A. J. PARAMESWARAN

Topological equisingularity for isolated complete intersection singularities

Compositio Mathematica, tome 80, no 3 (1991), p. 323-336

<http://www.numdam.org/item?id=CM_1991__80_3_323_0>
Topological equisingularity for isolated complete intersection singularities

A.J. PARAMESWARAN

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400 005, India

Received 7 June 1989; accepted 11 March 1991

Introduction

To any isolated complete intersection singularity $(X, 0)$ (abbreviated as “icis”), we associate a sequence of (Milnor) numbers called the μ^*-sequence. We prove that in a family of icis, the topological type (cf. Definition 6) of the singularity remains invariant if the sequence μ^* remains constant (cf. Theorem 2). This generalizes a theorem due to Lê Dũng Tráng and C.P. Ramanujam.

The scheme of the paper is as follows. In Section 1 we define the μ^* sequence of an icis (cf. Definition 1), recall some definitions and state a few preliminary lemmas. In Section 2 we prove two crucial propositions, from which the theorems follow fairly easily. In Section 3, we prove the two theorems, one of them concerned with the monodromy fibration and the other with topological equisingularity. At the end of this section we sketch an example to point out that the assumption of constancy of the Milnor number is not sufficient to prove the fibration theorem (cf. Theorem 1). This example is discussed in greater detail in [P], where the fibration theorem is also proved. In Section 4, we comment on some problems naturally arising from the earlier sections.

1. Preliminaries

In this section we prove a few preliminary lemmas and define the μ^*-sequence for an isolated complete intersection singularity (abbreviated as ‘icis’). The conventions followed are those of Looijenga [Lo], unless explicitly mentioned otherwise. If (X_0, x) is an icis, then by a deformation of (X_0, x) we mean a flat morphism $f : (X, x) \to (S, 0)$ from a complete intersection germ (X, x) (not necessarily isolated) to a smooth germ $(S, 0)$, such that $(f^{-1}(0), x) \cong (X_0, x)$. We call this deformation a smoothing if $f^{-1}(s)$ is smooth for some $s \in S - 0$. For any icis (X, x), $\mu = \mu(X, x)$ denotes its Milnor number, and $v = v(X, x)$ denotes the multiplicity of the discriminant locus of a versal deformation at the base point.
LEMMA 1. Let \(f : (X, x) \to (S, s) \) be a deformation of an icis. Then one can embed this deformation into a versal deformation, i.e. there exists a versal deformation \(\tilde{f} : (\tilde{X}, \tilde{x}) \to (\tilde{S}, \tilde{s}) \) of \((f^{-1}(s), x)\) and an embedding \(\tilde{\tau} : (S, s) \hookrightarrow (\tilde{S}, \tilde{s}) \) such that \(f \) is the fibre product of \(\tilde{\tau} \) and \(\tilde{f} \).

Proof. Let \(f' : (X', x') \to (S', s') \) be a versal deformation of \(f^{-1}(s) \). Then by the versality we obtain a morphism \(i' : (S, s) \to (S', s') \) such that \(f \) is the fibre product of \(i' \) and \(f' \). Now consider the embedding \(\tilde{\tau} : (S, s) \hookrightarrow (S' \times S, s' \times s) \) given by the graph of \(i' \). Then clearly \(f \) is the fibre product of \(\tilde{\tau} \) and \(f' \times \text{id} \). Moreover \(\tilde{f} \) is versal because \(f' \) is. \(\Box \)

LEMMA 2. Let \(f : (X, x) \to (S, s) \) be a smoothing (general fibre is smooth) of an icis, with \(\dim(S, s) = 1 \). Let \(D_f \) be the discriminant. Then we have,

\[
\mu(X, x) = \text{mult}(D_f) - \mu(X_s, x),
\]

where \(\mu \) is the Milnor number of the corresponding icis and \(\text{mult}(D_f) \) is the multiplicity of the discriminant \(D_f \) at \(s \).

Proof. For proof we refer to Proposition 3.6.4 of [Le2]. \(\Box \)

DEFINITION 1. Let \((X, x)\) be an icis. Then for each \(i \geq 0 \), we define

\[
\mu_i(X, x) = \inf \{ \mu(X^i, x) \mid f^i : (X^i, x) \to (S^i, s) \text{ is a deformation of } (X, x) \}
\]

and \(\dim S^i = i \}

The sequence \(\mu_0 = \mu, \mu_1, \mu_2, \ldots \) is called the \(\mu_*\)-sequence of \((X, x)\).

DEFINITION 2. For an icis \((X_0, x)\), an embedding \((X_0, x) \subset (X_i, x), i > 0 \) in another icis \((X_i, x)\), with \(\text{Codim}_{(X_i, x)}(X_0, x) = i \) is called \(\mu_i\)-minimal if \(\mu(X_1, x) = \mu_i(X_0, x) \). For \(i = 1 \), instead of saying \(\mu_1\)-minimal embedding, we just say \(\mu\)-minimal embedding.

DEFINITION 3. The monodromy fibrations of \((X_0, x)\) are defined to be the fibrations obtained from all \(\mu\)-minimal embeddings, i.e. if \(f : (X_1, x) \to (C, 0) \) defining \((X_0, x)\) is \(\mu\)-minimal, then a monodromy fibration is \(X^*_1 \to \Delta^* \), where \(X_1 \to \Delta \) is a good representative of \(f \) and \(X^*_1 = X_1 - X_0 \) and \(\Delta^* = \Delta - \{0\} \).

Sometimes we also refer to \(f^{-1}(\partial \Delta) \to \partial \Delta \) as the monodromy fibration. This depends only on \((X_0, x)\) by Theorem 1.

