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0. Introduction

In his thesis I. Bokor proved the following.

THEOREM. Suppose given «;, Bjemng,_ (S, 1<i<H, 1<j<H, and
assume that they are elements of infinite order for i < m, j < m', and elements of
finite order for i > m, j > m'. Denote by C,,, C;, the corresponding mapping cones.
Then

H
\/ Calz v Cﬂ]
j=1

i=1

if and only if

@) m=m.
(i) C,, ~ C,), i = 1,...,m, for some permutation o of {1, 2,...,m}.
(i) Vs G Vs Gy,

In this paper we want to study the case of spaces with one cell in dimensions 0
and 4n and a finite number of cells in dimension 2n. That is to say, we are going
to consider mapping cones of maps $*" ! — v *§2" It turns out that, for k > 2,
the previous theorem fails; see section 4 for an example. Nevertheless, the result
is true if we consider p-local mapping cones. Recall that the p-localization of a
mapping cone C, is homotopy equivalent to the mapping cone of the p-
localization «,, of the map o: C,,,. Moreover, each map Sf,, » v *S{, is the p-
localization of a map S™ —» v*5" and

[5G V¥ Sipn] = [S™, v S"]p

A basic reference for p-localization of groups and spaces is [4].
We shall prove the following.

THEOREM 1. Let p be a fixed prime integer. Given f;, g;: St~ ' — v*SZ,
1 <i< H,1<j< M, assume that they represent elements in n4,_,(v*S*"),, of
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infinite order if i < m, j < m', and elements of finite order if i > m, j > m'. Then

C

1

T<x

H
iyl Cri= j

9;i

if and only if
i) H=M,m=m'

(ll) V1H=m+1 Cf, = Vj'-l=m+1 ng-
(iii) C;, ~C,,,j=1,...,m, for some permutation o of {1,2,...,m}.
In some special cases, however, a wedge cancellation property similar to the

one in Theorem 1 holds for non-local mapping cones. In Section 4 we study two
such cases and we obtain the Bokor theorem as a Corollary.

1. The tools

We summarize in this section some facts that we shall use to prove our results.
Suppose

f
B— oy ——¢,

is a homotopy commutative diagram such that ¢, 6 are homotopy equivalences
and A is a Moore space K'(G,n). If n = 2 and Y is 2-connected, then there is a
homotopy equivalence : A — B completing the diagram; see [3]. In this paper f
and g will always be elementsin [ v $*"*!, v §*"Jorin [ v S5~ ", v SZ]. In the

second case, for instance, each homotopy equivalence
Cf = Cq

Arises from a homotopy commutative diagram

H qan—1 f K Q2n
VIS Ve S

wJ 1

H g4n—1 9 K Q2n
v S(p) v S(p)
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where ¢ and Y are homotopy equivalences. Observe that [ v*SZ), v¥ 21 is
isomorphic to the ring of k x k matrices over Z ,), the p-localization of the ring Z,
and the homotopy class of ¢ is determined by a matrix (¢;;) with entries

¢;; = degree <S(2p") = \/S(,,) 2 VS(,,) & AS?p’i)

where in; and g; are the obvious inclusion and projection. We shall denote this
matrix by ¢. Actually, we systematically employ this abuse of terminology and
denote by the same symbol a map and its matrix. It is clear that ¢ is a homotopy
equivalence if and only if det ¢ is a unit in Z ;). Analogously, ¥ is determined up
to homotopy by a H x H matrix with determinant a unit in Z,.

The non-local case can be treated in a similar way. In particular, the
homotopy equivalences correspond to unimodular integer matrices.

The machinery that follows is due to I. Bokor. Its interest lies in the fact that it
reduces the homotopy commutativity of the above diagram to some “matricial”
formulas.

