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0. Introduction

Let Fq be the finite field having q = ps elements and for simplicity we assume
p &#x3E; 2. Let k = Fq(T) (resp. A = Fq[T]) be the field of rational functions (resp. the
ring of polynomials) in the indeterminant T. Let C be the completion of an
algebraic closure k~ of the completion koo, of k, at the infinite place oo = 1/T.
Finally, let  = C - k~ denote the "upper half plane".
GL2(A) acts on b via linear fractional transformations and there is an analytic

parametrization of the rigid analytic space GL2(A)BD to C (cf. Drin[3])

The function j is analogous to the classical j function of Dedekind and has many
interesting arithmetic properties. In particular, for arguments 03C4~D that are
imaginary quadratic over k, that is, k(T) is quadratic over k and oo is non-split in
k(03C4), the values j(03C4) are algebraic integers over A. Such integers are called
singular invariants since they correspond to isomorphism invariants of rank 2
Drinfeld A-modules having complex multiplication by an order in an imaginary
quadratic extension of k. In this paper we give the prime factorization of such
invariants.
The factorization of differences of singular moduli associated to elliptic curves

defined over number fields was accomplished by Gross and Zagier [6] in the
case of prime discriminants and extended by the author [2] to the case of
relatively prime composite discriminants. Thus it is natural to study the function
field setting via rank 2 Drinfeld A-modules to investigate the similarities and
differences between the two settings. While there are similarities to the classical
setting there are many more technical difficulties in the function field setting
arising from the fact that there are q - 1 units in F,[ T] while there are only 2
units in Z. Consequently we consider only the factorization of j(03C4) in this paper
and hope to treat the more general case of differences of singular moduli in a

1 Research partially supported by NSF grants RII-8610679 and DMS-8903463 and NSA grant
MDA904-89-H-2033.
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subsequent paper. Nevertheless, the case we study reveals all of the essential
ingredients of the general setting while avoiding the burdensome detail.

1. The main result

Let T c-.5 be imaginary quadratic over k. So 03C4 satisfies a quadratic polynomial
a03C42+b03C4+c=0 with a,b,c~A and relatively prime, and oo is non-split in the
extension k(03C4)/k. The discriminant b2 - 4ac = d = disc(03C4) is well defined up to the
square of a unit in F q and depends only on i. So once and for all we consider d
fixed and write d = disc(r). Moreover, we require that d be fundamental, that is d
is also a field discriminant, or equivalently, square free. Let h = h(d) denote the
class number of the order A[d].
We now set some notation, relate some facts regarding j(03C4), and state our

main result.

Let K = k(T) = k(/) so d = dK where dK is the discriminant of K. Finally, let
(9 K be the integral closure of A in K.
Many interesting arithmetic facts regarding singular moduli of Drinfeld

modules are contained in Gekeler [4] and Hayes [7]. Those most pertinent to
our study are:

1. j(03C4) is an algebraic integer of degree h over A.
2. The field K(j(03C4)) is the Hilbert class field of K which is split completely over

K, and it is therefore abelian over K.
3. There exists a rank 2 Drinfeld A-module ~ defined over K(j(03C4)), having

complex multiplication by OK with j invariant jtp = j (-r).
4. The h Galois conjugates of j(-r) over (9 are the values j(T’) where i’ runs

through the roots of all the distinct primitive quadratic polynomials of

discriminant d.

Consider the product

where [s] denotes an equivalence class modulo GL2(A). The norm J(d) is in A
and so has degree one over k.
The principal result of this study is a formula for ordpJ(d) where p is any non-

zero prime ideal of A.
To state the result we must introduce the constant field extension of k. Fix a

non-square unit u E Fg. Then H = k(u) = IFq2(T) is the constant field extension
and our formula for ordpj(d) will depend on the arithmetic of p in IFq2(T). The
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reason is that the rank 2 Drinfeld A-module, p, with complex multiplication by
(9 = Fq2[T] has j = 0, so that (1.1) actually becomes

and we are finding primes p where 9 becomes congruent to p. In practice this
turns out to be possible due to the fact that IFq2(T) has class number 1 and the
endomorphism ring of p is easy to determine. The details are given in Section 5.
We remark that the techniques involved here should generalize to products of

differences of j values, namely

with d and d’ relatively prime. However, the flavor of the arguments can be
gleaned from the case we treat and we hope to publish the results of the general
case in a subsequent paper.
Next let a be an ideal of A having factorization

with pi split and qj inert in F,,2(T). Define R(a) to be the number of ideals of IFq2(T)
having norm the ideal a. R(a) can be calculated by

