F. A. Bogomolov
A. N. Landia

2-cocycles and Azumaya algebras under birational transformations of algebraic schemes

<http://www.numdam.org/item?id=CM_1990__76_1-2_1_0>
F.A. BOGOMOLOV1 & A.N. LANDIA2

1Steklov Mathematical Institute of the Academy of Sciences of USSR, Vavilov Street 42, Moscow 117333, USSR; 2Mathematical Institute of the Academy of Sciences of Georgian SSR, Z. Rukhadze Street 1, Tbilisi 380093, USSR

Compositio Mathematica \textbf{76}: 1–5, 1990.

2-Cocycles and Azumaya algebras under birational transformations of algebraic schemes

QUESTION. Given a cocycle class $\gamma \in H^2(\mathcal{X}, \mathcal{O}_X^*)$, is it possible to find a nonsingular projective model X such that γ is represented by a \mathbb{P}^n-bundle (i.e. by an Azumaya algebra) on X?

The case where X is a nonsingular projective model of V/G, with G a γ-minimal group and V a faithful representation of G, was considered in [2]. O. Gabber in his letter to Bogomolov (12.1.1988) has given an affirmative answer to the question in the case of general algebraic spaces. In this paper we give a simple version of his proof for algebraic schemes.

Let X be a scheme, $\gamma \in H^2(X, \mathcal{O}_X^*)$, $\{U_i\}$ an affine cover of X. Then the restriction of γ to each U_i is represented by an Azumaya algebra A_i. If we would have isomorphisms $A_{ij | U_i \cap U_j} \cong A_{ji | U_i \cap U_j}$, we could glue the sheaves $\{A_j\}$ and get an
Azumaya algebra on X, representing γ. But we have isomorphisms $A_{i|U_i\cap U_j} \otimes \text{End}(E_{ij}) \cong A_{j|U_i\cap U_j} \otimes \text{End}(E_{ji})$ for certain vector bundles E_{ij}, E_{ji} on $U_i \cap U_j$.

THEOREM. Let X be a noetherian scheme, $\gamma \in H^2(X, \mathcal{O}_X^*)$. There exists a proper birational morphism $\alpha: \tilde{X} \to X$ such that $\alpha^*(\gamma)$ is represented by an Azumaya algebra on \tilde{X}.

Proof. It is enough to consider X which are connected. Suppose that $\{U_i\}$ is an affine open cover of X and that γ is non-trivial on at least one U_i. We will construct an Azumaya algebra on a birational model of X by an inductive process which involves adjoining one by one proper preimages of the subsets U_i and, by an appropriate birational change of the scheme and Azumaya algebra obtained, extending the new algebra to the union. We start with some affine open subset U_0 and an Azumaya algebra A_0 on it.

Now suppose by induction that we already have an Azumaya algebra A_k on the scheme X_k, a Zariski-open subset of the scheme \tilde{X}_k, equipped with a proper birational map $\tilde{\alpha}_k: \tilde{X}_k \to X$ such that $X_k = \tilde{\alpha}_k^{-1}(U_0 \cup \cdots \cup U_k)$. Let U_{k+1} intersect $U_0 \cup \cdots \cup U_k$ and $\tilde{U}_{k+1} = \tilde{\alpha}_k^{-1}(U_{k+1})$. Suppose that on U_{k+1}, γ is represented by the Azumaya algebra A_{k+1}. In the same vein as above we have an isomorphism

$$A_{k|X_k \cap U_{k+1}} \otimes \text{End}(E_{k,k+1}) \cong \tilde{\alpha}_k^*(A_{k+1}|X_k \cap U_{k+1}) \otimes \text{End}(E_{k+1,k})$$

and we need to extend $E_{k,k+1}$ to X_k and $E_{k+1,k}$ to \tilde{U}_{k+1} from their intersection. After this we will change \tilde{A}_k and $\tilde{\alpha}_k^*(A_{k+1})$ by the other representatives $\tilde{A}_k \otimes \text{End}(E_{k,k+1})$, $\tilde{\alpha}_k^*(A_{k+1}) \otimes \text{End}(E_{k+1,k})$ of the same Brauer classes and glue these Azumaya algebras, hence the proof.

First, extend both sheaves E as coherent sheaves. This can be done by the following

LEMMA. Let X be a noetherian scheme, $U \subseteq X$ a Zariski-open subset, E a coherent sheaf on U. Then there exists a coherent sheaf E' on X such that $E'|_U \cong E$. This is Ex. II.5.15 in [4].

Note that we can assume that in our inductive process we add neighborhoods U_{k+1} of no more than one irreducible component (or an intersection of irreducible components) of X, different from those contained in X_k. Thus we assume $X_k \cap U_{k+1}$ to be connected and the rank of E to be constant on $X_k \cap U_{k+1}$, hence E' will be locally generated by n elements, where n is the rank of E.

LEMMA (see [3], Lemma 3.5). Let X be a noetherian scheme, E a coherent sheaf on X, locally free outside a Zariski closed subset Z on X. Then there exists a coherent sheaf I of ideals on X such that the support of \mathcal{O}_X/I is Z with the following
property. Let $\alpha: \tilde{X} \to X$ be the blowing up of X with center I, then the sheaf $\alpha_*E := \text{the quotient of } \alpha^*(E) \text{ by the subsheaf of sections with support in } \alpha^{-1}(Z)$, is locally free on \tilde{X}.

Proof. The proof consists of two parts. First: to reduce the number of local generators to get this number constant on the connected components of X (the minima are the values of the (local) rank function of E). Second, to force the kernel of the (local) presentations $\mathcal{O}_U^m \to E|_U \to 0$ to vanish for all neighborhoods from some cover $\{V\}$. Both parts are proved by indicating the suitable coherent sheaves of ideals and blowing up X with respect to these sheaves. Let $\mathcal{O}_U^m \xrightarrow{f} E|_U \to 0$ be a local presentation of E. Then $\text{Ker}(f)$ is generated by all relations $\sum_i c_i a_i = 0$ where $\{a_i\}$ stand for the free basis of \mathcal{O}_U^m. The coherent sheaf of ideals in the first case is the sheaf defined locally as the ideal I_V in \mathcal{O}_V generated by all c_i such that $\sum_i c_i a_i \in \text{Ker}(f)$ and in the second case as $J_X = \text{Ann}(\text{Ker}(f))$. As the number of generators is constant in the case we are interested in, we give the details only for the second part of the proof and refer to [3] for the first.

Let $\alpha: X' \to X$ be the blowing up of X with respect to J_X and let $\tilde{\alpha}(E)$ be as in the statement of the Lemma. Let $0 \to (\text{Ker}(f))|_{V'} \to \mathcal{O}_{\tilde{V}'} \xrightarrow{f} \tilde{\alpha}(E)|_{V'} \to 0$

be the local presentation of $\tilde{\alpha}(E)$. We have $\alpha^{-1}(\text{Ann}(f)) \subseteq \text{Ann}(\text{Ker}(f))$. Let $p \in Z'$, $V' = \text{Spec}(A')$ an affine neighborhood of p in X' and let $\sum_i c_i a_i \in \text{Ker}(f)|_{V'}$ map to a nonzero element in $\text{Ker}(f)$. Denote by γ a generator of the invertible sheaf $\alpha^{-1}(\text{Ann}(f))$ on $V'' = \text{Spec}(A'') \subseteq V'$ for suitable A''. It is clear that there exists for given p and V'' a finite sequence of open affine neighborhoods V_1', \ldots, V_s'' such that $X' \setminus Z' = V_1', V'' = V_{s}''$ and $V_j'' \cap V_{j+1}'' \neq \emptyset$ for $j = 1, \ldots, s - 1$. So suppose $V' \cap (X' \setminus Z') \neq \emptyset$ and $q \in V'' \cap (X' \setminus Z)$. Then $(c_i)_q = 0$ for $i = 1, \ldots, m$ and $q \in \text{Spec}(A'')$ hence $\gamma^k c_i = 0$ for $i = 1, \ldots, m$ for some k. Since γ is not a zero divisor, we conclude that $c_i = 0$ for $i = 1, \ldots, m$. Thus (maybe after considering a finite sequence of points q_1, \ldots, q_s) we prove that $(\text{Ker}(f))_p$ is trivial for every $p \in X'$.

In this way we glue the two sheaves \tilde{A}_k and A_{k+1} and get an Azumaya algebra on $\tilde{X}_k \cup \tilde{U}_{k+1}$. As the scheme X is quasi-compact, we obtain an Azumaya algebra on \tilde{X} after a finite number of such steps.