We know, by the Hilton—Milnor Theorem, that

k k
Tan—1 <VSZ") = @D 14n-1(8*) @ D 74— 1(S* 7Y

i<j

the direct summands n,,_,(S*""!) are embedded in m,,_,(Vv*S?") by com-
position of certain Whitehead products: [1;, 1;]. The direct summands 7, ,(S>")
are embedded by the inclusions. Recall that

Man-1(S*=Z®T

where Z is generated by [1;,1;], if n # 1, 2, 4, and by the Hopf map ;, ifn = 1, 2,
4. Hence, any aem,,_;(v¥S?", n # 1, 2, 4, can be written in the form

R
||Mx-

( u[ln 1] + al)+ Z lj[ll’ j]a

i<j

where o' € T and q;;, g; ;€Z.Forn =1, 2,4, we get a similar expression replacing
[1:,1;] by the Hopf map #;. Observe that the Hopf invariant of the map
S4n—1 2, VksZn LN SZn iS
H(gca)=12a; if n#1,2,4
=a; If n=124
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We define H(x) as the k x k symmetric matrix with entries a;;, i # j, off the
diagonal and the Hopf invariants H(g;° «) on the diagonal.
Now, the suspension homomorphism

k k k
3 Tgn—1 (Vszn) -y, <VS2n+1> ~ (_B 7.C‘t’l(sln+ 1)

induces a monomorphism on @*T. Thus (a!,. .., a*)e ®* T is determined by its
image (Za?, ..., Za¥). This image coincides with o when n # 1,2, 4. We shall
again abuse the terminology and denote by Za the matrix

Tot
Sa=]| :
Tak
for all n.

Clearly H(x) and Xa characterise the homotopy class a.
Given maps ¥:S*" "' —» $*~! and ¢: v¥§2" — v*¥S2" 1. Bokor proved that

H(p°a) = oH(®)¢',  H(x°y) = yH(a),
Xpoa) = @pXa, oY) = yYZa. (1.1)
Here ¢' denotes the transpose of the matrix ¢, and y is the degree of the map

I//: S4n-—1 — S4n—1'
We shall also deal with maps

H K H K
o= (a,,...,a,,)eli\/s“"“, % SZ"} =@ n,,-, (\/ S“).

Then we define H(x) as the K x HK matrix obtained by juxtaposing the matrices
H(o;)

H(o) = (H(xy) -+~ H(og)).
Similarly
o= (Zoy - Zoy).
Given maps y: vES*~1 o vHS4"~1 and ¢: vKES?" 5 vKS§2" we obtain

H(geoo) = oHIy ® ¢'),  Z(@°a) = ¢Zo,
H(aoy) = Ho)y @ Ix),  Z(aoy) = Y Za.
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Here (¥;;) = ¥, Iy is the K x K identity matrix and

o' 0 0

0 ¢ - 0
I ®¢) = . . .

0 0 - ¢

Vil - Ynlg
(W®IK) =

Yaldx - Ypnlg

Assume finally that we have maps o, B;:8*""'— v*S»" 1<i<H,
1<j<H Takea=a; v --vagand f=p; v - v By,sothat C,~ v¥C,
and Cy > v¥ Cy . Tt is easy to see that

He,) 0 - 0 O o - 0
0 0 - 0 0 H) 0 - 0 0 - 0
H(w) = : S . .o :
0 0 - 00 0 -« 0 - 0 0 - Hay
o, 0 - 0
0 Zo, - O
Ta=|, . :
0 0 - Zay

and similarly for H(f) and Xp. Consider now a diagram

vHg4n—1 ® VH(VkSZ")

w} lw (1.2)

vHg4n—1 B v (vk s

Suppose ¥ = (y;;) with y;;€ Z, and

¢11 ¢1H
o= : :
¢H1 ¢HH
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where ¢;; is the kxk matrix corresponding to the obvious map
vhgim i, H(kg & H( kg2m) %, kg2 From (1.1) we easily get that
the diagram (1.2) is homotopy commutative if and only if the following
conditions hold.

¢;:H()d5 = Y;H(B;) for all i, j.
¢;iH()py =0 if | #]. )
d)jizai = lpjiZﬂj for all i, ] (II)

Analogous conditions can be obtained for the p-localization at any prime p.