THEOREM 1.4. Let p be a non-zero prime ideal of A and let n be a generator for
p. Then

In Section 5 we show that this sum is finite. We also remark that the quantity
(d - um2)/03C02n-1 is to be interpreted as the generator of an ideal a. If a is integral
then R(a) is determined by (1.3) otherwise R(a) equals 0. In Section 5 we show a
necessary condition for the above quotient to generate an integral ideal a with
R(03B1) ~ 0 is that degree n  degree d. Having noted this we immediately obtain
the striking corollary

COROLLARY 1.5. If n J(d) then degree n  degree d.
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Our proof relies on the work of Gekeler [4] connecting the endomorphism
ring of a supersingular Drinfeld A-module of rank 2 in characteristic p with a
maximal order in the definite quaternion algebra over A ramified only at p and
oo.

Section 3 relates the important facts concerning quaternion algebras that we
will need. Section 4 contains the principal results of this paper leading up to the
proof of Theorem 1.2 which is in Section 5. Finally, in Section 6 we provide a
number of computational examples.

2. Drinfeld modules

We briefly review some of the basic facts regarding Drinfeld modules. Detailed
discussions can be found in Deligne and Husemôller [1], Drinfeld [3], Gekeler
[4], and Hayes [7].

Let L be a finite extension of koo. An A-lattice A in L is by definition a discrete,
finitely generated A-submodule in Lsep which is invariant under the action of
Gal(Lsep/L). Thus A is projective and has fixed rank = r. The exponential
function defined on A by

is an entire, additive function and induces an isomorphism from L/A onto L.
Thus, we obtain an A-module structure on L. Given a ~ A, a ~ 0, by comparing
divisors we find that

where 9,, is a polynomial function and c is a constant in C.
Having begun with an analytic object we obtain a purely algebraic one, qJa.

Moreover, we obtain an A-module structure on the additive group scheme Ga
given by the natural embedding

EndL(Ga) is the ring of additive polynomials in an indeterminant X where the
multiplication is given through substitution. Moreover, EndL(Ga) is naturally
isomorphic to the ring L{F} of twisted polynomials generated by the elements of
L and the Frobenius F satisfying the commutation relation CPF = Fc for all
cEL.

We finally can define Drinfeld modules.
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DEFINITION 2.1. Let L be a field over A with a fixed morphism 03B3:A ~ L. A
Drinfeld A-module over L is a homomorphism (p: A - L{F}, a H ~a, such that
the constant term of qJa is y(a) and the image of 9 is not contained in L, that is, (P
is not ç : A - L c L{F}.
9 is said to have generic or oo characteristic if y is injective otherwise ç has

characteristic equal to the kernel of y.

A key theorem given below is due to Drinfeld [3, Thm. 3.1].

THEOREM 2.2. If L is a finite extension of k~, then the category of Drinfeld A-
modules of rank r over L is isomorphic to the category of rank r A-lattices over L.

For k a Drinfeld A-module is completely determined by the image of T, that is,
a Drinfeld A-module of rank r is given by the polynomial

In particular the polynomial representation of a rank 2 Drinfeld module over k
can be thought of as either

or

We write ~T(X)=(a,b), and following Drinfeld’s original terminology we
henceforth call rank 2 Drinfeld A-modules elliptic A-modules.

Let Llk be a finite extension of fields and let ç and 03C8 be two Drinfeld A-
modules over L. A morphism between (p and 03C8 is an element c~L{F} with
e°qJa c for all a in A. An isomorphism is given by c E L* such that
03C8a=c~ac-1. Non-trivial morphisms exist only between Drinfeld A-modules
of the same rank and they are called isogenies.
The isomorphism invariant of elliptic A-modules is revealed in the following

lemma.