REMARK. If \((X, x)\) has embedding codimension \(k \), then \(\mu_{k+i}(X, x) = 0 \) for all \(i \geq 0 \), and \(\mu_i(X, x) \neq 0 \) for \(i < k \).

We recall (cf. [Lo], 2B, p. 25) the definition of a good representative of a deformation of an icis. Let \(f : (X, x) \to (S, 0) \) be a flat morphism of irreducible analytic germs, where \((S, 0)\) is smooth, giving a deformation of the icis \(f^{-1}(0) = (X_0, x) \). Let \(f : X \to \tilde{S} \) be a morphism of analytic spaces representing
this morphism of germs (with \tilde{S} smooth), and let $X_s = f^{-1}(s)$. Let $r : X \to \mathbb{R}_{\geq 0}$ be a nonnegative real analytic function such that $r^{-1}(0) \cap X_0 = \{x\}$. Let $B_\varepsilon = \{y \in X | r(y) \leq \varepsilon\}$, $S_\varepsilon = \{y \in X | r(y) = \varepsilon\}$ and $\tilde{B}_\varepsilon = \{y \in X | r(y) < \varepsilon\}$. Let S be a contractible neighbourhood of 0 in \tilde{S}. Then

$$B_\varepsilon \cap f^{-1}(S) \to S$$

is called a

good representative of f if

(i) S_ε intersects $f^{-1}(s)$ transversally for all $s \in S$, and
(ii) X_0 intersects S_η transversally, for all $0 < \eta \leq \varepsilon$.

(This is referred to in [Lo] as a

good proper representative of f.) Note that by Sard's theorem, $r^{-1}(\varepsilon) - X_{\text{sing}}$ is smooth for all sufficiently small nonzero ε, if X, S are suitably chosen (cf. [Lo] Prop. 2.4).

If $f : (X, x) \to (S, 0)$ is a deformation of an icis together with a section $\sigma : (S, 0) \to (X, x)$, then we may choose r such that $r^{-1}(0) = \sigma(S)$. More generally if $(\tilde{X}, x) \to (\tilde{S}, 0)$ is a deformation of an icis and $(S, 0) \subset (\tilde{S}, 0)$ is any smooth germ over which we are given a section $\sigma : (S, 0) \to (\tilde{X}, x)$, then we assume that $r^{-1}(0) = \sigma(S)$. This can be done because the germ of any real analytic subset of (\tilde{X}, x) can be defined by a single real analytic function. The advantage of choosing such an r is that the same r (but not necessarily the same ε) can be used to construct a good representative of $(\tilde{X}, \sigma(s)) \to (\tilde{S}, s)$ for $s \in S$ close to 0.

The following will be a useful notion to have.

DEFINITION 4. A family of icis is a flat morphism of analytic spaces $f : X \to S$ with S smooth and connected, together with a section $\sigma : S \to X$ (called a singular section) such that $(X_s, \sigma(s))$ is an icis for each $s \in S$ and $\sigma(S)$ is an irreducible component of the critical space C_f of f. A family $f : X \to S$ is said to be a v-

constant family if $v(X_s, \sigma(s))$ remains constant for all $s \in S$.

Note that any v-constant family is μ-constant by Lemma 2 and the fact that both μ and v are semicontinuous.

LEMMA 3. Let $f : (X, x) \to (S, 0)$ be a μ_\ast-constant deformation. Then there exists a versal deformation $\tilde{f} : (\tilde{X}, x) \to (\tilde{S}, 0)$, in which f is embedded, and there are submanifolds $(S_1, 0) \subset (S_2, 0) \subset \cdots \subset (S_k, 0)$ with $\dim S_i = i$ such that $(X_0, x) = (\tilde{f}^{-1}(0), x) \subset (\tilde{f}^{-1}(S_i), x)$ is a μ_i-minimal embedding for all i.

Proof. Let $f_i : (X_i, x) \to (S_i, 0)$ be μ_i-minimal embeddings of (X_0, x). By Lemma 1 there exists a versal deformation $\tilde{f} : (\tilde{X}, x) \to (\tilde{S}, 0)$, in which each f_i and f are embedded such that $T_0S \cap T_0S_i = T_0S_i \cap T_0S_j = \{0\} \subset T_0\tilde{S}$, for all $i \neq j$ where T_0 denotes the tangent space at 0. Hence, one can choose a coordinate system on \tilde{S} such that each S_i and S are linear subspaces.

Let $G(i, N)$ denote the Grassmannian of i-dimensional subspaces of $T_0\tilde{S}$. Then
by semicontinuity of μ_i, there is a Zariski open subset Ω_i of $G(i, N)$ such that for each $L_i \in \Omega_i$, the embedding $(X_0, x) \subset (\tilde{f}^{-1}(L_i), x)$ is μ_r-minimal.

Let F_r denote the flag manifold of (linear) subspaces $L_1 \subset L_2 \subset \cdots \subset L_r$ of $T_0\tilde{S}$ with $\dim L_i = i$. Then we have surjective morphisms, $h_{i,r}: F_r \to G(i, N)$ for all $i \leq r$. Therefore $\bigcap h_{i,r}^{-1}(\Omega_i)$ is a nonempty open subset of F_r, say U_r. Now for each $L = (L_1 \subset L_2 \subset \cdots \subset L_r) \in U_r$, the embeddings $(X_0, x) \subset (\tilde{f}^{-1}(L_0), x)$ are μ_i-minimal. By taking $r = k$, the embedding codimension of (X_0, x) one obtains the lemma.

In the next section we also need the following lemma, which is an easy consequence of the existence of a collar for ∂M.