2. The proof of Theorem 1

<. It is obvious.
=. (i) H = M is clear (by comparing the 4n-dimensional homology).

Consider now f= v#f;, g= v¥g;. We have C,~ C,. This homotopy
equivalence arises from a homotopy commutative diagram

H qan—1 / H(  kq2n
VIS T vI(VESE)

WJ ltp 2.1

H Q4n—1 g H H Q2n
VESG T vI(VTSE

where ¥ and ¢ are homotopy equivalences and the conditions (I) and (II) in
Section 1 hold.
When f; is of finite order H(f;) =0. So it follows from (I) in Section 1 that

Y=0 if j<m and i>m
But dety # 0. Thus m > m'. By the symmetry we also have m' > m, so that

m=m.
(i) Write the matrices ¥ and ¢ in the form

(¥ 0 (o, @,
'”‘(% %) (p_<d)3 o,

where ¥, is a m x m matrix and ®, is a mk x mk matrix. Let

()
¢ =\B, B
3 4



Wedge cancellation of certain mapping cones 7
In particular, we have
B,®, + B,®; =1 and B;®, + B,®, = I
Applying Lemma 6.4 in [1] it follows that there are matrices C and A such that
®, =0, +CB,®d; and @,=d,+ A0,

are units in the corresponding rings of matrices over Z,,.
Consider the diagrams

m Q4n—1 vifi me .,k Q2n
v S(p) v (V S(p))

wll J

— vT1g;
vms(4pn) 1 19j Vm(VkS(Z;))

H
H gan—1 VYmurh  H k 2n
Vm+130) > Vot t(Vims1Sp)

%l 1@ 2.2)

H
H 4n—1 _Vm+19; H k 2n
Vim+1 S(p) — =5 Vit t( Vst S(p))

We are going to prove that each is homotopy commutative, checking the
conditions (I) and (II) in each case. The conditions (I) on the second diagram are
obvious since H(f)=0=H(g;) if i,j>m. To check (II) let us write
®, = ®, + AD, in the form

q7>j,- =¢;+ Z Aj¢; foralli,j>m
1=1
Then

ajizfi = ¢ji>:fi = l//jiZQj

since ¢, Zf; = ¥; X, and ,; =0 for I <m, i > m. So the second diagram is
homotopy commutative and, since ¥, and ®, are homotopy equivalences, it
induces

H
V C.‘lj'
+

1

H
V Cfi:
+1

m m
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In order to prove the homotopy commutativity of the first diagram, let us
write ®, = ®, + CB,®, in the form

(—[)ji =¢; + Z CyB,d,; I<isml<j<m

I<m
Now
‘—PjiH(fi)a’;'i = ¢;H(f)9;; + IZ C;yB, ¢, H(f)¢;: B, Cj
=y;H(g;) + IZ C; B, (y,;H(g,))B;, C (2.3)

&jizfi = ¢ 2f; + IZ, CyB, ¢, 2f;

r>m

=v¥;Zg; + IZ, ¥,:C;B,Zg,

r>m

(2.4)

Observe that B,®, + B,®, = 0. Hence, if | < m, i > m,

H
Zl B¢, =0
Thus
H H
= ; Ir¢rtH(f = Z Blr ll[IHI{(gr )B
Z l// Blr gr)Blr

H
0= Z,l B, ¢, 2f; = Z,l ¥, B, Xf; = 2 VB, Xg,.

r>m

Since Y,; = 0if i < m, r > m. But {{,;; r,i > m} are the entries of the unit matrix

Y,. So, for [ < m

Z lpriBer(gr)B;r = 0’ Vl >m= Ber(gr)B;r = 0’ Vr >m

r>m

Y ¥,:B,Zg,=0, Vi>m=B,Xg, =0, Vr>m.

r>m
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Hence, from (2.3) and (2.4) we obtain
‘?’jiH(fi)a}i =y;;H(g;) and q—sjizfi =y;Zg;

and the first diagram in (2.2) is homotopy commutative. Since ¥, and ®, are
homotopy equivalences, we get

m

v Cfi :v ng‘
1 1

(1)) Without loss of generality we may now assume that all the elements f; and
g; are of infinite order. We argue by induction on the highest rank, say r, of the
matrices H(f;) and H(g)).