LEMMA 2.3. (1) Two elliptic A-modules (p = (a1, b1) and 03C8=(a2,b2) are

isomorphic if and only if there exists c E L* so that ai = cq-1a2 and b 1 = cq2-1b2.
(2) Let L be algebraically closed. Then ~ and 03C8 are isomorphic if and only if

Proof. Gekeler [4, p. 175]. D

Since the quantities defined in part (2) of the above lemma are isomorphism
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invariants for elliptic A-modules we define the j-invariant of qJ(a, b) as

The analytic description in terms of lattices is as follows. Let A be the A-lattice
in C corresponding to ç. Through multiplication by an element c E C* one can
write the lattice in the form ~w,1~ = Aw Q A with w~D. The functions

ai : wai (elliptic A-module associated to ~w,1~) (i = l, 2)

are modular forms ofweight qi - 1 on .5 and the modular function given by (2.4)
is the analytic parametrization

j : GL2(A)BD~ C

mentioned in Section 0, Gekeler [4, pp. 175-176].
There is a reduction theory for Drinfeld A-modules which is quite analogous

to that for elliptic curves. Let L be a field, v an additive discrete valuation of L
and (9, the valuation ring of v and assume that (!)v has an A-algebra structure. Let
qJa be a Drinfeld A-module over L. We say that 9. has integral coefficients at v if
~a~Ov [F] for all a E A and then the homomorphism a~a (mod mv) defines a
Drinfeld module over the residue field (9,/m,.

Finally an elliptic A-module ç, or the invariant j(~), is called singular when
EndC(~) ~ A. As expected, the j-invariant of an elliptic A-module is called
supersingular at a prime p if the endomorphism ring of the corresponding
reduced elliptic module is isomorphic to a maximal order in a quaternion
algebra over k ramified at p and 00.

3. A counting theorem

Let W be a complete local A-module which is also a discrete valuation ring. Let
y be a prime of W and normalize the valuation v so that v(f.-l) = 1. Assume the
residue field WI f.-l W is algebraically closed and that the structure map 03B3:A ~ W
is injective and the composition map 1: A - W/03BCW has kernel pA. Let ç and ç’
be two elliptic A-modules defined over W having good reduction modulou. Let
j = j(~) and j’ = j(qJ’) be the modular invariants of ç and 9’.

The main result of this section, Theorem 3.5, is a formula for v( j - j’). This
gives us a method of counting the number of isomorphisms between two elliptic
A-modules.
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Consider the elliptic A-module (p. Since ç has a good reduction modulo y it
has an equation of the form

with a E W and b E W*. Recall, the j-invariant is j = j(~) = aq+1/b. We first count
automorphisms modulo /ln.

PROPOSITION 3.1.

Proof. By the discussion preceding Theorem 2.2 as well as lemma 2.1 it is easy
to see that

Since b E W* the first congruence can be divided by b to yield

Thus,

The last isomorphism cornes from the exact sequence

The kernel Kn is unipotent and has no non-p torsion hence the (q2-1)-torsion of
(W/03BCnW)* and (W/03BCW)* are the same.
Now if a ~ 0 (mod 03BCn) the only restriction on m is the congruence (3.2). This

congruence has q2 -1 solutions giving the second half of the claim. If

a ~ 0 (mod 03BCn) dividing the second congruence by a yields the additional

condition that 03C9q-1 ~ 1 (mod y"). This congruence has q-1 solutions establish-
ing the first part of the claim. D
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Next consider a second elliptic A-module defined over W and having good
reduction mod 03BC. Let its equation be

so that its j invariant is j’ = j(ç’) = (a’)q + 1/b’. We are interested in computing
Card(IsoW/03BCnW(~, ~’)). Clearly this number may equal zero and this occurs
precisely when there does not exist an element 03C9~(W/03BCnW)* such that
a - úJq-1a’ and b == 03C9q2-1b’ (mod J-l"). This case out of the way we have

PROPOSITION 3.3. Assume Card{IsoW/03BCnW(~, (p’)l ~ 0. Let

03C3 ~ Isow/Jl"w(qJ, qJ’) and M = {03C3  03BE:03BE ~ AutW/03BCnW(~)}.

Then IsoW/03BCnW(~, (p’) = M.