Lemma 4. Let $(M, \partial M)$ be a differentiable manifold with boundary. Let $f: (M, \partial M) \to T$ be a fibration of pairs with T contractible. Let $h: \partial M \to \partial M_{t_0} \times T$, $t_0 \in T$ fixed, be a homeomorphism giving a trivialization of $f|_{\partial M}$. Then one can extend this trivialization to the whole of M, i.e. there exists a homeomorphism $H: M \to M_{t_0} \times T$ such that $H|_{\partial M} = h$.

2. Nonbifurcation of the critical space

In this section we prove a basic lemma which gives a numerical criterion for the critical space not to bifurcate. Then we construct certain vector fields using which we prove the propositions.

In order to state the lemma, consider the following situation. Let $f: (X, x) \to (S, 0)$ be a deformation of an icis, with $\dim S = 1$, and let $\sigma: (S, 0) \to (X, x)$ be a section such that f and σ determine a family of icis (cf. Definition 4). Let $f: X \to S$ be a good representative of f, which is embedded in a good representative of another deformation $g: Y \to T$ with $\dim T = 2$.

Lemma 5. In the above situation also assume that for a fixed smooth retraction $r: T \to S$, if $h: Y \to S$ is given by $h = r \circ g$, then the embedding $(X_0, \sigma(s)) \subset (Y_0, \sigma(s))$ is μ-minimal for $s \neq 0$. Then critical space of $g: Y \to T$ does not bifurcate (i.e., the reduced critical space coincides with $\sigma(S)$) if and only if $(X_0, x) \subset (Y_0, x)$ is a μ-minimal embedding and $f: X \to S$ is a ν-constant deformation.

Proof. Let $\tilde{f}: \tilde{X} \to \tilde{S}$ be a good representative of a versal deformation of (X_0, x) in which $g: Y \to T$ is embedded. Such an \tilde{f} exists by Lemma 1. Assume that $(X_0, x) \subset (Y_0, x)$ is μ-minimal and $X \to S$ is ν-constant. The second condition means that

$$S \subset \{\text{Equimultiple stratum of } D_f\} := D^m_f$$

Since $(X_s, \sigma(s)) \subset (Y_s, \sigma(s))$ is μ-minimal Lemma 2 implies that if l_s is the fibre of
the retraction $r: T \to S$ at $s \in S$, then the tangent space $T_s l_s$ is not contained in the tangent cone of D_f at $s \in S$. We have the following general formula (see [F], §11.4, Ex. 11.4.4),

$$(D_f \cdot l_0)_0 = \sum_{x \in (l_0 \cap D_f)} (D_f \cdot l_s)_x$$

(*)

for all s sufficiently close to $0 \in S$. Shrinking the base S of the good representative f, if necessary, we may assume that (*) holds for all $s \in S$.

Note that we have the following inequalities:

$$\text{mult}(f, s) \geq v(X_s, \sigma(s)) = v(X_0, x) = \text{mult}(D_f, 0) \geq \text{mult}(D_f, s)$$

and also note that $(D_f \cdot l_s)_x = v(X_s, \sigma(s))$. Now it follows that for any $s \in S$ the right-side of (*) has only one term, i.e. $D_f \cap l_s = \{s\}$. Hence, $T \cap D_f = T \cap D_f^m = S$. Hence, the discriminant locus does not bifurcate. By Lemma 2, and the semicontinuity of y, $\sigma(s)$ is contained in the μ-constant stratum. Hence, there is a unique singular point lying over $s \in S$, in \bar{X}. Hence, the critical space does not bifurcate.

Conversely assume that the critical space does not bifurcate. Then the discriminant in T also cannot bifurcate, i.e. $T \cap D_f = S$. To prove that $(X_0, x) \subset (Y_0, x)$ is μ-minimal it suffices to prove that $(D_f \cdot l_0)_0 = \text{mult}(D_f, 0)$; to prove $X \to S$ is σ-constant we must show that $\text{mult}(D_f, 0) = \text{mult}(D_f, s)$ for all $s \in S$. But we have the inequalities:

$$(D_f \cdot l_0)_0 \geq \text{mult}(D_f, 0) \geq \text{mult}(D_f, s) = (D_f \cdot l_s)_x$$

Since $T \cap D_f = S$, the extreme terms are equal by (*). Hence, both inequalities are equalities.

DEFINITION 5. Given any real analytic function φ on an analytic space X, we say that a vector $v \in T_x X$ at a smooth point $y \in X$, points outward relative to φ if $v(\varphi) = \langle v, \nabla \varphi(y) \rangle > 0$ for some choice of (oriented) local coordinate; however, the property of pointing outwards is independent of this choice. A vector field V defined on a neighbourhood of a subset A of X points outward relative to φ on A if

$$V(\varphi) = \langle V(y), \nabla \varphi(y) \rangle > 0, \ \forall y \in A$$

We recall two results from Looijenga [Lo]. Let (X, x) be a germ of a complete intersection, $f: (X, x) \to (S' \times C, 0)$ and $f': (X, x) \to (S', 0)$ be deformations of icis, where $\pi: (S' \times C, 0) \to (S', 0)$ is the projection and $f' = \pi \circ f$. Let r be a non-negative real analytic function on a representative X of (X, x) such that
LEMMA 6 (cf. [Lo], proof of Proposition 5.4, pp. 69–70). There exist an \(\varepsilon > 0 \) and good representatives \(f : f^{-1}(S' \times \Delta) \cap B_{\varepsilon} \to S' \times \Delta \) where \(\Delta \) is a closed disc centered at \(0 \in C \), and \(f' : f'^{-1}(S') \cap B_{\varepsilon} \to S' \) off and \(f' \) respectively, and a \(\Delta_{1} \subset \Delta \) a smaller concentric disc, such that

\[
D_{f} \subset S' \times \Delta_{1} \quad \text{and} \quad f^{-1}(S' \times \Delta) \cap B_{\varepsilon} \subset f'^{-1}(S') \cap B_{\varepsilon}.
\]

Moreover there exists a vector field \(V_{1} \) in a neighbourhood of

\[
f'^{-1}(S') \cap B_{\varepsilon} - f^{-1}(S' \times \Delta) \cap B_{\varepsilon}
\]

which points outward relative to \(r \) and \(|f_{1}|^{2} \) and preserves the fibers of \(f' \).