Assume that rank H(g;) = r if and only if 1 <j < t. Since dety # 0; it follows
that, for each j < t, there is an integer o(j) such that y,; # 0. Thus, by (I),

BiciyH(foi)Pioty = ¥janH(g;) = rank H(fo;) =r

rank ¢;,;) > r.
Moreover, if s # j
D5 Hfo))Plotir = 0= 5oy H( o) = 0
Now, since H(g,) # 0.
Vson HGs) = Dsoiy H(fsoi))Ps0y = 0= V50 = 0
if s # j. In other words, all the elements in the o(j ) column of the matrix s are 0

except ¥ ,(;)- Since ¥ is a unit in the ring of matrices over Z,, it follows that
¥ s(j) 18 @ unit in Z,) and that the map

j—a(j)
is 1-1. In particular, the number ¢ of elements f; such that rank H(f;) =r is
greater than or equal to the number ¢ of g;’s with rank H(g;) = r. By symmetry

we get t' = t. We shall suppose that rank H(f;) =rif and only if 1 <i<t.
Let

o '= (Cij))

where the C;; are k x k matrices with entries in Z ;.
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Thus
CotpiPios + s;j CotpsPsop =1

and, from Lemma 6.4 in [1], it follows that there is a matrix B; such that

Gjoy = Py + B, (s;j Ca(j)s¢sa(j)>

is a unit in the ring of k x k matrices over Z,,. Now, by (I),
<7>,-,,(,-,H (fa(j))$§a(j) = 9ot Hfo()Piot = Vioy H(g))

since

G5y Hf5(3)Puoiy = 0 ifus#s
=VpHlgy) fu=s

and Y, ;, = 0 for s # j. In addition
Pior ot = i Zfown + s;j B; Coys sotn Hoti
= ¥YjunZg; + s;j B; Cotiys(Wso( 295)
= Vjoy29;
Hence, the diagram

4n— 1 fau’) k Q2n
Sp  —— V'S

',I}'ﬂjbl l&ja(i)

S&r;— 1 9; vk S2n
is homotopy commutative and induces

C,~C, ifl<j<t

Finally, write

(P O,
*=\o, o,
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where @, is a tk x tk matrix. Again by Lemma 6.4 in [ 1] there is a matrix D such
that

o, = D, + DO,
is a unit. That is to say, there are matrices D;, such that, if ®, = (J)U),

b=+ Y Dudy t<i,j<H.

1<I<:

Let ¥ denote the minor of  formed by the columns i > t and the rowsj > t. ¥ is
clearly a unit. Now, using (I) and (II) and arguing as before, it can be easily
checked that the diagram

H
H qan—1 _Visih H k Q2
Vt+1S(pn) —— V(v S(p’;)

’ 1 1

H
H 4n—1 _Vi+19; H k Q2n
Vie1 S — 2 Virl(VISE)

is homotopy commutative. Therefore, it induces a homotopy equivalence

H H
V Cfi2 V ng
+1 t+

t 1

By induction we obtain (iii). This ends the proof of Theorem 1. O

3. Two Corollaries

COROLLARY 1. Given maps o;, p;:S*" "' —> v¥$?" 1<i<H, 1<j<M,
such that o; and f; represent elements of infinite order in n,,_,(v* S$*") if and only
ifi<mandj<m, then

H M
VC, and '\ Cy,
1 1

are in the same genus.

If and only if
@) H=M,m=m

(i) vE, C, and vE,, Cg, are in the same genus
(i) v™C,, and v™Cyg, are in the same genus
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Recall that two finite CW-complexes X and Y are in the same genus if and
only if their p-localizations at each prime p are homotopy equivalent X ,, ~ Y.

