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Introduction

Let N > 1 be a square-free integer, and let f, g and h be three holomorphic cusp
forms of weight 2 for the group I'o(N). We assume that f, g and h are all
normalized eigenforms for the Hecke algebra, and are all newforms of level N.
The function F(z,, z,, z3) = f(z,)g(z,)h(z3) is then a newform of weight (2, 2, 2) for
Lo(N)>.

The triple product L-function L(f ® g ® h,s) = L(F, s) is defined by a con-
vergent Euler product (1.6) in the half-plane Re(s) > 5/2. Using an in-
tegral representation of this function discovered by Garrett [9], we show that
it has a holomorphic continuation to the entire s-plane and satisfies a simple
functional equation (Theorem 1.1) when s is replaced by 4 — s. The sign in this
functional equation is given by the formula &= —II,y¢, Wwith
e, = —a,(fa,(g)a,(h) = £1 given by the product of the p-th Fourier coeffi-
cients. The proof follows the argument given by Garrett for the case N = 1, but
the genus 3 Eisenstein series E(Z, s — 2) which appears in the integral represen-
tation of L(F, s) depends on the local constants ¢, for all primes p| N. Because of
these considerations, which are essentially local in nature, we use an adélic
version of Garrett’s argument, following Piatetski-Shapiro and Rallis [31].

The FEisenstein series which occurs in the integral considered in [31] is
constructed from a section ®(s) of a certain family of induced representations
I(s). If this section is factorizable, then the global integral, (7.7) below, can be
unfolded and written as a product of local ‘zeta’ integrals (2.3), which involve the
local Whittaker functions determined by f, g and h, and the local components of
®(s). At primes p not dividing the level, there is a natural choice of ®}(s) e ,(s)
and, for this choice, the local zeta integral gives precisely the local factor
L,(F,s+2) times a normalizing factor, cf. (2.5). This ‘spherical’ vector (I)f,(s) is
also an eigenvector for the local intertwining operator M (s): I (s)— I (—s).
Moreover, its value (I>:(0) lies in an irreducible subspace of the induced

*Partially supported by NSF Grant DMS-9003109.



144  Benedict H. Gross and Stephen S. Kudla

representation I,(0) which arises via the Weil representation associated to a split
quadratic form in 4 variables, (i) of Proposition 8.2. Our main local problem is to
find an analogous section <I):(s)e 1,(s) for primes p| N. As mentioned above, this
@:(s) will depend on ¢, and it will lie in the space of Iwahori fixed vectors in I ,(s).
The calculation of the local zeta integrals for such vectors is given in Section 4.
Our choice of ®(s), given by (5.10), is an eigenvector for the action of an ‘Atkin-
Lehner’ operator on the space of Iwahori fixed vectors, see (3.9), and has the
property that its value at s = 0 arises from the Weil representation associated to
the quaternion algebra over Q, which is ramified if ¢, = — 1 and splitif ¢, = +1,
see (ii) of Proposition 8.2. This particular choice is not an eigenvector for the
local intertwining operator, but is shifted by a vector which gives zero in the
local zeta integral, see (5.5) and (5.6). These facts allow us to obtain a good
functional equation for the complete L-function, Proposition 1.1. In fact, our
calculations of local zeta integrals etc. at primes p|N, together with some
additional work at the archimedean place (cf. Section 6) will allow us to give a
precise functional equation and to prove holomorphy for any triple of newforms
of arbitrary weights (>2) for I'y(N) and the same square free level N.

We then turn to a study of the central critical value L(F,2), using the
Weil-Siegel formula [24,33] for E(Z,0). We obtain an expression for
L(F,2) = Q(F)- A(F), where Q(F) is the period

8- tnS

QF) = —

F(z,, z,, z3)|*dx, dy, d
JI‘O(NP\@’I (215 25, 23)|* dx, dy, X, dy,dx;dy;

with t = #{p:p| N} and A(F) is a real algebraic number in the subfield of C
generated by the coefficients of the Dirichlet series of L(F, s). We then give an
interpretation of A(F) as a “height pairing”, which allows us to show that
A(F) = 0, and to give a simple algebraic criterion for its vanishing.

More precisely, assume that the sign in the functional equation of L(F,s) is
+1, and let B be the definite quaternion algebra over Q which is ramified at the
odd set of primes where ¢, = —1. Let R be an Eichler order of reduced
discriminant N in B, and let X be the curve over Q associated to R, which was
introduced in [13]. Then X is the disjoint union of n rational curves, where n is
the class number of R. Let A be the codimension 2 cycle consisting of X
embedded diagonally in the 3-fold X3. We show that A(F)is the “height pairing”
of the F-isotypic component Ay in the cycle group.