LEMMA 7 (cf. [Lo] Proposition 5.4, pp. 69–70). If the good representatives are chosen as in Lemma 6, then there exists a homeomorphism

\[
H : f^{-1}(S' \times \Delta) \cap B_{\varepsilon} \to f'^{-1}(S') \cap B_{\varepsilon}
\]

induced by the vector field \(V_{1} \) such that \(f' \circ H = \pi \circ f \) and \(H \) is the identity on a neighbourhood of \(f^{-1}(S' \times 0) \).

Now we note that there is a natural inclusion of \(f^{-1}(S' \times 0) \) in \(f'^{-1}(S') \). Under this natural inclusion, we have

PROPOSITION 1. (i) The map \(f^{-1}(S' \times \Delta) \cap S_{\varepsilon} \to S' \times \Delta \) is a trivial fibration and, hence, any trivialization induces a homeomorphism \(h : f^{-1}(0) \cap S_{e} \to f^{-1}(s) \cap S_{e} \) for all \(s \in S' \times \Delta \).

(ii) Given any trivialization as in (i), there exists a trivialization of \(f'^{-1}(S') \cap S_{\varepsilon} \to S' \) such that it coincides with the trivialization in (i) on \(f^{-1}(S' \times 0) \). Hence, for any \(s \in S' \) one obtains a homeomorphism \(h' : f'^{-1}(0) \cap S_{e} \to f'^{-1}(s) \cap S_{e} \) which restricts to the homeomorphism \(h \) on \(f^{-1}(0) \cap S_{e} \).

Proof. Choose \(S' \), \(\Delta \) and \(\varepsilon > 0 \) as in Lemma 6. Also fix a trivialization over \(S' \times \Delta \) of \(f \),

\[
H_{1} : f^{-1}(S' \times \Delta) \cap S_{e} \to (f^{-1}(0) \cap S_{e}) \times S' \times \Delta.
\]

Now \(f : f^{-1}(S' \times \partial \Delta) \to S' \times \partial \Delta \) is a fibration and, hence, trivial over \(S' \). Notice that the boundary of \(f^{-1}(S' \times \partial \Delta) \) is \(f^{-1}(S' \times \partial \Delta) \cap S_{e} \), on which we have a trivialization (induced by \(H_{1} \)) over \(S' \), namely

\[
H_{1} : f^{-1}(S' \times \partial \Delta) \cap S_{e} \to f^{-1}(0 \times \partial \Delta) \cap S_{e} \times S'.
\]
By Lemma 4, this trivialization can be extended to the whole of \(f^{-1}(S' \times \partial \Delta) \) i.e., there exists a homeomorphism over \(S' \), \(H_2: f^{-1}(S' \times \partial \Delta) \to f^{-1}(0 \times \partial \Delta) \times S' \). The homeomorphism \(H \) of Lemma 7 identifies

\[
f^{-1}(S' \times \partial \Delta) \cup \{ f^{-1}(S' \times \Delta) \cap S_e \} \text{ with } f^{-1}(S') \cap S_e.
\]

Hence, one obtains a topological trivialization of \(f'^{-1}(S') \cap S_e \to S' \) over \(S' \), obtained from \(H_1 \) and \(H_2 \), which we denote as \(H_3: f'^{-1}(S') \cap S_e \to f'^{-1}(0) \cap S_e \times S' \), such that \(H_3|f^{-1}(S \times 0) = H_1 \). This trivialization gives the homeomorphism as in (ii).

Now fix good representatives, \(f, f' \) etc. as in Lemma 6, and let \(V_1 \) be the resulting vector field on \(f'^{-1}(s) \cap B_e - f^{-1}(S' \times 0) \cap B_e \). Assume that we are given a section \(\sigma \) of \(f: f^{-1}(S' \times 0) \to S' \times 0 \), with \(\sigma(0) = x \) making \(f \) a \(\nu \)-constant family, such that \((f^{-1}(s), \sigma(s)) \subset (f'^{-1}(s), \sigma(s)) \) is \(\mu \)-minimal for all \(s \in S' \). We also assume that \(\dim f^{-1}(s) \neq 2 \). Fix \(s \in S' \). Choose \(\epsilon > \epsilon_s > 0 \), an open neighbourhood \(K' \) of \(s \), and a concentric disc \(\Delta'' \subset \Delta \subset \mathbb{C} \) of smaller radius, so that \(K = K' \times \Delta'' \subset S' \times \Delta \) is a neighbourhood of \((s,0)\) such that \(f^{-1}(K) \cap B_{\epsilon_s} \to K \) and \(f'^{-1}(K') \cap B_{\epsilon_s} \to K' \) are good representatives of \(f \) and \(f' \) at \(s \), respectively. Further assume \(\epsilon_s \) is chosen so that the conditions of Lemma 6 are again satisfied (with \(K' \) in place of \(S' \) and \(\Delta'' \) in place of \(\Delta \)). Let \(\Delta_s = s \times \Delta \) and \(\Delta' = K \cap \Delta_s \subset \Delta_s \).