Observe that the spaces C,, Cs,i = 1,...,m, in Corollary 1 needn’t be in the
same genus, since the permutation in Theorem 1 (iii) depends on the prime p.
Take, for instance, «;, f;:S*" ! - 82V v §2" i = 1, 2, such that Za; = 0 = f;,
i=1,2and

2p 0 2p? 0
Hwo=Qf2», Hw»=<%q2ma,

2p* 0
Hwo=(g n&’ Hw»—fm 20

where p # g are prime integers.
Then, for any prime r # p,

Coitn = Cois Caan = Cpan
and

Cortr = Cpars Cariy = Cpoiy

but

Cr11(P) ‘/é Cﬂ\(ll)’ Cdl(‘]) i Cﬂz(q)

so that C,, is not in the genus of Cy, i =1, 2.

COROLLARY 2. Let f:S4~'—> vhSt, 1<i<H, and g;:Si '-
vk S 1 < j < M, and suppose that f; and g; ; represent elements of infinite order

in the corresponding homotopy groupsif 1 <i<m, 1 <j<m. Then

H M
vcfi:\/ ng

= ) H=M,m=m'"
(i) VB, ,C;,vT~vi, C, v T, for some wedges of p-localized 2n-
spheres T and T'.
(i) C,, v T;,=Cy v Tj, for some wedges of p-localized 2n-spheres T;and T,
j=1...,m, andfor some permutation ¢ of {1,2,...,m}.
Proof. Comparing the homology of the two given wedges, we easily get
H = M and Xk; = h;. Now, take k = max{k;, h;; <i<H 1<j<H}and
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consider
g A Vi o2 N o2
.Q4n—1 ] n
fiSGyt ———\SE o VS
a1 __ 9 \ican . \lq2
9;: 8ty 1 ——\/S& o VS

Clearly C; ~ C,, v V¥ M 82 C; ~C, v v hisin

Hence,
H H
VG =V¢,,
since X;(k — k;) = Z;(k — k;), and we can apply Theorem 1. O

4. Some results in the non-local case

The following example shows that Theorem 1 fails for non-p-local spaces.
Consider maps a;, B;S*"~* - §2" v §2"i, j = 1, 2, such that

0
. 0>, H(x,) = H(B,) = 0,

3
() o) ()

where y and z generate two cyclic subgroups of order 8 in m,,(S*"*!) which
intersection is the unit element. It is easy to see that the diagram

H(x;) = H(B,) = <

§4n—1,, gén—1 %1V v2S2ny y282n

where
1 000
1 0 0 3 8 8
t//=[]¢=
0 1 0130
00 0 1

is homotopy commutative by checking the conditions (I) and (II) in Section 1.
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Hence,

C, vC,=CsvCy,
Obviously C,, ~ Cy,, since «, ~ f,. However, for any homotopy commutative

diagram
S4n—1 %2 SZn v S2n

a b .

+1 c d)~ 4

S4n—1 B2 SZn v SZn

we have
(a b)()’) _ i‘<3y> =det® = +3 module 8.
c d/\z z

Therefore ¢ is not a unit, and C,, # Cg,.
Some special results hold, however, in the non-local case.

THEOREM 2. Suppose that o;, f;:S*" "' - v*S* 1 <i<H,1<j<M,are

given and

rank H(o;) = k = rank H(B;) ifand only if i<m,j<m'.

Then

M
Ca.': V Cﬁj
j=1

[ -]

i=1
if and only if
@) H=H,m=m'

(i) Va1 Co > Vi Cy,
(iii) Cp,~C,,,,j=1,...,m, for some permutation o of {1, 2,...,m}

Proof. < is obvious. We prove =.
Clearly H = M. Consider the homotopy commutative diagram

v Hgan—1 =V VH(VkSZ")

4 l

VHs4n—1 B=vB, VH(VkSZ”)
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where Y and ¢ are homotopy equivalences which induce the given homotopy
equivalence C, ~ C;.