Unwinding the definition of this pairing gives us the following formula. The
global correspondence of Jacquet-Langlands and Shimizu between automor-
phic forms on GL, and on B> (which, in this case, can be proved by Eichler’s
methods [7]) shows that the eigenforms f, g and h determine real valued
eigenfunctions A;(f), 4:(g) and A;(h) on the set of left ideal classes of R. The
theorem of multiplicity one for these groups shows that each eigenfunction is
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well defined up to scaling. If 2w; is the order of the group of units in the right
order R; of the class I;, we have

(7= wlAi(f)Ai(g)Ai(h)?
i=1 Wi'li(f)z ) Wi'li(g)z ) Wili(h)z .

A(F) =

We note that when N = p is a prime, R is a maximal order in B and the left
ideal classes of R correspond to the isomorphism classes of supersingular elliptic
curves in characteristic p. For eigenforms f on I'y(p) with rational Fourier
coefficients, the eigenfunctions 4;(f) on the set of supersingular curves have been
extensively tabulated by Mestre and Oesterlé [28]. For square-free N < 300 and
f with rational Fourier coefficients, Birch [2] has calculated the integers A;(f)
using the theory of ternary quadratic forms. We thank these authors for
generously sharing their data with us, some of which appears tabulated in
Section 12. We also wish to thank Buhler and Zagier for their computational
assistance on the problem of determining the values L(F, 2); this was a welcome
check on the many constants in the final formula.

We end the paper with a conjecture on the first derivative L'(F, 2) when the
sign in the functional equation for L(F, s) is —1 (and, hence, L(F, 2) = 0). Let X
be the Shimura curve associated to an Eichler order of reduced discriminant N
in the indefinite quaternion algebra B ramified at the even set of finite primes
where ¢, = — 1. Let A be the codimension 2 cycle of X embedded diagonally in
the threefold X3. Loosely speaking, we conjecture that

L(F, 2) = Q(F)-<Ap, Ap)™*

where Ay is the F-eigencomponent of A in the Chow group and <, Y®B is the
Bloch-Beilinson height pairing. Actually, one must first modify A to obtain a
class which is homologically trivial, and the eigencomponent A only is known
to exist in the quotient of the Chow group by the radical of the height pairing.

Special values of the triple product L-function have been considered by a
number of people, beginning with the fundamental work of Garrett [9]. Other
work includes that of Blasius and Orloff [3, 30], Garrett and Harris [10] and
Harris and Kudla [17]. This last paper describes the central critical value in a
more general case and proves a conjecture of Jacquet concerning the vanishing
of such values, but for the special case of weight (2, 2, 2) and square free level it
gives less precise information than is obtained in the present paper. Of
fundamental importance in [17] and, implicitly, in the present paper is the work
of D. Prasad [32], which gives the uniqueness of certain invariant trilinear forms
and characterizes their existence in terms of epsilon factors.

The existence of a good function functional equation for the triple product L-
function was first shown by Shahidi [36]. His more recent work also establishes
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the finiteness of the number of poles and holomorphy at the center of the critical
strip [37], Cor. 6.9, p. 582. Finally, T. Ikeda considered the functional equation
[19] and gave a precise description of the poles [20] of triple product L-
functions.

1. The triple product L-function

Let N > 1 be square free, and let f, g, and h be three (not necessarily distinct)
cuspidal newforms of weight 2 on I'o(N). Assume that the Fourier expansions of
f, g, and h are given by

f=Za,q"
g = z"n?lbnq" (11)
h = En?lcnqn

with a; = b, = ¢, = 1. For a prime / not dividing N, we write:

1 —ax + 1x?=(1 —oyx)(1 — ox)
1 —byx +Ix?=(1— Bx)(1 — Bix) (1.2)
1 —cx+ Ix2 =1 —y,x)(1 — y;x).

Then || = |B) = |y = ['* [8, 40, Chapt. 7]. For a prime p dividing N, the
coefficients a,, b,, and c, are equal to + 1. We put

g, = —ayb,c,. (1.3)

Define the modular form F = f ® g ® h of weight (2, 2, 2) for [y(N)? by:

F(zy, 25, 23) = f(z1)9(z2)h(z3) (1.4)
for (z4, 25, 23)€$>. For p| N, we have an involution u, = w, X w, X w, on the
space of forms of weight (2, 2, 2) where w,, is the Atkin-Lehner involution on the
space of forms on I'y(N), and

Flu,=¢, F for all p|N. (1.5)
Indeed, f|w, = —a,"f, and similarly for g and h.

