C"", 0) --+ (C"’ 1, 0). Two functions f and g in (9 are called
R-equivalent if f = g - h for some h e -9.

The function fc- (9 is called k-determined if for every g E U with jkf= jkg then
f and g are R-equivalent. The function f is called finitely determined if it is
k-determined for some k.

A function is finitely determined if and only if it has an isolated singularity, by
Mather [8] and Tougeron [17] or [18].

D. Mond proposed the following definition.

DEFINITION 2.3. Let f e w. Suppose f is not finitely determined then f is
called a k-stem if for every g e W with Jk g = Jk f either g is finitely determined or
g is R-equivalent with f. If f is a k-stem for some k e N then we call f a stem.

J. Montaldi suggested the following inductive definition.
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DEFINITION 2.4. Let fe w then f is called a k-stem of degree 0 if f is
k-determined. The function f is a k-stem of degree d, if f is not a stem of degree t,
for some 0  t  d, and if for every g c- (9 with Jk g = J’f either g is a stem of
degree s, 0  s  d, or g is R-equivalent with f If f is a k-stem of degree d, for
some k c- N, then we call f a stem of degree d.

REMARK 2.5. A stem of degree d gives rise to a series of stems of degree d - 1.
For example

is a stem of degree 3,

is a stem of degree 2,

is a stem of degree 1,

is a stem of degree 0.

This follows from Theorem 1.3.

The finite determinacy theorem has been generalized for non-isolated singu-
larities by Siersma [ 15] , Izumiya and Matsuoka [4], and Pellikaan [12], [14].

DEFINITION 2.6. Let I be an ideal in (9. Define

This is called the primitive ideal of I and in case I is a radical ideal defining the
germ (E, 0) in (C"", 0) then

If E is a reduced complete intersection then f 1 = I’, see [12], [14].
DEFINITION 2.7. Let -9, be the group of all germs of local analytic
isomorphisms leaving I invariant, that is to say: -9, = {h c- -91 h*(I) = Il. Two
functions f and g in 11 are called R-I-equivalent if f = g - h for some h e -9j, that is
to say f and g are in the same orbit of the action of -9, on fi.

In case I is a radical ideal and dimc(i/jf)  oo then the tangent space i j ( f ) of
the orbit of f under the action of -9j, can be identified with mJ f c II, see
[ 12], [ 14] .

DEFINITION 2.8. Let f c- II and dimc(I/Jf)  oo, then we call

dimc(II/Jf n II) the I-codimension of f and denote it by cj(f).
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DEFINITION 2.9. If fc- 11 then f is called (k,1)-determined, if for every g c- fi
with the same k-jet as f one has that f and g are R - I-equivalent. The function
f is finitely I-determined if it is (k, I)-determined for some k E N.

REMARK 2.10. There exists an r e N such that for every k e N: m" " n 11 c
m’ II, by Artin-Rees lemma, see [9] 1 l.c. Let r(II) be the minimal number r for
which the above inclusion holds.

THEOREM 2.11. Let fc-II and r = r(II).
(i) If f is (k,1 )-determined then

(ii) If

then f is (k + r, I)-determined.
Proof. See [12], [14]. D

COROLLARY 2.12. Let f E f 1 then f is finitely I-determined if and only if
CI(f)  oo.

REMARK 2.13. If I is a radical ideal defining a germ of the curve (E, 0) then
cj(f)  oo if and only if dimc(I/J )  oo if and only if f has only transversal A 1
singularities on EB{0}. See [ 12] , [14].
We also need the following finite determinacy theorem due to Hironaka:

THEOREM 2.14. Let (X, 0) be a germ of a reduced analytic space in (C’, 0) with an
isolated singularity. Let

be an exact sequence of (9-modules.