Since ¥ is unimodular, for each j < m’ there is an integer o(j) such that
Vjsij) # 0. But det H(f;) # 0 and from (I) and (II) in Section 1 it follows that
det H(a,;) #0 and detgj,;) # 0.

Thus o(j) < mand ¢, = 0if s # j. Arguing now as in the proof of Theorem 1
we get m = m’ and Y,;, = 0 if s # j. So o must be 1-1 and Y and ¢ are of the
following form

l/j = y (p =
Y, ¥, o, O,
with ¥, ¥,, ®,, ®, unimodular matrices. Now it can be easily checked that the
diagrams

- L
S4n 1 i) Vk S2n

v’ja(i)l J¢ jot)

S4n—1 ﬁi , VksZn

H
4n—1 M i
Vg+lsn mtl R Vg+1(VkS2")

H
H 4n—1 Vi1 B H k Q2n
V1S —=5  Vue(VEST)

are homotopy commutative and induce homotopy equivalences between the
corresponding mapping cones

H H
Cy,, ~Cy, if j<m  and V Cu~ \ Gy O
m+1 m+1

The Factorisation Theorem in [2] is the case k = 1 of Theorem 1.

THEOREM 3. Suppose that o;, B;:S*" "' > 8" v 8", 1 <i<H,1<j<M,
represent elements of infinite order in n,,_,(S*" v S*"). Then

H M
V Ca-' = Vcﬂj
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if and only if H= M and

C, ~Cgy,  for some permutation o of {1,2,...,H}.

Proof. By Theorem 2 the mapping cones corresponding to maps «;, ; with
rank H(o;) = 2 = rank H(f;) are homotopy equivalent and can be cancelled.

Hence, we may assume that rank H(x;) = 1 = rank H(B)) for all i and j.
Each of the matrices H(x;) (and H(B,)) is a symmetric matrix of rank 1; that is

o=z, )
()

_ _ a,
Hence a;: $4" ! —*— §" v §2" ——— §?" v §?" has

B 10a,~/1a,-1—i_a,-0
H@) ={ _; N, 2a)l0 1) \0o o

and Cj; =~ C,,. Therefore, we may assume that

wa = (g o} me)=(3 o)

a;70,b; #0,1 <i<H,1<j< M. Clearly H =M.
Now the homotopy equivalence v#C, ~ v#C, arises from a homotopy
commutative diagram

yHg4n—1 M) VH(VZSZn)

'/IJ ltp
vHgan—1 v V(v 2 52
where y and ¢ are homotopy equivalences. Write = (y;;) and ¢ = (¢;;) with

¢;; 2 x 2 integer matrices. For each j there is an integer o(j) such that y,;; # 0
then, from (I) in Section 1, it follows

r u .
Bo(ii H0) P50 = V(i HBoii) = Paiiyj = <0 U) with r # 0

0 ’
¢st(aj)¢ta(j)j =0, s#0(j) = ¢sj = (0 Z,>, s # o(j)

=0= ¢st(aj)¢;j = l//st(ﬁs) = l/’sj =0, s#oa(j).
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In particular, r = +'1 and ¥,;; = 1, since  and ¢ are unimodular.

On the other hand, if Za; = <;j>, from (II) in Section 2 it follows that
j

rx; + uy;

Do 20t = < ) = Yo(i 2Bt

i

T, = (",yf> = Y58 =0 if s # a(j)
v'y;
Thus ' = 0, v" = 0 modulo |y;|. That is to say the matrices ¢s;, s # o(j), are 0
modulo |y;| and, hence, det¢ = det¢,;; = rv modulo |y;|. Thus v= +1
modulo |y;| since ¢ is unimodular and r = +1. Now it is easy to see that the
diagram

4n—1 % 2n 2n
h —L 5 8§"vS

w60

4n— 1 [}«111) 2n 2n
S — > 8§"vS

is homotopy commutative and induces a homotopy equivalence C,; ~ Cy_ .

O
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