Lemma 8. Suppose \(f: f^{-1}(S' \times \{0\},0) \to (S' \times \{0\},0) \) is \(\nu \)-constant along the section \(\sigma: (S' \times \{0\},0) \to (X,x) \) and \((f^{-1}(s), \sigma(s)) \subset (f'^{-1}(s), \sigma(s)) \) is \(\mu \)-minimal for all \(s \in S' \). Fix \(s \in S' \) and choose \(\epsilon, \epsilon_s \) and \(\Delta' \) as above. Then there exists a vector field on \(f'^{-1}(s) \cap B_e - f^{-1}(\Delta') \cap B_e \) which points outward relative to \(|f_1|^2 \) everywhere and points outward relative to \(r \) on \(f'^{-1}(s) \cap S_e - f^{-1}(\Delta') \cap S_e \) and \(f'^{-1}(s) \cap S_{\epsilon_s} - f^{-1}(\Delta') \cap S_{\epsilon_s} \).

Proof. The vector field \(V_1 \) given by Lemma 6 preserves the fibers of \(f' \). Hence, it restricts to a vector field \(\overline{V_1} \) on \(f'^{-1}(s) \cap B_e - f^{-1}(\Delta) \cap B_e \). Moreover \(V_1 \) points outward relative to \(|f_1|^2 \) and \(r \). Lemma 5 implies that \(f^{-1}(\Delta_s - \Delta') \to \Delta_s - \Delta' \) is a locally trivial fibration over the annulus \(\Delta_s - \Delta' \). Hence, the vector field \(\overline{V_1} \) on \(f'^{-1}(s) \cap B_e - f^{-1}(\Delta) \cap B_e \) can be extended to a vector field \(V_2 \) on

\[
\{ f^{-1}(\Delta_s - \Delta') \cap B_e \} \cup \{ f'^{-1}(s) \cap B_e - f^{-1}(\Delta_s) \cap B_e \}
\]
such that it points outward relative to \(|f_1|^2 \) everywhere and relative to \(r \) on \(f'^{-1}(s) \cap \Delta_e - f^{-1}(\Delta') \cap S_e \). Here note that \(V_2 \) may not point outward relative to \(r \) everywhere on \(f^{-1}(\Delta_s - \Delta') \), because of the possible presence of a vanishing fold.
Again applying Lemma 6 to the good representatives

\[f: f^{-1}(K) \cap B_{\varepsilon} \to K \quad \text{and} \quad f': f'^{-1}(K') \cap B_{\varepsilon'} \to K' \]

we obtain a vector field \(V_3 \) in a neighbourhood \(U \) of \(f'^{-1}(K') \cap B_{\varepsilon'} - f^{-1}(K) \cap B_{\varepsilon} \), such that it points outward relative to \(|f'|^2 \) and \(r \) on \(U \) and preserves the fibres of \(f' \). Hence, \(V_3 \) induces a vector field on \(f'^{-1}(s) \cap B_{\varepsilon'} - f^{-1}(\Delta) \cap B_{\varepsilon} \). Let \(\varphi \) be a \(C^\infty \) function on \(f'^{-1}(s) \cap B_{\varepsilon} \) with values in \([0, 1]\), supported in \(U \) and \(\varphi \equiv 1 \) on \(B_{\varepsilon} \). Then the vector field \(V_4 = (1 - \varphi)V_2 + \varphi V_3 \) is nowhere vanishing on \(f'^{-1}(s) \cap B_{\varepsilon} - f^{-1}(\Delta) \cap B_{\varepsilon} \). Moreover, since \(V_2 \) and \(V_3 \) point outward relative to \(|f'|^2 \) so does \(V_4 \). Since \(V_4 \equiv V_2 \) on \(f'^{-1}(s) \cap S_\varepsilon - f^{-1}(\Delta) \) and \(V_4 \equiv V_3 \) on \(f'^{-1}(s) \cap S_{\varepsilon'} - f^{-1}(\Delta) \cap S_{\varepsilon'} \), it follows that \(V_4 \) points outward relative to \(r \) on these sets.

PROPOSITION 2. Suppose \(f: f^{-1}(S' \times \{0\}, 0) \to (S' \times \{0\}, 0) \) be \(\nu \)-constant along

\[\sigma: (S' \times \{0\}, 0) \to (X', x) \quad \text{and} \quad (f^{-1}(s), \sigma(s)) \subset (f^{-1}(s), \sigma(s)) \]

is \(\mu \)-minimal for all \(s \in S' \). Fix \(s \in S' \) and choose \(\varepsilon \) and \(\varepsilon_s \) as in Lemma 8. Then

(i) if \(\dim f^{-1}(s) \neq 2 \) then there exists a vector field \(V \) on \(f^{-1}(s) \cap B_{\varepsilon} - f^{-1}(s) \cap B_{\varepsilon_s} \), which is nowhere vanishing and points outward relative to \(r \) on the boundary components \(f^{-1}(s) \cap S_{\varepsilon} \) and \(f^{-1}(s) \cap S_{\varepsilon_s} \).

(ii) Any vector field as in (i) can be extended to a vector field on \(f'^{-1}(s) \cap B_{\varepsilon} - f'^{-1}(s) \cap B_{\varepsilon_s} \), which is again nowhere vanishing and points outward relative to \(r \) on the boundary components.