We define the triple product product L-function L(f ® g ® h,s) = L(F, s) by
an Euler product, convergent in the half plane Re(s) > 3:

L(F, s) =[] Li(F, s)- ]| L,(F, s). (1.6)
N pIN
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Here

Ly(F,s)=(1 = oyl ™) A = oy Byl =)™ - (1 — g Byl =)~ (1.7)
has degree 8 in I”*. The bad Euler factors

L,(F,s)=(1—a,b,c,p™) " '(1 —a,b,c,p' ™%~ ?2 (1.8)
have degree 3 in p~°. The absolute convergence in Re(s) > 3 follows from a
comparison of L(F, s) with {(s — 3)8.

Our choice of local L-factors for F follows a general recipe of Serre [35],
applied to the 8-dimensional l-adic representation o, ® 6, ® 0, of Gal(Q/Q).
Here o, 0,, and o, are the 2-dimensional Galois representations associated to
the newforms f, g, and h. Similarly, we define the archimedean L-factor. Set

Le(s) = 2m)~*T(s).

Then

L (F, s) = Te(®)le(s — 1)* = 2n)° "*T(I(s — 1), (1.9)
as the Hodge numbers of the motive attached to F are h3° = h%3 =1 and
h*' = hp'2 =3,

Let

A(F, s) = L (F, s)L(F, s) (1.10)
in Re(s) > 3, and define

&F,s)=¢g N0~ 5s (1.11)

where ¢ = —II,ye, = +1.

PROPOSITION 1.1. The function A(F,s) has an analytic continuation to the
entire s-plane and satisfies the functional equation:

A(F, s) = &(F, s)A(F, 4 — s).

This will be proved in Section 7 using the local results of Sections 2—6. If we
put

A*(F,s) = NBA(F, s), (1.12)
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then the functional equation of Proposition 1.1 takes the simpler form
A*(F, s) = ¢ A¥(F, 4 — s). (1.13)

In particular, we see that

£= - l_[ (—apbye,) = (- 1)ord’:2L(F’s) (114)
pIN

as all other factors in A*(F, s) are non-zero at s = 2.

2. Local factors

In this section we turn to local considerations and describe the local zeta
integrals which arise in the Garrett and Piatetski-Shapiro, Rallis integral
representation of the triple product L-function.

We begin with the p-adic case. Let G = GSp;(Q,) be the similitude group of
the six dimensional symplectic vector space QS (row vectors) with standard
symplectic form given by

= ()
_13

and let v:G — Q, be the scale map. Let P = MN be the maximal parabolic
subgroup of G with

M = {m(a, V) = (a vtaﬂ>

and

N= {n(b) = <1 I;)‘b = 'beM3(@,,)}.

Let K = GSp,(Z,), and let Z; ~ Q. be the center of G.
For seC, we consider the induced representation I(s) = Ind§ ?* consisting of
smooth functions (i.e., locally constant) ®(s) on G such that

aeGLy(Q,), ve Q; } (2.0)

®(nm(a, v)g, s) = |detal*** *[v| "7 3d(g, s). @1

Note that such functions automatically have compact support modulo P, and
that Z; acts trivially in this representation.
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Let  be the standard additive character of Q, with conductor Z,,, and, for an
irreducible admissible and infinite dimensional representation 7 of GL,(Q,), let
W (n) be the Whittaker model of = with respect to y [21].
Let

H = {h = (hy, hy, h;)eGL(Q,)* |deth, = deth, = deth,},

and recall that H is embedded as a subgroup of G [9, 31]. Let

o 36 5 7)

and let

x,-e@,,},

Uyo={ueU|x; + x, + x3 = 0}.