Then there exists a triple (u, r, p) of positive integers such that for all k &#x3E;, r and all
complexes

such that Ju = J"ù and J’g = J’o, there exists a germ of a local analytic
isomorphism h: (C’, 0) --+ (C’, 0) such that h(f, 0) = (X, 0) and Jk-ph = id. Where
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(X, 0) is the germ of the analytic space in (CI, 0) with local ring (9lIm(o).

REMARK 2.15. This theorem is proved by Hironaka [6] Theorem 3.3, in the
formal category. One uses Artin approximation [2] to get local analytic
isomorphism. See also Artin [3] Theorem 3.9.

In the proof of Theorem 1.3 we need a strengthening of Artin approximation
due to Wavrik [19] :

THEOREM 2.16. Let G = (Gi,...,GJ with G,eC{x}[y]. Then for all ce c- N
there exists a fi c- N such that Ç y(x) e C[[x]]’ and JO G(x, y(x)) = 0 then there
exists J(x) e C(xl’ such that

Section 3. The number of branches of a stem

LEMMA 3.1. Let f : (C»", 0) -+ (C, 0) be a germ of an anal ytic function which is
a stem of degree d. If M is a curve with r branches contained in the singular locus
of f -’(0) then r  d.

Proof. By induction on r. Suppose r = 1 then f has not an isolated singularity
at 0 and therefore f can not be a stem of degree 0, by Mather [8] and Tougeron
[17],[18]. Thus d &#x3E; 1.
Suppose f is a k-stem of degree d and the singular locus of f -’(0) contains the

curve El u - - - u S, , 1 with r + 1 branches. Let I be the ideal defining
E 1 u ... u E,, generated by g 1 ... , g.. Let

Then the singular locus of f -1(0) is contained in Y- 1 u ... u E,., for all Â e U, where
U is a dense subset of C’", by Bertini’s theorem. So there exists a Â e U such that
the singular locus of f Z- ’(0) is equal to £i w ... w £,. Hence f cannot be
R-equivalent with f. But fÀ and f have the same k-jet and f is a k-stem of degree d.
Thus fÂ must be a stem of degree t  d. By the induction assumption we have that
r  t, so r + 1  d. This proves the lemma.

COROLLARY 3.2. Let f: (Cn + 1, 0) --+ (C, 0) be a germ of an analytic function
which is a stem of degree d. Then the singular locus of f is a curve with at most
d branches.

Proof. If the dimension of the singular locus of f is bigger than one, then it
contains a curve with r branches, for any r e N. By Lemma 3.1, f cannot be a stem
of finite degree.
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PROPOSITION 3.3. Let f : (C"", 0) --+ (C, 0) be a germ of an analytic function
which is a stem of degree d. If the number of branches of the singular locus 1 of f is
d then f has transversal A, singularities on XB{0}.

Proof. Suppose f is a k-stem of degree d. Let the curve E be the singular locus
of f -1 (0) with branches El 1... 1 Ed. Let p; be the prime ideal defining E1. Let
I = p 1 n "’ n pd then I defines £ .

Let Z., zi , ... , Zn be local coordinates of (Cn 1 B 0) such that E n V(z.) = {0}. One
can choose generators gl,...,g. of I such that

Moreover for alla c-EB{01 small enough one has that zo - ao,gl,...,g,, are local
coordinates of (Cn ’ 1, a), where a = (ao, a,,..., a.), see [12], [ 13] .
Consider

then by Bertini’s theorem there exists a set G 1 in C’" x C, which is the countable
intersection of open dense sets, such that the singular locus of f gj (0) is contained
in V(zo k ,ci t%,n = 1 gi 2) gk 1 + 2.. .19 m k+2 ) for all (Â, IÀ) c- Gl. So the singular locus of f Â,IÀ (0)
is equal to 1 for (À,p) e G1 . The p,-primary components of II and 12 are the same,
see [12], [14], hence dim C(lI/I2)  oo and m’. f 1 c 12 for some l e N. We can
write (gl,..., g" ) = I n K, for some ideal K, which for every i = 1, ... , d is not
contained in pi, by the primary decomposition of the ideal ( g 1, ... , gn). Hence
MIK 2 is not contained in p 1 u " ’ U pj, by [9] l.B. So there exists an element s in
M’K2B(pl U ... U Pd). Thus