Proof. Clearly M ~ IsoW/03BCnW(~, (p’). Now let ’1 E IsoW/03BCnW(~, (p’).
Then 03C3-1~ = 03C4~ AutW/03BCnW(~) so ~=03C303C4~M proving the proposition. ~

COROLLARY 3.4.

Card{IsoW/03BCnW(~, ~’)} = 0, q - 1, or q2 - 1.

Proof. If the cardinality is 0 we are done. If not combining the results of
Propositions 3.1 and 3.3 give the result. Q

We now come to the principal result of this section, the computation of
v( j - j’) = v«b’ aq +1 - b(a’)q+1)/bb’).

THEOREM 3.5.

Proof. If 9 and ~’ are not isomorphic mod J1 then both sides of the equation
are 0 proving the result.

Consequently, assume 9 and ~’ are isomorphic mod 1À. We may normalize
these modules so that b = b’ = 1. This can always be done since the equation
03BBq2-1 = b -1 can be solved in the algebraically closed field W/03BCW, and Hensel’s
lemma allow the solution to be lifted to W So j = aq+1 and j’ = a’q+1. Normalize
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further by multiplying a and a’ by an appropriate (q + I)s’ root of unity so that
03BD(a-a’) is maximal.
By Proposition 3.1 we know the set

has cardinality q - 1 if a ~ 0 (mod 03BCn) and q2 -1 if a == a’ ~ 0 (mod 03BCn).
Assume first that a =1= 0 (mod 03BCn). Then a03C9q-1 == a’ (mod 03BCn) and raising to

q+1 gives aq+103C9q2-1~(a’)q+1 (mod03BCn). However since 03C9q2-1 ~ 1 (mod /ln)
it follows that aq+1~(a’)q+1 (mod 03BCn) yielding j~j’ (mod 03BCn). Thus,
Card{IsoW/03BCnW(~, ~’)}/q-1=1.

Second, if a~a’~0 (mod 03BCn) but a ~ 0 and a’ ~ 0 (mod 03BCn+1) then

aq+1 ~ (a’)q+1 (mod 03BCn+1). Thus

j = j’ (mod /ln + 1) and Card{IsoW/03BCnW(~, ~’)}/q-1=q+1.

From this we see

4. A lifting theorem

The principal result of this section is a lifting theorem that will enable us to
translate information regarding endomorphisms between two reduced elliptic
modules in characteristic p back to the generic characteristic setting. The
notation continues from the previous sections.

Consider the pair (~0, ao) where ~0 is an elliptic module defined over W/03BCnW
and ao is a W/03BCnW endomorphism of ço. The main result of this section,
Theorem 4.2, gives criteria telling exactly when (90, ao) can be lifted to a pair
(ç, 03B1) where ç is an elliptic module over W and a is a W endomorphism of 9.
Assume the subring A[ao] z EndW/03BCnW(~0) has rank 2 as an A-module and is

integrally closed in its quotient field. An alternate way of expressing this is to
associate to ao its trace t = ao + 03B1V0 and norm n = aoaô which are viewed as
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multiplication by fixed elements in EndW/03BCnW(~0). Then the assumption is that
d = t2 - 4n is a fundamental imaginary discriminant.
On the tangent space Lie(go), ao induces multiplication by an element wo

which satisfies the integral quadratic equation x2 - tx + n = 0. Thus, a neces-
sary condition for lifting «po, ao) to W is the existence of an element w E W
satisfying

since the induced action of the lifted endomorphism on Lie«po) will give rise to
such an element. This condition is sufficient.

THEOREM 4.2. Suppose there exists an element w satisfying (4.1). Then there is
an elliptic A-module qJ defined over W and an endomorphism a of ~ such that

(a) (~, a) =- (~0, ao) (mod Mn)
(b) a induces multiplication by w on Lie(~).

Moreover, if (~’, a’) is any other lifting there is a commutative diagram

of morphisms over W

Proof. Let p be the characteristic of (p modulo ,uW and let Fq(T)p and A.
denote the localizations of Fq(T) and A at p. Drinfeld’s [3] deformation theory
shows it suffices to construct a lifting  to W of the p-divisible group (Po of go
and an endomorphism lifting &#x26;0. Gross [5] showed how this lifting can be
accomplished.