For a triple of irreducible admissible infinite dimensional representations of
my, m, and w3 of GL,(Q,), and for Whittaker functions W,e #'(n;), i = 1, 2, 3,
define a function W on H by

W(h) = Wy(h)W(ho)Ws(hs). 2.2)

Then, for @(s) e I(s), the local zeta integral associated to W and @(s) is

Z(s, W, ®(s)) = J ®(6h, s)W(h)dh, (2.3)
cUo\H
where
1 1 1 =1 0 0]
0 1 0 -1 1 o0
5 0 0 1 -1 0 1 Sp(Z) ”
11 1 1 o0 o ofP 4
0 0 0 —1 1 0
o 0 0 -1 0 1

and dh is an H-invariant measure on Z; U \H which will be specified below.
Note that J is a representative for the unique ‘non-negligible’ orbit of H in the
flag variety P\G. Recall [31] that P\G may be identified with the space of
maximal isotropic subspaces in the symplectic vector space Qf. The group H
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has a finite number of orbits in this space, and the orbit of ¢ is the only one for
which the stabilizer of a point does not contain the unipotent radical of a proper
parabolic subgroup of H. The isotropic subspace corresponding to ¢ is the span
of the bottom three rows of this matrix. This particular choice of ¢ is due to
Garrett and Harris [10].

If n,, m, and w5 are unramified principal series representations of GL,(Q,), let
W?e W (n;) be the unique GL,(Z,) fixed vector with W(e) = 1, and let W° be
the corresponding function on H via (2.2). Also let ®°(s)€ I(s) be the unique K
fixed vector with ®°(k,s) =1 for ke K. Note that, because of the Iwasawa
decomposition G = PK, any function in I(s) is determined by its restriction to K.
Then [9 and 31, p. 57]

Z(s, W°, ®°(%s)) = 5 l(s) L, (n, s+ %), 2.5

where 7 = ; ® m, ® m3, and L, (=, s) is the local Langlands L-factor associated
to m and the degree 8 representation of the L-group of GL,(Q)3, and

by(s) = £,(2s + 2)¢,(4s + 2). 2.5.1)

Note that if n;, 7,, and 75 are the representations of GL,(Q,) determined by the
p-th Hecke eigenvalues of our cusp forms f, g, and h of Section 1 when p’[ N, then

Ly(m, s) = L,(F, s +3) (2.6)

for the local factor defined in Section 1. Note that the shift here is due to the
convention that the Langlands L-function will have a functional equation
relating s to 1 — s, while the functional equation of the Eisenstein series and
hence of the global analogue of Z(s, W, ®(s)) involves s and —s.

In order to obtain precise information about the central value of the triple
product L-function, we will need to have an analogue of (2.5) when p| N. Note
that a local factor L (F, s) has been defined for such p by (1.8) of Section 1. We
then define L,(n,s) by (2.6), i,

Lym,s+3)=L,(F,s+2)=(1+¢p ) 1 +egp )2 2.7

Our main result in the next two sections will relate L,(n, s + 3) to a zeta integral
as in (2.5), but with W° and ®° replaced by functions invariant under the
Iwahori subgroup.

Since N was assumed to be square free, the triple of local representations 7,
75, and 5 determined by the newforms f, g, and h for p| N are twists of the
special representation Sp on the locally constant functions on P' ~ B\GL,(Q,)
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modulo the constant functions (B the standard Borel subgroup) [S5, 6], by
unramified quadratic characters w; satisfying

wy(p) =a,,  w(p)=b,, and ws(p)=c,.

We need a formula for the unique Whittaker vector in these representations
which is fixed by the Iwahori subgroup

To(p) = {(‘C’ 2>GGL2(ZP) ¢ =0mod p}

The following result can be extracted from [5]:

LEMMA 2.1. Let 6 = Sp ® n be an unramified special representation with trivial
central character, and let n be the associated unramified quadratic character. Let
WO e #(c) be the unique T o(p) fixed vector with W°(e) = 1. Then

wo (¢ _ [n(@)lal if ord,a>0
1 0 otherwise

and

wol((® ) _ —p 'n(a)lal if ord,a > —1
1/\ -1 0 otherwise.

Note that since

1 1
GLy(Z,) = Tolp)u U ( ’f)(_l )ro(p), 28)

xmod p

the values given in Lemma 2.1 give a complete description of W°.
For our triple of local components n;, 7,, and =3, with quadratic characters
Wy, ®,, and w5, we set

w = wla)zw3, (29)
and
e=¢,= —ayb,c,= —w(p). (2.10)

For the Iwahori fixed Whittaker vectors W? e # (n;) furnished by Lemma 2.1,
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we again let W be the function on H given by (2.2). As in Section 1, let
u, = (W, wy,, w,)e H. (2.11)

Then
LEMMA 2.2.

p-pPTP

Wolu, = —o(p)W° = —a,b,c,W°.

Proof. This follows from the fact that W?|w, = —w;(p)- W?. O

3. Iwabhori fixed vectors

Next we must choose a function in I(s) for use with W of Section 2, in the local
zeta integral. Let

¢ =0 mod pM3(Zp)},

b
Kolp) = {(‘j d)eK = GSpy(2,)

and note that the reduction mod p of K(p) is the maximal parabolic subgroup
P(F,) in GSp,(F,). The usual double coset decomposition of GSp,(F,) with
respect to this parabolic yields a decomposition

3
K= .[_JO Ko(p)w:Ko(p), (3.1
where
13—1

1.

w; = 0 "leK. (3.2)
13—1
-1, 0

b
Note that the double coset of w; is precisely the set of all <j d>eK such that

the rank of ¢ (modp) is i.

For 0 <i < 3 let ®i(s)eI(s) be the function whose restriction to K is the
characteristic function of K(p)w;Ky(p). Note that ®°(s) is the characteristic
function of Ky(p); in the next section we will compute its zeta integral against
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WP. Also note that the normalized K fixed vector in I(s) is
3 .
Di(s) = ._ZO D(s). (3.3)

Moreover, for any fixed s, the four functions ®'(s) form a basis for the space
I(s)%°® of K,(p) fixed vectors. This basis will not turn out to be the most
convenient one.

Since the image in G of the element u, defined above normalizes K(p), we
may consider the action of this element (which acts as an involution) in the space
I(S)KO(I,).

LEMMA 3.1.
q)i(s)lup — p(2i73)(s+ 1)(1)3*1'(8)‘

Proof. For convenience, let

0 1,
’1_<—p-13 )eGSp3(@p).

We want to calculate the value (D"(wjn, s) as a function of i and j. Note that

where the last factor on the right hand side lies in K, and has ¢ of rank
3 — j(mod p). Thus this last factor lies in the double coset Ko(p)w;_;Ko(p) in
(3.1) and we get

(Di(Wj'l, )= |P|_3s_3lpj|2s+25i,3 -j= P(Zi_a)(ﬁl)(si,a—j,

as claimed. 0

Setting

Di(s) = p~ i DDi(s), (34)
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we have
i) u, = D>7'(s). (3.5)

Next observe that conjugation by u, carries the fixed maximal compact
subgroup K = GSps(Z,) into another maximal compact subgroup
K' =u,Ku,', and that these are the only maximal compact subgroups
containing K(p). The normalized fixed vectors then have the expressions

3 ~ .
Di(s) = ), pT VD), (3.6)
i=0
and
3 . ~ .
Dy(s) = Y, pP T VD(s) = Dk (s) | up (3.7
i=0
Note that these two vectors actually coincide at s = — 1, and this is due to the
fact that the trivial representation of G occurs as a submodule of I(—1)
(= C*(P\G)).

Define two more functions in I(s)¥°® by
3 .~ 3 . . .
Di(s) = D, (£ D)'P(s) = 3, (£1)p T H¥(s). (3.8)
i=0 i=0

These functions, whose significance will be explained in Section 4 below, satisfy
i (s)|u, = £ O (5). (39)

Moreover, we remark that for s # — 1 fixed, the four functions @ (s), @, (s), and

@z (s) form a basis for I(s)e®,

4. In which we compute a p-adic zeta integral

We now consider the zeta integral Z(s, W°, @(s)) with W° as above and with

O(s) € I(s)*°P). Recall that ¢ = ¢, = —a,b,c, is fixed as above. It is easily checked
that
Z(s, WO, ®(s)|u,) = Z(s, W°|u,, D(s)) = eZ(s, W°, d(s)), 4.1)

and, hence, that Z(s, W° ®(s)) vanishes identically if D(s)|u, = —eD(s).
Moreover, by a direct calculation, we have
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LEMMA 4.1.
Z(S, WO, (I)K(S)) = 0.

Proof. Now

Z(s, W°, @) = j @ (h, s)WO(h) dh.
ZGUNH

Since ® is right K-invariant, we may substitute for W° its K-invariant
projection:

(WO, (h) = J WO(hk) dk,

H

where vol(K,dk) = 1. But this projection is zero. In fact, via the Iwasawa
decomposition of H and the triviality of the central characters, it suffices to
verify this for

() )

in which case we obtain, via (2.8), a sum of values W°(hk) as k runs over a set of
representatives for the (p + 1) cosets of Ky /(I'o(p)®> n H). These values are
given by Lemma 2.1, and it is easy to check that their sum is zero. O

Thus the zeta integral Z(s, W°, ®(s)) for any ®(s) € I(s)*°® is proportional to
Z(s, WO, Dk ().
Using (4.1) we find that

Z(s, W, D(s)) = 2[Z(s, WO, B°(s)) + ¢Z(s, W°, B'()].
By the preceeding Lemma we find that

o1 (1 + Ep—Ss—S)

0 HO
1oy 26 WO 8%, 4.2)

Z(s, WO, ®(s)) = —p

and thus

i1 (1 + sp—3s-3)
(1+ep7h

= —2ep* (1 — ep S Y2 Z(s, WO, ®°(s)). (4.3)

Z(s, WO, @%(s)) = 2 [1 —&p ] Z(s, W°, ®%s))
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Next we (brutally) compute the zeta integral Z(s, W°, ®°(s)), where we recall
that ®°(s) = ®°(s) is supported on PK y(p).

PROPOSITION 4.2.

1
(1+ep 31 +ep 1)

Z(s, WO, 8°(s)) = —(p+ )7 Pp7> 72

Proof. First write

H=HU (p 1> H°, (4.9)
where
H® = {he H|ord,(det h;) = 0 (mod 2)}. 4.5)

Here we continue to abuse notation and view the matrix (p 1) as embedded

diagonally in H. Setting
Ky = GL,(Z,)’ nH,
we have
H°=2Z;U-T-Kyg (4.6)

with U and Z; as above, and with

== (" (" ) (i)

Note that T n Z; has order 2.
We now fix our choice of measures. First, note that any he H® can be written
as h = z-u-t(a)  k for the Iwasawa decomposition (4.6), and that the map

a, a,, a;€ Q) } 4.7

ZexUxTxKy— H®

(z, u, t, k) zutk
is proper and surjective. On the product space we take the measure

la|~2d*z dud”adk,



Critical values of triple product L-functions 157

where |a| = |a,a,a5] and d*a = d*a, d*a,d “a; with vol(Z,,da;) = 1. We also
take du = du, du, du; with vol(Z,, du;) = 1, and require vol(Z,,d*z) = 1 and
vol(Ky, dk) = 1. The pushforward of this measure to H® defines a Haar measure
dh on this group, and since H® is an open subgroup of H, determines a unique
Haar measure on H, which we also denote by dh. Note that, if we let

u(r) = <<1 x{3>, <1 x{3>, (1 x{3>>’ 48)

then {u(x)| xe Q,} is a set of coset representatives for U,\U. If we write a coset
representative h = u(x)t(a)k € H, then the measure dh on the open set Z; U, \H°
is given by |a|“2dx d *adk, while on the open set

Z U0\<p 1) HO ~ ZU\H®,
where we again use representatives # on the right hand side, the measure is

p?lal"2dxd*adk,

as is easily checked.
Thus

Z(s, W°, ®°(s)) = J

ZGUNH

g ()

4.9)

| @%Sh, W (h) dh

and we write Z,(s) and Z,(s) for the two terms on the right hand side.

First, noting that the inverse image in Z;x U x T'x K of a fundamental
domain for the action of Z; U, in H® is a fundamental domain for the action of
this same group in Z; x U x T x Ky, we obtain

Zy(s) = j@, (@3 %K @O(Su(x)t(a)k, s)W O (u(x)t(a)k)|a| 2 dx d*a dk (4.10)

with the normalization of measures fixed above. We decompose K using (2.8)
componentwise, and we must evaluate the two functions in the integrand in
(4.10) on each coset.
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Note that the support of ®°g, s) is the set P- Ky(p), and write

g = ou(x)t(a)k = nm(a, v)k,

% %
with k = (c d)eKO(p), «eGL;(Q,) and ve Q. Note that ¢ = 0 (mod p) and

de GLj3(Z,), and that it is possible, by adjusting a if necessary, to assume that
d = 1. Since v(8) = 1 and g 6H, we may set v = 1 and absorb any further scale
into the Ky(p) component. Now, using the second expression for g,

(09 13)g = ta_l(c’ 13)’ (411)

while, using the first expression,

x x X
a, a 4as . 2 A
3a, 3a, 3a,
0 0 0| —a;! a;t O

0 0 0] —a* 0 a3!

©, 13)-g = 'k =(C, D),

with C, D e M;(Q,). Since the rows of (¢, 15) span a free summand of Z$, we must
have

ldeta| ™' = |a,azas]"! max (Ixl, la;a;l).
isj

Here, the right hand side is the maximum of the absolute values of the 3 x 3
minors of the matrix (C, D)k~ 1.

Observe that by right K(p) invariance, it suffices to calculate our functions
when each component of k is one of the coset representatives 1 or

1 x; 1 .. . .
( ?)( 1 ) in (2.8). Since D is invertible, we see that k can involve at most

e, ')

Suppose that k = 1, so that,

x o x x
. 3a;, 3a, 3a, ’ 4.12)
—a;' ayt 0

—a;' 0 oa;
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and
a, a, ay
wle=]10 0 O
0 0 O
Thus

ldeta| ™! = |a;azas]” x| = |a,a,a, _lm_a.X (Ix1, la;a;)),
LJ
and the condition

¢ =x"Ya;a;) = 0 (mod p)

159

4.13)

(4.14)

(4.15)

(so, ¢;j=x" laiaj) is equivalent to |a;a;| < |x| for all i, j. This amounts to

2 <|xl, =123

Note that this last condition implies (4.14).
LEMMA 43. If keTo(p)® N H, then

lal>**2x| 7272 if |af| <Ix|i=1,23

0 otherwise,

OO>Su(x)t(a)k, s) = {

with |a| = |a,a,a,|, and

l//(x)lalz lf |ai| S 19 l = 11 2, 3
0 otherwise.

WOu(x)t(a)k) = {

Proof. From the calculation above, it only remains to note that

a; a? la)? if ja) <1
W (( a; 1>> =W (( 1>> B {0 otherwise,

via our assumption of trivial central character and Lemma 2.1.

Thus we obtain the contribution

vol(T'o(p)* N H) ﬁ o |57 (x) dadx
a;| <|x

la|<1

from the trivial coset. This integral is relatively easy to evaluate.

(4.16)

@.17)

4.18)
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LEMMA 4.4. The expression (4.18) is equal to

(p + 1)~3(1 _p—Zs—Z)—3(1 . p—25—4)—1
x[=p 2721 —p 2 4 +(1—p Hp * (1 +p 2N

Proof. First the piece of the integral in which |x| > 1 gives

ﬁ 51 |a|25+2dxa'ﬁ . Qp(x)lxl—Zs—de =(01- p—2s—2)—3_(_p—23_2)'

(4.19)
The remaining part is
J |a|23+2|x|—2s*2 dx d*a
laf| <Ix|<1
=(1 _ p—l)p—4s—5(1 + p—2s—1)(1 _ p—2s—2)—3(1 _ p—2s—4)—1. (420)
|

Next suppose that

1 x 1 ’
(9

so that
x X
T3g, Y1 G B4 o3 3
1 2 3 _
C,D) = =" Y(c, 1). 422
(. D) a;! 0 0|0 a! O 1 *.22)
a;? 0 0[]0 0 a3t

Here (c, 1) is the bottom 3 by 6 block of an element of K(p). Thus
ldeta| ™ = |a,a,a3] ™ ay|* = |aya,a5]” P max (x + a;x)l, la;a;), (4.23)
ij

and the condition

= 0 (mod p) 4.24)

1S
=
o
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amounts to
la;1? > |x + a3x}], and |ay| > la,l, las|- (4.25)

Note that this condition again implies (4.23), and we obtain

LEMMA 4.5. If k is in the T'o(p)* N H coset with representative given by (4.21),
then

la|>*3a,| "% if (4.25) holds
O —
PO(Su(x)t(a)k, s) { 0

otherwise.

and

—p "W(x + aixylal® if lail < p, and |a,], las] < 1
WOuGxjak) = {0 o othe;wise o

Note that the condition |a?| < p is equivalent to |a;| < 1.

The contribution of this coset to (4.7) is then

_p—l(p + 1)_3 j |a|25+2|a1|~4s—4‘//(x + a%x'l)dxdxa. (426)
lay)las) <la;|<1
|x+a2xy| <|a?|

The factor Y(x+a2x}) is 1 in this range, and we obtain

la|?s*?|a,| "%~ *dx d"a
lasllas) <la;| <1

bx+aix)| <lai|

= J et |a1|2s+4|a2a3|2s+2 dx an
<
1
laahieals

— p—4s—5(1 _ p—2s—2)—2(1 _ p—2s—4)—1~ (427)

We remark that result is independent of x,. Moreover, it is easy to check that the
. . . . 1 .
other cosets with precisely one component involving < { > yield the same

answer. The total contribution of these 3p cosets is thus

___3(p + 1)—3p—4s—5(1 _ p—2s—2)—3(1 _p—Zs—4)—1‘ (428)

. . . 1
Finally, we observe that if more than one component of k involves ( { ),
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then the argument of ®° fall outside of P- K(p), and the coset in question yields
zero. Combining these results, we obtain

Z(s)=—p > Ap+ 1) 31 —p ¥ )31 —p B H!

X[1+42p 273 _ pdsd _pp=ds=s], (4.29)

Next we consider Z,(s). First, it is not difficult to check that

@° (5 <” 1>h, s> = p=s1QOSh, 5). (4.30)

Thus we may use the expressions given in the Lemmas above for ®°(s) on the
relevant cosets. The corresponding expressions for W° are given in the
following:

LEMMA 4.6. If ke 'o(p)?, then

wo ((” 1) u(x)t(a)k)

_ Y(px)(p)plPlal® if |pai|l <1, |pa3| < 1, |paj| < 1
0 otherwise.

Here |pa?| < 1 is equivalent to |a;]| < 1.
If k is in the To(p)® coset with representative given by (2.7) above, then

WO ((” 1) u(x)t(a)k)

—p~ W(p(x + aix))a(p)lplPlal® i |pail < p, |pa3] < 1, |paj| < 1
0 otherwise.

Note that in this last expression, the condition for non-vanishing may be
written as

la)l <p and |a,l, las] < 1.

The contribution of the coset of k = 1 is then

P A p + D) w(p) J lal?** 2|x| =2~ 2y (px) dx d*a, (4.31)

lai| <|x|
ai| <

and this is equal to
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o(p)p™> 731+ p) (1 —p 2T —p YT
x[1—p t—p 2 24+p *77] (4.32)

Next, each of the terms in which precisely one component of k involves

1 .
< { )contrlbutes:

—(p+ 1)7°p*w(p) a]**2|a,) %~ *Y(p(x +aix))) dx d"a.
lazllasl <la,l<p
|x +aixi| <lail

(4.33)

Again the factor Y(p(x +ajx})) is 1 in the given range, and the integral becomes

|a1|2s+4|a2a3|2s+2dx dxazp—Zs—l(l _p—2s—2)—2(1 _p—Zs—A)—l'

Ix|<1
lazl,las] < 1,la,|<p

(4.34)
Thus the total contribution of such cosets is
3(1+p) Pep ¥ 1 —p 21— pT YL (4.35)
This yields
Zys) = +p) ep > 31 —p B )31 —p=H!
X[24+p t—=2p 22 _p 45, (4.36)
Combining these terms we obtain
Z(s, W°, ®%s))
=Z,(s) + Z(s)
— —(P + 1)—3p—2s—2(1 _ p—25—2)v3(1 _ p—2s—4)—1
[1 + 2p—2s—3 _ p—4s—4 _ 2p—4s—5 _ 28p_s_1 _ SP_S_Z
+ 2ep-3s—3 + gp_55_6]
_ e (1 _ ap—s—Z)(l _ sp—s—l)Z(l _ p—2s—2)
= — 1 3 2s—2
(P + ) p (1 __p—2s—2)3(1 _p—2s—4)
1
= —(p + 1)_3p—25—2 (4.37)

(1+ep* (1 +ep 1)

This is the claimed value! U
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COROLLARY 4.7.

Z(s, WO, @%(s)) = &,(5) B% L,(F,s+2),

where L,(F, s + 2) is given by (2.7), b,(s) = {,(2s + 2){,(4s + 2), and

Ep(8) = 2e,(p+ 1)1 (1 = g,p " 1)?h, ().

5. Local intertwining operators

Several additional facts will be needed when we consider the functional
equation. Recall that there is an intertwining operator

M ,(s):1,(s) = I ,(—3s)

defined, for large real part of s, by the integral
M ,(s)D(g) = L ®d(wsng, s)dn. (5.1

This integral has a meromorphic analytic continuation to the whole s plane and
the normalized operator

1
M;(S) = a—(s) Mp(s)’

with
a,(s) = {,(2s — 1){,(4s — 1) (5.2)

is entire and non-vanishing for all s [31]. Since M (s) is G intertwining, it carries
1,(sy%°® to I,,(—s)*° and respects eigenspaces of u, and K and K’ fixed vectors.

For example,

M,6104(5) = 7 Ox( =9 (53)

with

b,(s) = {,(2s + 2){,(4s + 2) (5.4)
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as before. Similarly, we must have
M ,(s)®(s) = 2, ()PR(—5) + B, ()[Pk(—5) + &Pk (—3)], (5.3)
for some meromorphic functions a,(s) and f,(s). Note that by Lemma 4.1
Z(—s, WO, M (s)@%) = a,(s)Z(—s, WO, