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Abstract. New bounds for Castelnuovo’s regularity are established. As a consequence, we show that
a property of Hilbert functions stated by J. Harris and D. Eisenbud in [7], p. 82 is only true for
curves and false for higher-dimensional subschemes. The letter of W. Vogel [25] gives rise to study
this property again.
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1. Introduction

Castelnuovo’s regularity was first defined by D. Mumford [10], who attributes
the idea to G. Castelnuovo, for coherent sheaves on projective spaces. In a more
algebraic setting it was defined by D. Eisenbud and S. Goto [3] and A. Ooishi
[13] (see Section 2). It comes out that Castelnuovo’s regularity gives an upper
bound for the maximal degrees of the syzygies in a minimal free resolution [3].
D. Bayer and M. Stillman [2] showed that an estimate of the regularity of an ideal
gives a bound on the complexity of algorithms for computing syzygies. In [3],
p. 93 D. Eisenbud and S. Goto stated the following well-known conjecture on
such an estimation.

Let X ~ PnK (K an algebraically closed field) be a nondegenerate, that is, X is
not contained in a hyperplane of Pn, irreducible, reduced subvariety then holds

So far, this conjecture has been proved for curves [6] and, if char(K) = 0, for
smooth surfaces [9] (see also [5]), for a large class of smooth threefolds in

P5K [18], Theorem 3.3, and if X is arithmetically Buchsbaum or degree(X) 
codim(X) + 2 [21]. In the other cases only weaker results are known by using
certain correction terms (see, e.g., [1], [22], [23], [5], [11], [18]). We also note
that [11] and [12] describe applications of Castelnuovo’s regularity. The aim of
this paper is to describe a new approach for providing Castelnuovo bounds as
presented in [23]. This provides new bounds for Castelnuovo’s regularity which
improve bounds of [23] in some cases. Moreover, we prove special cases of the
conjectures of D. Eisenbud and S. Goto and of D. Bayer and M. Stillman [2] (see
Theorem 2). In Section 4 we will apply these results in order to show that an
assertion of J. Harris and D. Eisenbud [7], p. 82 on the equality of the abstract
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Hilbert function and the Hilbert polynomial is not true in general (see Theorem
3). Providing our Theorem 3 we construct our counterexamples.
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showing me the letter [25].

2. Notations and preliminary results

We work over an algebraically closed field K. Let S = K[xo,..., xn] be

a polynomial ring and a ~ S be a homogeneous ideal. We set A = Sla., that is,
A is a graded K-algebra. We denote by PA := ~n&#x3E;0An the irrelevant ideal of A.
When there is no possibility of confusion we will denote PA simply by P. Let M =

~n~ZMn be a graded A-module. The i-th local cohomology module of M with
support in P, denoted by HP(M), is also a graded A-module. Let [M] denote the
i-th graded part of M for feZ, i.e. [M] = Mi. Let j be an integer then let M( j)
denote the graded A-module whose underlying module is the same as that of
M and whose grading is given by [M(j)] i = [M]i+j for all i E Z. We set for an
arbitrary A-module M: e(M) := sup(t e Z: [M]t ~ 01

For a finitely generated graded A-module M we define Castelnuovo’s regularity,
denoted by reg(M), by reg(M) := ro (M) = rdepth (M) (MO

Let x1,..., Xm} be a part of a system of parameters for M. It is said to be
a filter-regular sequence if

(see, e.g., [20], appendix for further informations). We set M’ = M/(x 1, ... , xi)M
(i = 0, ... , m) for a filter-regular sequence {x1, ... , xm} for M. We have the
following result.

LEMMA 1. Let M be a Noetherian graded A-module of dimension d &#x3E; 0. Then

there is a filter-regular sequence (l1,..., ld} of forms EA 1.
Proof. It is sufficient to show that there is a filter-regular element 1 E A 1 for M.
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Let {p1,..., ps} be the set of prime ideals:p of AssA(M) with Krull-dim(A/p)  d.
Using, for example [16], Theorem 2.3 we can find an element 1 E A1B(P·A1 ~ p1
~ ··· ~ ps) since P ~ p1 ~ ··· ~ ps. It follows from [20], Theorem 7 of the
appendix that 1 is a filter-regular element for M. Q.E.D.

Let M be a Noetherian graded A-module of dimension d  1. We denote by
ho(M) the (d - 1)!-fold of the leading coefficient of the Hilbert polynomial pM(t).
We recall that pM(t) = rankk[M]t for all t » 0. If M = A = Sla we define

Further, we set a: P&#x3E; = {x~S: there is an integer m  0 with Pm·x ~ ai.
Let X be a subscheme of PK. Then we denote by I(X) the defining ideal of X in

S = K[xo,..., xn]. If a ~ S is a homogeneous ideal let V(a) be the corresponding
subscheme of pn. The ideal a is said to be regular if V(a) is smooth. Note that
degree (X) = degree(I(X)). We set rk(X) := rk+1(I(X)) = rk(S/I(X)) + 1 (k  0).
For a set B we write card(B) for its cardinality. Finally, we set for integers a,

b  0 : {a/b} := inf{t ~ Z: a  tb}. If a &#x3E; b we define a sum 03A3bi=a... to be zero and
a condition, say Bi, for i = a, a + 1,..., b to be empty.

3. Castelnuovo bounds

Studying our integers rk we will prove a generalization of a theorem of
D. Mumford [10], p. 99 and A. Ooishi [13], Theorem 2.

THEOREM 1. Let M be a finitely generated graded A-module of dimension d and
let m and k  1 be integers. Suppose that [HiP(M)]m-i = 0 for all i  k. Then

rk(M)  m - 1. Moreover, reg(M)  m - 1 provides AiMj = Mi+j for all i  0

and j  m - 1.
Proof. We induct on d. In case of d = 0 the assertions are trivial since

H0P(M) = M and HiP(M) = 0 for all i &#x3E; 0. Let d &#x3E; 0. According to Lemma 1 we
can choose a filter-regular élément 1 e A1 for M. Then we get Hp(M/0: 1) ~ HiP(M)
for i &#x3E; 0 from the long exact cohomology sequence of 0 ~ 0: Ml ~ M~
M/0 : Ml ~ 0. The exact sequence 0 - M/0: l( -1) 4 M ~ M/lM - 0 gives rise
to the cohomology sequence

because we have 0: Ml ~ H0P(M) by the choice of 1. Considering the following
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sequences of (*)

we get [HiP(M/lM)]m-1 = 0 for all i  k by assumption. Therefore the induction
hypothesis provides [HiP(M/lM)]j = 0 for all i and j with i  k and i + j  m. The
following sequences of (*)

gives us [HiP(M)]m+1-i = 0 for all i  k. By induction we therefore have the first
assertion. Proving the second assertion we first note that reg(M)  m - 1 and (*)
yield reg(M/lM)  m - 1. If we set M’ = M/lM and A’ = A/lA we have A’iM’j =
M’i+j for i  0 and j  - 1 by induction hypothesis. Hence AiMj +
IMi+j-1 = Mi+ j. It follows from this by induction on i that Mi+j-1 = Ai -1 Mj.
We obtain Mi+j = AiMj + lMi+j-1 = AiMj’ Q.E.D.

Moreover we get from the proof of Theorem 1. (see also [24], Lemma 2.3):

LEMMA 2. Let M be a finitely generated graded A-module and let 1 E Albe
a filter-regular element for M then

e(Hi+1P(M))  e(HiP(M/lM))  max{e(HiP(M)), 1 + e(Hi+1P(M))} (i  0).

Proof. The assertions follows from the exact sequence (*) of the proof of
Theorem 1. Q.E.D.

LEMMA 3. Let k  1 and c be integers. Then we have for all finitely generated
graded A-modules M of dimension d

Proof. The assertion is trivial for k &#x3E; d. Let 1  k  d. We have 03A3di=k
sgn[HiP(M)]m-i  1 for all m  rk(M) by Theorem 1. Thus it follows from all

ceZ:
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where the last equality follows from the definition of rk(M). Q.E.D.

In case of M = A we obtain something more.

MAIN LEMMA: Let k  0 and c be integers. Let A be a graded K-algebra of
Krulldimension d. Then:

Proof. We consider only the case k = 0 according to Lemma 3. Since

ro(A) = max{e(H0H(A)), ri(A)) the assertion follows from Lemma 3 with k = 1 in
assuming e(H0P(A))  r1(A). We therefore suppose that e(H0P(A)) &#x3E; r1(A). We set
A = S/a n q where S = K[xo,..., xn] and a, q ~ S are homogeneous ideals such
that a: P&#x3E; = a, a 1= q and q is a primary ideal belonging to P. If we set A’ = S/a
we get depth(A’)  1. Hence reg(A’) = r1(A’) = r 1 (A), consequently reg(a) = 1 +
r 1 (A). It follows from the second assertion of Theorem 1. that a is generated by
forms of degree  1 + r1(A). Since H’(A) = a/a n q we can deduce [H0P(A)]t ~ 0
for all t with r1(A)  t  e(H0P(A)). This gives us

Therefore the assertion follows again from Lemma 3 with k = 1. Q.E.D.

COROLLARY 1. Let A be a graded K-algebra of Krulldimension d. Let j and k be
integers such that j + k  d and {l1..., Ijl be a filter-regular sequence for A. We
set Ai:= AI(11,..., lj)A. Then:

for ail

Proof. Lemma 2 gives us for i = k, ..., d - j

Therefore the assertion follows from the Main Lemma. Q.E.D.

REMARKS (i) If we suppose k  1 in Corollary 1 the above result remains true
even for finitely generated graded A-modules because we can apply Lemma 3.

(ii) If we set k = 1 and j = d - 1 in Corollary 1 we obtain the main lemma of
[23]. Hence we could deduce the Castelnuovo bounds of [23]. Here we want to
state some new bounds.
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THEOREM 2. Let a = Pl 1 ~ ··· n Pm c S = K[x0,..., Xn] be an intersection of
m equidimensional (homogeneous) prime ideals. Let d be the Krulldimension of
A = Sla. Then we have:

Proof. First we show (i) and (ii.2). If d = 0 or d = 1 then A is Cohen-Macaulay
and we get reg(a)  degree(a) + d - rankK [A] 1 + 1 by [ 13], Proposition 13.

This proves (i) and even (ii.2) since rankK[A]1  d, where equality holds if and
only if A is isomorphic to a polynomial ring over K. But in this case we have
degree(a) = reg(a) = 1. Let d  2. According to H. Flenner [4] there are generic
linear forms l1,..., ld-2 ~ S such that a + (11, ... , li)S is an intersection of m prime
ideals of dimension d - i up to a primary component belonging to P for
i = 0, ... , d - 2. Therefore {l1,..., ld-2} is a filter-regular sequence for A. If we
set Ad-2 = A/(l1,..., ld-2)A and a’ = a + (l1,..., ld-2)S : P&#x3E; we obtain

r1(Ad-2) = r1(S/a’) = reg(S/a’ ). Thus we get r1(Ad-2  degree(a’) + 2 -
rankK[S/a’]1 by Theorem 1.1. of [6] for m = 1 and r1(Ad-2)  degree(a’) - 1
according to the remark after the proof of Theorem 1.1. in [6] for m  1.
Therefore Corollary 1 with k = 1 and j = d - 2 proves (i) since degree(a) =
degree(a’) by Bezout’s theorem.

Proving (ii.2) we will show that 2 - rankK[S/a’]1  d - rankK[A]1. Then we
can apply Corollary 1. It follows from [22], Lemma 3 that

The proofof(ii.3) is analogous to the proofof(ii.2). For this we note that we can
choose the linear forms li according to [4] such that a’ := a + (li, ... , ld-3)S: (P)
is regular if a is regular. Therefore the assertion follows from Corollary 1 with
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k = 1 and j = d - 3 by using

Lemma 3 and Bezout’s theorem.

Now we show (ii.1). The assertion is trivial for d = 0 and d = 1. Let d  2. Take
the linear forms ll, ... , id - 2 constructed in our proofof(ii.2). Consider a general
linear form Id - 1 and set a’ = a + (11,’ .., ld-1)S: P&#x3E;. Then we get

(see, e.g., [22], Lemma 1). We have again degree(a) = degree(a’) by Bezout’s
theorem and rankK[a’]1  rankK [a] 1 + d - 1. On the other hand Lemma 3 of
[22] gives us

Putting all together we obtain

Consequently Corollary 1 with k = 1 and j = d - 1 proves the assertion (ii.1).
This completes the proof of Theorem 2. Q.E.D.

COROLLARY 2. Let X be a nondegenerate, irreducible and reduced subscheme of
pn of dimension d. Then we have:

Proof. The assertion follows from (+) of the proof of Theorem 2(ii. 1) and
Lemma 2. Q.E.D.

REMARKS. Theorem 2(ii.l) is Theorem 2(ii) of [23]. Theorem 2(i), (ii.2) and
(ii.3) improve Theorem 2(i) of [23] in some special cases.
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The assumption char(K) = 0 is necessary in Theorem 2(ii.1) because the
general position lemma does not remain true if char(K) &#x3E; 0 (see [17], Example
1.2).
The conjecture of D. Bayer and M. Stillman [2] gives reg(a)  degree(a).

Therefore Theorem 2(i) and (ii.2) (see also [22], corollary) prove the conjectures of
Bayer and Stillman and of Eisenbud and Goto in case of depth(S/a)  d - 1. This
means, for example, that the latter conjecture is true for surfaces in P4 if the
homogeneous coordinate ring has depth  2. Note that (see the introduction)
singular surfaces in P4 are the simplest varieties such that the conjecture of D.
Eisenbud and S. Goto is open.

4. Counterexamples to an assertion of J. Harris and D. Eisenbud

In this section we will apply Theorem 2 in order to study the equality between
Hilbert functions and Hilbert polynomials. Let X be a subscheme of P" and
A = S/I(X) be its homogeneous coordinate ring. We recall that the Hilbert
function of X is defined by hx(t) := rankK[A]t for t  0. The so-called Hilbert
polynomial, denoted by pX(t), is given by hX(t) for t » 0. It is well-known that
pX(t) = 03A3i0(-1)ihi(X, OX(t)) where h’(X, OX(t)) is the dimension of H’(X, OX(t)).
Following [7] the function h’X(t):= h’(X, OX(t)) is said to be the abstract Hilbert
function of X. The index of regularity of X, denoted by r(X), is defined as r(X) :=

min{t~ N: hX(i) = pX(i) for all i  tl. Moreover, we set

r’(X) := min{t~N:h’X(i) = pX(i) for all 1 a t}, reg(X) = reg(I(X)).

LEMMA 4. (i) ([14], Corollary 2.2) r(X)  reg(X) - depth(S/I(X)),
(ii) r’(X)  r2(X) - max{2, depth(S/I(X»I.

Proof. We have hx(t) - px(t) = 03A3i0(-1)irankK[HiP(S/I(X))]t according to
[19]. This proves (i). We obtain (ii) from the characterization of pX(t) as an
Euler-Poincaré characteristic and the isomorphisms Ht(X, OX(t)) ~
[Hi+1P(S/I(X))]t for i &#x3E; 0. Q.E.D.

In [7], p. 82 J. Harris and D. Eisenbud assert for reduced and irreducible

subschemes X of P) (char(K) = 0):

The letter [25] gives rise to study this claim again. In this connection, we will
prove the following theorem.
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THEOREM 3. (i) We have for nondegenerate, irreducible and reduced curves X:

that is, the assertion (* *) is true for such curves.
(ii) There are nondegenerate, irreducible and reduced subschemes X of P", n  4,

of dimension d such that the assertion (* *) is not true for all d  2.
Proof. (i) Corollary 2 gives us for d = 1

Hence (i) follows from Lemma 4(ii).
(ii) We consider the following class of examples: Let m  3 be an integer. Let

Xm ~ P4 be the surface given parametrically by {um, um-1v, um-2vw, uwm-1, wm}.
It follows from [8], Proposition 3 that degree(Xm) = m + 1. Moreover, Corollary
3.4(ii) of [24] shows H1P(S/pm) = 0, that is depth(S/pm)  2 where pm c S =
K[xo,..., X4] denotes the defining prime ideal of Xm. That is why we can apply
Theorem 2(ii.2) and obtain reg(Xm)  degree(Xm ) - codim(Xm ) + 1 = m. Hence
pm is generated by forms of degree  m according to Theorem 1. Thus we can
compute a minimal basis of pm from its parametrization and obtain

Since pm needs a generator of degree m we get reg(Xm) = m. Since pXm (t) - h’Xm(t) =
03A3i&#x3E;0(-1)irankK[Hi+1P(S/pm)]t we obtain from Corollary 2 that

Applying Theorem 1 we get from reg(Xm) = m and Corollary 2 that

[H2P(S/Pm)]t ~ 0 for

for m  7. This shows (ii) in case d = 2.
Let j  0 be an integer. We denote by Y. the projective cone over X. in pjl4.

Then we get d := dim( Ym) = dim(X.) + j = 2 + j, degree(Y.) = degree(X.) and
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depth(S/I(Y.» = j + 2 where S = K[xo,..., xj+4]. Moreover, Lemma 2 gives us
reg( Ym ) = reg(X.) = m. Therefore we obtain from Corollary 2 as above:

REMARKS. (i) Using results of [6] the subschemes Y. show that the conjecture
of D. Eisenbud and S. Goto is sharp in the sense that there are nondegenerate,
irreducible and reduced varieties X with reg(X) = degree(X) - codim(X) + 1 in
any dimension  1 and of any degree  4.

(ii) If the assertion (**) were true we could deduce r2(X)  (degree(X)/
codim(X)l + 2. But this is also not true in general as the varieties Y. show.

(iii) (**) is true in assuming, for example, that the subschemes X are

arithmetically Buchsbaum, i.e., that the homogeneous coordinate ring S/I(X) is
a graded Buchsbaum K-algebra. In this case we obtain from [21], Theorem 1.
reg(X)  {degree(X) - 1/codim(X)l + 1. Therefore Lemma 4(ii) yields

(iv) The varieties Ym are not arithmetically Buchsbaum for m  3 due to [24],
Lemma 4.11 and Corollary 4.7 and even not locally Buchsbaum for m  4
because Ym ~ Pj+4 has a singularity in the point p = (x 1, ... , xj+4) which is not
Buchsbaum for m  4. Otherwise (S/I(Ym))p and consequently also (S/I(Ym) +
X3S)p would be Buchsbaum. Since (I(Ym) + x3S)p = (x3, xl x4, xi-l, xm-22x4,...,
m-2 xm-14)p = (xm-12, x x ) n (x x3, xm-12, xm-22x4,..., m-l) we havex2xm-14, xm-14) = (xm-12, x3, x4)p ~ (x1, x3, xm-12, xm-22 x4,..., xm-14) p 

we have

x2(xm-12, x3, x4)p ~ (I(Ym) + X3S)p for m  4. We immediately obtain a contra-
diction to a Buchsbaum ring property. (For the facts on Buchsbaum rings used
here we refer to [20].)

(v) We can not apply the results of [9] or [5] in order to obtain the bound
reg(Xm)  degree(Xm) - codim(Xm) + 1 since the varieties X m are singular.

(vi) Since our counterexamples are singular varieties it is an open problem if
(**) is true in the case of smooth varieties, see [26].

(vii) In [15], p. 370 P. Philippon considers the ideal a := (Xl X4 - x2x3, xox2 -
XIX3’ x0x24 - x33). He asserts that a is a prime idéal used in his computations. But
it follows from x4(xox2x4 - x1 x2 3) e a that a is even not a primary ideal because
no power of x4 and x0x2x4 - x1x2 3 is contained in a. (Note that 1’3 = a +
(x0x2x4 - x1x2 3)S.)
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