In the ordinary case take  ~  x (Fq(T)p/Ap) where H is the lifting of the
unique formal A.-module of height 1 and Fq(T)p/Ap is the unique étale Ap-
module of height 1.

In the supersingular case EndW/03BCW(~0)~ Rp a maximal order in the definite
quaternion algebra ramified at p and oo. Using Lubin-Tate theory Gross
showed that there exists a canonical lifting of (Po to a Lubin-Tate formal Aplxol-
module of height 2 over W with endomorphism 03B1[x] = wx + .... This lifting is
unique up to W isomorphism. D
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5. Factorization of singular moduli in function fields

Fix an element u E F*q which is not a square. Then

is the constant field extension of F,(T). It is well known that H has class number
1, or equivalently H is its own Hilbert class field. Let (9H = IFq2[T]. Let d be a
fundamental negative discriminant such that Fq(T,d) ~ H. We now consider
the factorization of j(i) when disc(03C4) = d. Fix a finite prime v of H having
characteristic p and denote by B = Bv the completion of the maximal, unrami-
fied, extension of the ring of v integers in H. Let W = Wv = B[s] where s is a
fixed element which satisfies an integral quadratic equation of discriminant d.
Let e be the ramification index of W/B and J1 a uniformizer for W Consider the
norm of j(03C4), namely the algebraic integer

The product is taken over representative classes modulo GL2(A). This integer
lies in A and our goal is to compute ordp(03B1) for every non-zero prime ideal p of A.
To accomplish this we introduce the auxiliary elliptic A-module

Up to isomorphism this is the unique elliptic A-module defined over W with
complex multiplication by (9H and invariant j(p) = 0. It is clear that p has good
reduction and by theorems of Drinfeld [3] and Takahashi [8] p is unique up to
W isomorphism since the residue field is algebraically closed. Similarly, for each
ï of discriminant d let ç denote the elliptic module defined over W having
complex multiplication by B[s] and invariant j(g) = j(i).

Since the j-invariant associated with p equals 0, (5.1) is nothing other than the
algebraic integer

Consequently, by Theorem 3.5 it follows that
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Thus, the problem is reduced to counting isomorphisms 03C9: p Z ç (mod 1À").
Such an isomorphism gives rise to an endomorphism s03C9=03C9-1s03C9 of p
(mod 03BCn) belonging to the set

Notice that S03C9 is the same as s,. for any 03B6~ Fg since A is in the center of the
endomorphism ring of p. Thus the map from IsoW/03BCnW(03C1, ç) to S"," is a q -1 to 1.
By Theorem 4.2 every element ao of Sn,v is of the form s« for some

isomorphism a : 03C1~~ (mod /ln) to an elliptic module ç with complex multipli-
cation by B[s]. This can be seen since the pair (p, ao) can be lifted to (03C8, a) over
W and since 03C8 has complex multiplication by B[a] = B[s] it is isomorphic to one
of the elliptic modules ~ by a map fi: 03C8  ~ with 03B1=03B2-1s03B2 Reducing this
map (mod 03BCn) shows that ao = sa. Theorem 4.2 also shows the uniqueness of 9
over W as well as the uniqueness of u up to W isomorphism. Thus,

Our task then is to determine Sn,v. Since Hlk is an unramified extension the
only concern is with primes p that either split or remain inert in H. This first case
is handled by

PROPOSITION 5.6. Suppose p splits in H. Then ordvJ(d) = 0.
Proof. The elliptic A-module p has ordinary reduction (mod li) in this

situation. Thus Endw/Jln(p) = (!)H for all n  1 Drinfeld [3]. Since (9H has no
elements of discriminant d, Card S",v = 0 for all n  1. D

From now on suppose that p is inert in H. Then p has supersingular reduction
modulo p and EndW/03BCW(03C1) is isomorphic to a maximal order in the definite
quaternion algebra D over k which is ramified at p and oo [4,179].
We give an explicit description of this quaternion algebra D and its unique

maximal order containing (9H. Since p is inert in H it follows that its degree is
odd. Let p = (rc) where 03C0 is any generator of the ideal p. The idele character

x = 03A0 X, associated with the extension H/k is unramified everywhere and
consequently each of the ~v is trivial on units. Thus the product formula gives
~~(03C0)~p(03C0)=1 since n is a unit at all places other than p and oo. Moreover
~~(03C0) = (-1)deg(03C0) = -1 as deg(n) is odd. It follows that ~p(03C0) = -1. Thus, the
quaternion algebra D is given by two generators i and j where i2 = u and j2 = n.
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D can be realized as a matrix algebra with the description