Proof. (i) The semicontinuity of \(\mu \) and \(\nu \) and the fact that \(\mu + \mu_1 = \nu \), implies \(f^{-1}(S' \times 0) \to S' \times 0 \) is \(\mu \)-constant. Then for each \(s \in S' \), \(f^{-1}(s) \cap B_{\varepsilon} \) is contractible. This in particular implies that the inclusions of \(f^{-1}(s) \cap S_{\varepsilon} \) and \(f^{-1}(s) \cap S_{\varepsilon_s} \) in \(f^{-1}(s) \cap B_{\varepsilon} - f^{-1}(s) \cap B_{\varepsilon_s} \) are homotopy equivalences. For \(\dim f^{-1}(s) \geq 3 \), it follows that the links \(f^{-1}(s) \cap S_{\varepsilon} \cong f^{-1}(0) \cap S_{\varepsilon} \) and \(f^{-1}(s) \cap S_{\varepsilon_s} \) are simply connected (cf. [H]). In fact the link of an icis of dimension \(n \) is \(n-2 \) connected). Hence, by the h-cobordism theorem there exists a vector field \(V \) on \(f^{-1}(s) \cap B_{\varepsilon} - f^{-1}(s) \cap B_{\varepsilon_s} \) which is nowhere vanishing and transversal to the boundaries. For \(\dim f^{-1}(s) = 1 \), again the existence of such a vector field can be obtained from classification of surfaces. Replacing \(V \) by \(-V \), if necessary, we may assume that it points outward relative to \(r \) on \(f^{-1}(s) \cap S_{\varepsilon} \) and \(f^{-1}(s) \cap S_{\varepsilon_s} \).

(ii) Since the critical space of \(f \) does not bifurcate, by Lemma 5,

\[f: f^{-1}(\Delta) \cap B_{\varepsilon} - f^{-1}(\Delta) \cap B_{\varepsilon_s} \to \Delta' \]
is a trivial fibration. Hence, the vector field \(V \) as given in (i) on
\[f^{-1}(s) \cap B_{\epsilon} - f^{-1}(s) \cap \hat{B}_{\epsilon}, \]
can be extended to a vector field \(V_5 \) on the whole of
\[f^{-1}(\Delta') \cap B_{\epsilon} - f^{-1}(\Delta') \cap \hat{B}_{\epsilon}, \]
such that \(V_5 \) points outward relative to \(r \) on \(S_{\epsilon} \) and \(S_{\epsilon'} \) and it preserves the fibres of \(f \). Again the vector fields \(V \) and \(V_5 \) may not point outward relative to \(r \) everywhere because of the possible presence of a vanishing fold.

The vector field \(V_4 \) constructed in Lemma 8 is transversal to the fibres of \(f \) and \(V_5 \) is tangential to the fibres of \(f \) over \(\partial \Delta' \) and both are nowhere vanishing, hence they are linearly independent on \(f^{-1}(\partial \Delta') \). Moreover both \(V_4 \) and \(V_5 \) points outward relative to \(r \) on \(S_{\epsilon} \) and \(S_{\epsilon'} \). Hence by using partitions of unity one can construct a vector field \(V_6 \) on \(f'^{-1}(s) \cap B_{\epsilon} - f'^{-1}(s) \cap \hat{B}_{\epsilon} \) satisfying

(i) \(V_6 \) is nowhere vanishing,
(ii) it points outward relative to \(r \) on \(f'^{-1}(s) \cap S_{\epsilon} \) and \(f'^{-1}(s) \cap S_{\epsilon'} \),
(iii) it coincides with \(V_5 \) on a neighbourhood of \(f^{-1}(s) \cap B_{\epsilon} - f^{-1}(s) \cap \hat{B}_{\epsilon} \), and hence it is an extension of \(V \).

This proves the proposition. \(\square \)

3. Topological equisingularity

In this section we prove the main theorems. At the end we also give an example to point out that Theorem 1 is false without the assumption \(v \)-constant. We begin with the following definitions,

DEFINITION 6. The topological type of an icis \((X, x)\) is defined to be the homeomorphism type of the sequence of germs
\[(X, x) = (X_0, x) \subset (X_1, x) \subset \cdots \subset (X_k, x), \]
where \(k \) = the embedding codimension of \((X, x)\) and the embedding \((X, x) \subset (X_i, x)\) is \(\mu_i \)-minimal for all \(i \). This depends only on \((X, x)\) and not on the particular choice of the nested sequence of \(\mu_i \)-minimal embeddings, by Theorem 2. A family of icis \(f: X \to S \) with a singular section \(\sigma \) is said to be topologically equisingular if the topological types of the singularities \((X_s, \sigma(s))\) are the same.
REMARK. If L_i denotes the link of (X_i, x) in the definition above, then the topological type of (X, x) is determined by the homeomorphism type of the nested sequence of links $L = L_0 \subset L_1 \subset \cdots \subset L_k \cong S^{2n+2k-1}$. The topological type determines the μ_*-sequence (cf. Definition 1). This is easily proved along the same lines as the proof for hypersurfaces (cf. [T], Theorem 1.4, p. 295).

THEOREM 1. If $f : X \to S$ is a ν-constant family then the monodromy fibrations of $(f^{-1}(s), \sigma(s))$ are isomorphic.

Proof. Fix $0 \in S$; it suffices to show that the monodromy fibrations of $(f^{-1}(0), \sigma(0))$ and $(f^{-1}(s), \sigma(s))$ are equivalent for all s in a neighbourhood of 0 in S. Choose a ν-minimal embedding $(X_0, \sigma(0)) \subset (Y_0, x)$ and a deformation $g : (Y, x) \to (S \times C, (0, 0))$ such that the deformation $g' : (Y, x) \to (S, 0)$ is μ-constant and $(X_\nu, \sigma(\nu)) \subset (Y_\nu, \sigma(\nu))$ are μ-minimal embeddings. Choose good representatives $g : Y \to S \times \Delta$ and $g' : Y' \to S$ satisfying the conditions of Propositions 1 and 2. Also assume that $X \cong g^{-1}(S)$ and $f = g|_X$. Then by definition, a monodromy fibration of $f^{-1}(0)$ is $g^{-1}(0 \times \Delta) \to 0 \times \Delta$ and that of $f^{-1}(s)$ is $g^{-1}(s \times \Delta') \cap B_\nu \to s \times \Delta'$. By Proposition 1, $g^{-1}(s \times \Delta') \cap B_\nu \to s \times \Delta'$ and $g^{-1}(0 \times \Delta') \cap B_\nu \to 0 \times \Delta'$ are isomorphic fibrations. By Proposition 2, $g^{-1}(s \times \Delta') \cap B_\nu \to s \times \Delta'$ and $g^{-1}(s \times \Delta') \cap B_\nu \to s \times \Delta'$ are isomorphic fibrations if $\dim f^{-1}(s) \neq 2$. Hence, for $\dim f^{-1}(s) \neq 2$ the monodromy fibrations of a ν-constant family are isomorphic. For $\dim f^{-1}(0) = 2$ they are fibre homotopy equivalent, again by Proposition 2.