since fe fI. Therefore we can write

Let
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then the zeroset of à defines a hypersurface V in Cn+1 1 x Cm x C, which does not
contain Y- x CI x C, since A is a polynomial in y and the coefficient of the highest
degree term is S"Znl which is not an element of I.
The intersection (X x Cm x C) n V contains two sorts of components: the

vertical components V,,, of the form E x Wa, where Wa is a proper analytic subset
of CI x C. and the horizontal components H., which project finitely on Cm x C.
Let W = u Wa, then the complement U of W in CI x C, is an open dense subset.
Let G = G 1 n U, then G is a countable intersection of open dense subsets, hence
G is dense in Cm x C by Baire’s category theorem.
For all (Â, iÀ) e G the zero set f (0) has singular locus 1 and for all a e £ ) (0)

small enough, the transversal hessian of fÂ,, at a has determinant not equal to
zero, since A(a) --A 0 and s(a) * 0, since sep, for all i = 1,...,d. Hence fÂ,, has
transversal A singularities on LB{0}, see [14], [15].

If fÂ,, is not R-equivalent with f, then fÂ,, is a stem of degree t, t  d, since

fÂ,, and f have the same k-jet and f is a k-stem of degree d. But the singular locus
of f -1 (0) has d branches and this contradicts Lemma 3.1. Thus fA,, and f are
R-equivalent. This proves Proposition 3.3 and completes the proof of Theorem
1.2.

Section 4. Sufliciency

LEMMA 4.1. Let f:(Cnll@0) --&#x3E; (C, 0) be a germ of an analytic function. If f has
a curve Y- as singular locus and f has transversal Ai singularities on 1 B {01, then for
every r E N there exists a t e N such that for all 0 c- m" ’: if f + 0 has singular locus

S. then there exists a local analytic isomorphism h: (Cn + l@ 0) - (Cn + 1, 0) such that
h(E,o) c E and jrh = id.

Proof. If f + 0 has an isolated singularity we can take for h the identity map.
So we only have to consider the case that f + 0 has a non-isolated singularity.

(i) Let Zo, Z 1, - - - , Zn be local coordinates of (Cn 0) such that the polar curve
r of the map

is reduced. Such a z. exists by a result of Hamm and Lê [4], in fact "almost

every" zo will do. Let K be the vanishing ideal of r, then
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The map

defines a complete intersection curve X u r with an isolated singularity. So
F is finitely determined with respect to contact-equivalences, see Mather [8].
So there exists a IÀ e N such that for every map G : (C"", 0) - (Cn@ 0) with the
same ,u jet as F, is contact-equivalent with F. In particular for every 0 e mu+ 2
there exists a local analytic isomorphism H : (Cn+ B0) - (Cn+1, 0) such that

where Oi = bolôzi.
So for every 0 c- m4 " such that f + 0 has a non-isolated singularity, the
singular locus El, of f + 0 is isomorphic with H(Y-,,), which is contained in
the curve 1 u r and therefore 11, must be a curve.

(ii) By (i) we know that H(Y-,) c E u r. Hence the minimal number of

generators of E. and the minimal number of relations between the

generators are bounded above by say p and q respectively.
(iii) Let (J(X), r(X), p(X» be the triple of integers associated to the reduced curve

(X, 0) as stated in Theorem 2.14 of Hironaka. Let

J = max {u(X) X is a reduced curve and (X, 0) c= (E u r, 0)}.

Then a is finite, since there are only finitely many reduced subcurves of
(E u r, 0). In the same way one defines T and p.

(iv) Let

then G;(x, y, z) e C (x) [ y, z]. Let r e N and define a = max {u, r, J + r ), then
there exists a fi associated to a as stated in Wavrik’s Theorem 2.16.

(v) Let t = max(p, fl), then for all  E mt + 2 such that f + 0 has a non-isolated
singularity, the vanishing ideal Il, of Y-, has p generators g 1 , - - . , gp and
q relations between these generators:
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That is to say, the following sequence is exact

Moreover, there exist elements ul + q + 1,; E such that

since fi + 0 , c- Il,*
Thus

Hence by Wavrik’s theorem there exist @ e WP and û C (gp(,, 1 n 11) such that
J"g = J"g and V M = J"u and G(x, j(x), û(x)) = 0, that is to say

Since H(S.) c E u r and oc = max {u, T, p + r} and by (iii), we can apply
Hironaka’s Theorem 2.14, that is to say there exists a local analytic
isomorphism h : (C"+’, 0) - (C"", 0) such that

and

Hence J’h = id, since ce &#x3E;, p + r. Further h(Y.,o) c E, since S. = V(gi , ... , 9p)
and S = V(Jf) and if c (@1 , ... , @). This proves Lemma 4.1.

Proof of theorem 1.3. The proof is by induction on d. In case d = 0, that is to say
f has an isolated singularity, f is a stem of degree 0. Now suppose the proposition
is proved for all t  d. Let I be the vanishing ideal of the singular locus E of f, then
f E f I, by 2.6. Since f has transversal A 1 singularities on SB {0} and 1 is a curve we
have that f is (r, I)-determined for some r e N, by Theorem 2.11 and Remark 2.13.
Given this r there exists a te N with the properties stated in Lemma 4.1.
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Let k = max {t, rl . Suppose E mk + 2 then there exists a local analytic
isomorphism h: (Cnl l@ 0) _ (Cn, l@ 0) such that h(S.) z E and Jr h = id. If

h(ZO) * 1 then f + 0 has a singular locus E,, with t branches, t  d. The ideal

(fl + 01, - - -,fn + On) is radical, since it is equivalent with (fl,...,fn), see part (i)
of the proof of Lemma 4.2. Thus for every minimal prime p lying over Io we have
that

Hence the p-primary components of Jf , 0 and I,, are the same for all p :0 m. So
dimc(IO/Jf 0)  oo and therefore f + 0 has transversal A, singularities on

Y.0 B {01, by Remark 2.13. By the induction hypothesis f + 0 is a stem of degree t.
If h(ZO) = 1 then h*(f + 0) c-II. Moreover

jr(h*(f + 0» = Jrf,

since k &#x3E;, r and 0 e m’+’ and Jr h = id. So f and h *(f + 0) are right I-equivalent,
hence f and f + 0 are R-equivalent. Thus f is a k-stem of degree d.

This proves Theorem 1.3 and completes the proof of Theorem 1.1.

Section 5. Concluding remarks and questions

Stems of degree one are completely characterized by Theorem 1.1. Although
Theorem 1.3 gives a sufficient condition for a function to be stem of degree d, the
converse does not hold. Since it is not difficult to show that the function

f(x, y) = ya+ 1 is a stem of degree d, but has a line as singular locus and transversal
Ad singularities.
So one may ask whether every function with a one dimension singular locus is

a stem of finite degree.
In contrast with the above question one may ask whether a stem of finite degree

is R-equivalent with a polynomial. Functions with a one dimensional singular
locus and transversal A 1 singularities are R-equivalent with a polynomial, see
[ 12], [ 14] . Whitney’s example

is a function with a one dimensional singular locus, but it is not R-equivalent with
a polynomial [20]. We do not know whether it is a stem of finite degree. Instead of
R-equivalence one could as well take A- or K-equivalence and mappings instead
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of functions. In particular one could ask the following question. What are the
stems of finite degree in the class of germs of analytic mappings f : (C’, 0) -+ (C’, 0),
with respect to A-equivalence? It is in this context that the word stem is originally
used [11] -
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