Here - is complex conjugation. Since the class number of H is 1 there is only 1
maximal order in D in which (9H embeds optimally namely,

R admits a filtration

LEMMA 5.8. Assume pl d. Then e = 1 and
1. EndW/03BCnW(~T) = Rn’
2. Suppose that [a, 03B2] E Rn has trace Tr(s) and norm N(s). Then there exists an
integral polynomial m and an element y E (9H solving the Diophantine equation

Conversely, suppose we have a solution (m, y) to the above equation with m E A and
y an element of (!)H. Then we obtain an element [03B1, 03B2] E Rn with trace = Tr(s) and
norm = N(s).
Proof The first statement follows from Drinfeld [3] and Gross [5]. Consider-

ing the second claim suppose [03B1, 03B2] E Rn has trace = Tr(s) and norm = N(s). Write

03B1 = x + yu. Since trace [03B1, 03B2]=Tr(s) it follows that x=1 2 Tr(s) so we write

03B1=1 2Tr(s)+yu. Write 03B2=03C0n-103B3 with YE(!)H. The norm condition implies
* Tr(s)2 - y2u - 03C02n-1N03B3 = N(s). Now s satisfies an integral quadratic equation of
discriminant d so a bit of algebra yields

Set m = 2 y and multiply through by -1 to get

Conversely, suppose that we have a solution (m, y) to (5.10) subject to the
hypotheses. Then by reversing the above definitions one obtains an element in
Rn having the stated trace and norm proving our claim. ~
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It is crucial to observe that (5.10) has only finitely many solutions since
deg(um2) and deg(Ny) are bounded. To see this first notice that Ny is of even
degree since it is a norm from IFq2(T) so that deg(403C02n-1N03B3) is odd. Now if deg(d)
is odd, then deg(um2)  1 2 deg(d) so deg(um2) is bounded. In addition,
deg(403C02n-1N03B3)=deg(ud) so deg(Ny) is bounded. If, on the other hand,
deg(d) is even then deg(um2) is fixed since it must equal deg(d), and

deg(4n2n-lNy)  deg(d) and so deg(Ny) is bounded.
The determination of the cardinality of S",v can be made by counting certain

pairs (m, b) where m E A and b is an integral (9H ideal. Notice that a solution to
(5.10) is the same as stating that N y equals (d - um2)/n2,,-1 as elements of F,(T).
Now set b = (y). Then, Nb is the ideal of F,,(T) generated by (d-um2)/03C02n-1.
Thus a necessary condition for the existence of y is that the ideal

«d-um2)ln2n-l) be the norm of some ideal b=(03B3). Notice that the ideal is
necessarily principal since IF q2( T) has class number 1. Using Hilbert’s Theorem
90 one can easily show the norm map NFq2/Fq:F*q2  Fg is surjective. Thus, for a
given ideal b there are q + 1 generators of b with norm equal to N y, namely ey
where se F*q2 with NFq2/Fa 03B5 = 1.

Having made these observations the sum (5.4) can be determined provided
that an endomorphism [a, fi] arising from a pair (m, b) induces multiplication by
s on Lie(E). Assume [a, 03B2] has this property. Since e = 1 the dual endomorphism
[a, 03B2]V = [03B1, - 03B2] induces multiplication by s =1= s (mod 03BC). Consequently, exact-
ly half of the endomorphisms arising from a single solution to (5.10) contribute
to this sum.

Thus, we have proved the following proposition

PROPOSITION 5.11. The cardinality Of S"," is equal to -2(q + 1) times the number
of pairs (m, b) where m E A and b is an integral ideal of O such that there is equality
of ideals Nb = ~(d-um2)/03C02n-1~.
Next consider the case p d. Let v, W, and B be as above. In this situation

[W : B] = 2 and e = 2. Moreover 1À p and 03BC2 = gp where g is a unit in B.
As before, p has supersingular reduction mod /1 so for the fixed v there exists

an integral ideal a of (9H so that

where Rn is given by (5.7). However, we must describe ’Endw/v.(p). Since p
acquires no new endomorphisms over W the ring EndB/v’(P) accounts for all of
the endomorphisms of p. Thus

Since jl2 = gp it follows that



249

So

where r = [(n + 1)/2] the greatest integer in (n + 1)/2.
As in the case above, an element ao = [a, 03B2] E EndW/03BCnW(03C1) having trace = Tr(s)

and norm = N (s) gives rise to a pair (m, y) with um E A and y an element of (9H
solving

Since p d this equation can only hold when m = 1, thus n  2. Now ao induces
multiplication by an element of W/03BC on Lie(p). However, the reduction of s
(mod /l2) is in the residue field so Sn,1 is empty for n  2. Consequently, the
problem is reduced to computing the cardinality of S 1. Thus we are concerned
with the equation

As before we can transfer the count to one of ideals by determining the
number of (!)H ideals b satisfying the property that

Now let (m, b) be a solution to (5.10) with m~A and b an integral (9H ideal.
Then arguing as above it is easy to see that this solution leads to 2(q + 1)
endomorphisms in the case m ~ 0 and q + 1 solutions when m = 0.
To see when an endomorphism [a, induces multiplication by s on Lie(E)

recall that [W: A] = 2 and e = 2. So [a, ’ = [03B1, - 03B2] induces multiplication by
5=5 (mod p) on Lie(E). Thus we count all of the endomorphisms arising from a
single solution rather than only half as in case 1.

Let N1 be the number of pairs (m, b) with m E A and b an integral ideal of OH
such that um2 + 403C0Nb = d holds and let N2 be the number of pairs (0, b) such that
403C0Nb = d holds. We have proved

THEOREM 5.13. Let v, W, and B be as above and assume p d. Then e = 2 and Sn
is empty for n  2. The cardinality of SI is equal to (q + 1)(2N1 + N2). D

The above results can now be nicely synthesized into one coherent formula
given by the final theorem.

Let a be an ideal of A having factorization

with pi split and qj inert in IF q2( T).
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Define R(a) to be the number of principal ideals of IFq2(T) having norm a. This
number is given by the formula

THEOREM 5.15. Let p be a prime of K and let n be a generator for p. Then

By the discussion immediately following Lemma 5.8 we obtain the corollary

COROLLARY 5.16. If n |J(d), then degree 03C0  degree d. D

6. Some computational examples

The formula given in Theorem 5.15 is quite practical. Hayes has provided us
with a number of useful examples on which this formula can easily be verified by
hand computation. In all cases we list the prime power q, the non-square unit u,
and the discriminant d. Then, for each m E A the factors of ud - m2 give all of the
possible primes entering into ordp(J(d)). Then, after dividing ud - m2 by the
appropriate factor it is an easy matter to compute R«(ud-m2)/un2n-1» using
(5.14).

EXAMPLE 6.1. We begin with the general case of the discriminant d = T a first
degree polynomial. Let q = p’, p &#x3E; 2. Then the integers, (9, in the extension

K = k(fi) have the form (9 = Fq[y] where y’ = T and have class number equal
to 1. Let u be a fixed non-square unit in Fq.

From the last column we see the only possible factors of J(d) are T and
T - ua2.

Suppose 03C0 = T. The only occurrence of rc is when m=0 so we see

ordTJ(d)=(q+ 1)·1 2·R(1)=(q+ 1)’2’1 = (q + 1)’2.
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Now suppose 03C0 = T - ua2. The only occurrence of n is when m = ± a. Thus,

The 2 in the above expression arises from counting ± a. Consequently, up to a
unit we see

Suppose y2 = T. The elliptic A-module of discriminant d = T is given by

Using (2.4) it is immediate that

which verifies the above computation up to a unit.

REMARK. The fact that (6.2) is determined only up to a unit in F*q implies that
the quotient of (6.2) and (6.3) determines a unit in IF:. This phenomenon, namely,
that the quotient of the computed factorization of J(d) by the one arising from
the associated elliptic A-module determines a unit in F*q is repeated in the
subsequent examples. Our calculations in all cases show this unit to be 1,
however we cannot at this time prove this.

In the remaining examples we always take q = 3 and u = -1.

EXAMPLE 6.4. Let the discriminant be d = T3 - T - 1 so d = T3 - T - 1.
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The last column in the table shows the only possible primes occurring in the
factorization of J(d) are T3 - T - 1, T, T -1, and T + 1.

Suppose n = T 3 - T-1. The only occurrence of 03C0 is when m = 0 thus

Suppose 03C0 = T. The possibilities for m are ± 1, ± (T + 1) and ± (T - 1).
Consequently,

The values in the above equation are explained as follows. The initial 2 comes
from the counting of both the plus and minus signs on m. The first and the third
values of the R function are 0 since the arguments in both cases are products of
inert primes to odd powers. Finally the value of the second R function is 1 since
the argument is an inert prime to an even power.
Now suppose 03C0 = T - 1. Then

The reasoning follows the same lines as when 7c = T.
Finally suppose n = T + 1. Then

Again the analysis is similar to the above, and we conclude that up to a unit

To verify this by direct computation set y2 = T3 - T - 1 then the elliptic
module over A is given by 9T: T + y(T3 - T)X3 + X9. Again using (2.4) the j-
invariant can be calculated directly by hand and gives

The true power of Theorem 5.15 comes when the class number is greater than
1. In the next two cases the class number is 2. The following example is



253

particularly nice since it illustrates all of the possible phenomenon that can
occur.

EXAMPLE 6.5. Let d = T(T2 - T - 1).

From the last column we see the only possible primes entering into the
factorization are T, T2- T - 1, T -1, T + 1, and T2 + T - 1.

First suppose 03C0 = T. Then

R(T2 - T - 1 ) = 2 since T2 - T - 1 is a split prime andR((T - 1)(T + 1)) = 0
since the argument is the product of two inert primes to odd degree. The 2
preceding that R value comes from both signs on the m = ± T.
Now suppose 03C0 = T2 - T - 1. Then

where R( T) = 0 since T is inert in H.
Next, suppose 03C0 = T - 1. Then

Where the first two R values equal 0 since the arguments are products of inert
primes to odd degree, and last R value is 2 since T2 + T -1 is split in H.
Now suppose 03C0 = T + 1. Then
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This is the most interesting case so we will explain it in detail. R((T - 1)2) = 1
since the argument is an inert prime to an even degree. R(T(T - 1)) = 0 since the
argument is the product of two inert primes to odd degree. The last two R’s
occur when m = ± (T - 1). Recall we are looking to compute

This is possible for n = 1 and 2. The case n = 1 accounts for R((T + 1)’) = 1 since
T + 1 occurs to even power, and the case n = 2 accounts for R( 1 ) = 1.

Finally, suppose 03C0 = T2 + T - 1. Since 03C0 is a split prime in H we know a
priori by Proposition 5.5 that ordT2 + T - i J(d) = 0. Nevertheless, our formula still
holds since

Where R(T - 1) = 0 because T - 1 is inert in H. Thus, up to a unit, it follows
that

Direct verification is now more difficult since the class number is two. Let

y2 = T(T2 - T -1). Then the ring of integers in the Hilbert class field of

K = k(y) is F3[T,w,z], where w2 = T 2 - T -1, z2 = T, and wz = y. A funda-
mental unit is given by ~ = 1 + T + w and ~~=-1. The associated elliptic A-
module is given by

Thus, j(d) = 174T2(1 + ~-4T)4.
Taking norms yields

and a hand computation gives

as predicted.
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Our final example is

EXAMPLE 6.6. Let d = T - T 2

From the last column we see the only possible primes contributing to the
factorization are T, 1- T, and T2-T-1. Without further adieu we dismiss
T2 - T -1 since it is a split prime in Fq2(T).

Suppose 03C0 = T. Then

Where R( 1- T) = 0 since 1- T is inert and appears to odd power.
Suppose 03C0 = 1 - T. Then

Where R( T) = 0 since T is inert and appears to odd power.
Let y2 = T - T2. The elliptic module over A is defined by

Taking norms gives

as expected.
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Remark added in proof

Hayes has informed me that he can now prove that the unit occurring in the
above examples is always equal to 1.
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