THEOREM 2. If $f : X \to S$ is a μ_*-constant family with $\dim f^{-1}(s) \neq 2$, then f is a topologically equisingular family.

Proof. Let $0 \in S$, we prove the theorem for all s in a neighbourhood of 0 in S. By Lemma 3 there exists a versal deformation $\bar{f} : (\bar{X}, x) \to (\bar{S}, 0)$ of $(X_0, \sigma(0))$ containing f and a flag $(S_1, 0) \subset (S_2, 0) \subset \cdots \subset (S_k, 0)$ in $(\bar{S}, 0)$ such that the embeddings $(\bar{f}^{-1}(0), x) \subset (\bar{f}^{-1}(S_i), x)$ are μ_*-minimal. Consider any smooth retraction $(\bar{S}, 0) \to (S, 0)$, whose special fibre containing all the linear spaces of the flag. Write $(\bar{S}, 0) = (\bar{S} \times S, 0)$. Then by semicontinuity of $\mu_* (f^{-1}(s), \sigma(s))$, we obtain that $(f^{-1}(s), \sigma(s)) \subset (\bar{f}^{-1}(s \times S), \sigma(s))$ is also μ_*-minimal for all i and for all s in a neighbourhood of 0 in S.

This implies that each $(\bar{f}^{-1}(s \times S), \sigma(s)) \subset (\bar{f}^{-1}(s \times S_{i+1}), \sigma(s))$ are μ_*-minimal. So one can choose a smooth retraction $(S_i, 0) \to (S_i, 0)$ such that $(S_i, 0) \cong (S_i \times \Delta, 0)$, Δ a smooth one dimensional germ, and the morphism $ar{f}^{-1}(S \times S_i \times \Delta, 0) \to (S \times \Delta, 0)$ will have reduced discriminant S and reduced critical space $\sigma(S)$ by Lemma 5.

Let $g : \bar{f}^{-1}(S \times S_i \times \Delta) \cap B_\nu \to S \times \Delta$ be a good representative, where S, Δ and $\varepsilon > 0$ are chosen as in Proposition 1. Inductively we may assume that there is a homeomorphism given on $g^{-1}(0) \cap B_\nu$ with $g^{-1}(s \times 0) \cap B_\nu$, which is obtained by a topological local trivialization of $g^{-1}(S \times \Delta) \cap B_\nu \to S \times \Delta$ such that it maps $\bar{f}^{-1}(0 \times S_j) \cap B_\nu$ onto $\bar{f}^{-1}(s \times S_j) \cap B_\nu$ for all $j < i$. Then by Proposition 1(ii), this
trivialization can be extended to obtain a homeomorphism of \(g'^{-1}(0) \) onto \(g'^{-1}(s) \), where \(\pi : S \times \Delta \to S \) is the projection and \(g' = \pi \circ g \).

By Proposition 2(i) and induction on \(i \), we may assume that we are given an \(\varepsilon > 0 \) and a nowhere vanishing vector field on \(g^{-1}(s) \cap B_{\varepsilon} - g^{-1}(s) \cap B_{\varepsilon} \) which points outward relative to \(r \) on the boundary components, and maps \(\tilde{f}^{-1}(s \times S_j) \) into itself for all \(j < i \). By Proposition 2(ii) this can be extended to a vector field on \(g'^{-1}(s) \cap B_{\varepsilon} - g'^{-1}(s) \cap B_{\varepsilon} \) which points outward relative to \(r \) on the boundary components, and nowhere vanishing. But for each \(j \), \(\tilde{f}^{-1}(s \times S_j) \cap S_{\varepsilon} \) is isomorphic to the link of the germ \((\tilde{f}^{-1}(s \times S_j), \sigma(s))\). Moreover \(\tilde{f}^{-1}(0 \times S_j) \cap S_{\varepsilon} \) is isomorphic to the link of \((\tilde{f}^{-1}(0 \times S_j), x)\). Hence, combining the homeomorphisms constructed above with the homeomorphisms obtained by the vector fields, we get a homeomorphism of the \((i + 1)\)-tuple

\[
S_{\varepsilon} \cap (\tilde{f}^{-1}(0 \times S_{i+1}), \tilde{f}^{-1}(0 \times S_i), \ldots, \tilde{f}^{-1}(0)) \to S_{\varepsilon} \cap (\tilde{f}^{-1}(s \times S_{i+1}), \tilde{f}^{-1}(s \times S_i), \ldots, \tilde{f}^{-1}(s \times 0))
\]

By taking \(i = k - 1 \) one obtains that the link sequence of the topological types of the singularities \((X_s, \sigma(s))\) are homeomorphic. Hence, by the remark after the definition of the topological equisingularity, we proved that any \(\mu_* \)-constant family is topologically equisingular.

EXAMPLE. Consider a deformation of a smooth hyperelliptic curve of genus 3 to smooth planar quartics, and look at the corresponding family of canonical rings. The general member \(X_1 \) has a hypersurface singularity, while the special member \(X_0 \) is a complete intersection of embedding codimension 2; hence, the multiplicity of the discriminant is not constant. However, \(\mu \) is clearly constant.