Now we have to show that this process can be done in such a way that the class $[A]$ of the Azumaya algebra A constructed in this way is equal to $\tilde{\alpha}^*(\gamma)$. Again this goes by induction on k. We have $X_{k+1} = U \cup V$ with $U = \tilde{\alpha}^{-1}_k(U_0 \cup \cdots \cup U_k)$ and $V = \tilde{\alpha}^{-1}_{k+1}(U_{k+1})$. We have the exact sequence

$$H^1(U \cap V, \mathcal{O}^*) \to H^2(X_{k+1}, \mathcal{O}^*) \to H^2(U, \mathcal{O}^*) \oplus H^2(V, \mathcal{O}^*)$$
and by induction hypothesis, $\tilde{\alpha}_{k+1}(\gamma) - [\tilde{A}_{k+1}]$ maps to zero in $H^2(U, \mathcal{O}^*) \oplus H^2(V, \mathcal{O}^*)$ so it comes from $\beta \in H^1(U \cap V, \mathcal{O}^*)$. By blowing up X_{k+1} we may assume that β is represented by a line bundle which extends to U. Then β maps to zero in $H^2(X_{k+1}, \mathcal{O}^*)$, hence $\tilde{\alpha}_{k+1}(\gamma) - [\tilde{A}_{k+1}] = 0$.

Note that we need not bother about the compatibility of isomorphisms, because at each step we choose a new isomorphism between the Azumaya algebra A on $U_1 \cup \cdots \cup U_j$ from the preceding step and A_k on U_k, modulo $\text{End}(E)$, $\text{End}(E_k)$.

COROLLARY 1. Let G be a finite group, V a faithful complex representation of G. Then there exists a nonsingular projective model X of $V/\!\!/G$ such that $\text{Br}(X) = H^2(X, \mathcal{O}^*)$.

Proof. The group $H^2(X, \mathcal{O}^*)$ is a birational invariant of nonsingular projective varieties and is isomorphic to $H^2(G, \mathbb{Q}/\mathbb{Z})$ if X is a model of $V/\!\!/G$ (see [1]). It remains to recall that the group $H^2(G, \mathbb{Q}/\mathbb{Z})$ is finite. \Box

COROLLARY 2. Let X be a noetherian scheme over \mathbb{C}, Z a closed subscheme of X and $\gamma \in H^2_2(X, \mathcal{O}^*)$. Then there exists a proper morphism $\alpha: X' \to X$ which is an isomorphism above $X \setminus Z$ and maps γ to zero in $H^2_{2-\nu(Z)}(X', \mathcal{O}^*)$.

Proof. First, let's have $\alpha(\gamma)$ map to zero in $H^2(X, \mathcal{O}^*)$. To do this, desingularize X by $X' \to X$. Then in the following exact sequence (in étale cohomology), β will be injective:

$$
H^1(X' \setminus Z', \mathcal{O}^*) \to H^2_2(X', \mathcal{O}^*) \to H^2(X', \mathcal{O}^*) \xrightarrow{\beta} H^2(X' \setminus Z', \mathcal{O}^*)
$$

The injectivity is due to the injectivity of $H^2(X', \mathcal{O}^*) \to H^2(K(X'), \mathcal{O}^*)$ for a nonsingular irreducible scheme X'.

Now γ comes from $\gamma' \in H^1(X' \setminus Z', \mathcal{O}^*) = \text{Pic}(X' \setminus Z')$. It is obvious that Picard elements lift to Picard elements by the blowing ups from the theorem. Thus from the diagram

$$
H^1(X'', \mathcal{O}^*) \to H^1(X'' \setminus Z'', \mathcal{O}^*) \to H^2_2(X'', \mathcal{O}^*)
$$

we conclude that γ becomes trivial on Z'' by $X'' \to X'$ which extends γ' to X''. \Box

Now let us return to the problem of an isomorphism $\text{Br}(X) \to H^2(X, \mathcal{O}^*)$ for
nonsingular quasi-projective varieties. The theorem reduces the general problem to the following

QUESTION. Let X' be a blowing up of a nonsingular variety X along a smooth subvariety S and let A' be an Azumaya algebra on X'. Does there exist an Azumaya algebra A on X such that its inverse image on X' is equivalent to A'?

In case the restriction of A' to the pre-image of S is trivial, the question reduces to the one, whether a vector bundle on this preimage can be extended to X as a vector bundle. For example, if $\dim(X) = 2$ then S is a point and its proper preimage is a \mathbb{P}^1 with self-intersection -1. Since the map $\text{Pic}(X') \to \text{Pic}(\mathbb{P}^1)$ is surjective, any vector bundle on \mathbb{P}^1 can be extended to X'.

Therefore we obtain a simple proof of the basic theorem in the case $\dim(X) = 2$ using the birational theorem.

In the case of $\dim(X) = 3$ the same procedure reduces the basic problem to the analogous problem of extending vector bundles from \mathbb{P}^2 and ruled surfaces to a variety of dimension three.

References