Given a smoothing of an ics, the eigenvalues of monodromy which are \(\neq 1 \) can be computed by "compactifying" the deformation (to a smoothing of a complete variety with an isolated singularity), and computing the eigenvalues of monodromy for the compactified family. In our situation there is an obvious compactification of the singularity as a projective cone (in \(\mathbb{P}^3 \) for \(X_1 \), and as a cone in weighted projective space for \(X_0 \) – which we can uniformly describe as the result of taking Proj of the graded ring obtained by adjoining a variable of degree 1).

In each case the projective cone is smoothed by an embedded deformation. The monodromy for each compactified family can be computed by first making a semistable reduction (blow up to get a normal crossing divisor in the special fibre, and base change by a degree 4 map). Then one observes that in the special fibre of the semistable family, all but one component blow down to smooth curves resulting in a smooth family; thus the original family has a monodromy transformation of order 4. The smooth special fibre of the family obtained from the semistable reduction has an automorphism of order 4; to compute the
dimensions of the eigenspaces for ± 1, $\pm i$ we need only compute the Betti
numbers of quotients of this special fibre by powers of the automorphism. In the
plane quartic case, the quotient modulo the automorphism of order 4 is P^2,
while it is F_4 (the Hirzebruch surface, $\cong P(\mathcal{O}_{P^1} \oplus \mathcal{O}_{P^1}(4))$ in the other case.

The referee has pointed out to us that there is a local example of a μ-constant
family of plane curves with two Puiseux pairs which specialize to a monomial
curve which is a complete intersection, hence cannot be ν-constant. There is also
an example given in [B-G].

4. Further remarks

In [cf. B-G] Buchweitz and Greuel defined a notion of Milnor number for
arbitrary isolated curve singularities. They proved that any μ-constant de-
f ormation of curves is topologically equisingular in the classical sense (two singular germs embedded in a smooth germ are said to be topologically
equivalent (in the classical sense) if there is a homeomorphism of the smooth
germ into itself carrying one singular germ on to the other. Using this one can
define a notion of equisingularity – cf. [B-G], §5, p. 261).

If $f: X \to S$ is a μ-constant family of icis of dimension n embedded in $\mathbb{C}^N \times S$,
then the topological equisingularity (in the classical sense) follows if one can show that $(S_{\eta}, X_{\eta} \cap S_{\eta})$ and $(S_\varepsilon, X_\varepsilon \cap S_\varepsilon)$ are homeomorphic pairs (here the real
analytic function r is chosen to be the square of the distance function in \mathbb{C}^N; $\varepsilon > \varepsilon_0 > 0$ is chosen so that S_η intersects $f^{-1}(0)$ transversally for all $\eta < \varepsilon$ and S_η
intersects $f^{-1}(s)$ transversally for all $\eta < \varepsilon_0$). Now if $N = n + 1$, this follows from
Theorem 2. If $N > n + 1$ then $\text{Codim}_{S}(S_{\eta} \cap X_{\eta}) \geq 4$, where the codimension
is taken in the real sense. Hence if $n > 2$, $S_{\varepsilon} - S_{\varepsilon} \cap X_{\varepsilon}$ and S_{ε}
are simply
connected by the homotopy exact sequence of pairs. Then the h-cobordism
theorem of Smale (cf. [Sm], Theorem 1.4) for pairs implies that $(S_\eta, S_\eta \cap X_\eta)$ is
diffeomorphic to $(S_{\varepsilon}, S_{\varepsilon} \cap X_{\varepsilon})$. Hence, any μ-constant deformation is topologi-
cally equisingular in the classical sense.

Theorem 2 has been recently proved in the case of hypersurface singularities
for $n=2$ with the additional hypotheses that the fundamental group of the links
of the singularities is constant, with the possible exception of singularities with a
link which is a torus bundle over the circle (cf. [Sz] Theorem B). The methods
employed there are quite different and do not extend to the complete inter-
section case.

We pose the following problem whose affirmative answer would extend
Theorem 2 to the case $n=2$.

PROBLEM 1. Let $f: X \to S$ be μ-constant family of icis of dim 2. Can one find a
μ-constant family of curves $g: Y \to S$ which is embedded in f such that the
embeddings $(g^{-1}(s), \pi(s)) \subset (f^{-1}(s), \pi(s))$ are μ-minimal for all $s \in S$?
More generally one can ask;

PROBLEM 2. Given any μ-constant family of icis $f: X \to S$, can one find a function $g: X \to \Delta$ where Δ is a smooth one dimensional complex analytic space, such that $(f, g): X \to S \times \Delta$ has reduced critical space as $\sigma(S)$?

Another problem regarding the topological type is related to the Zariski multiplicity conjecture (cf. [Z]);

PROBLEM 3. If $f: X \to S$ is a μ-constant family, then does the multiplicity of $(X_s, \sigma(s))$ remain constant?

This has been proved for quasi-homogenous hypersurface singularities by Greuel in [G], using a deep result of Varchenko [Var].

Massey (cf. [M1]) and Vannier (cf. [Van]) have given a criterion for the Milnor fibrations to be constant in a family of hypersurfaces with one dimensional singular locus. Massey has also studied the case when the singularities are arbitrary in the case of hypersurfaces and conjectured a criterion for the constancy of Milnor fibrations (cf. [M2], Conjecture 5.1). It would be interesting to investigate these cases for complete intersection singularities with arbitrary singular locus.

Acknowledgements

We sincerely thank Kapil Paranjape and V. Srinivas for stimulating discussions. We also thank the referee for various suggestions which helped improve the exposition.

References

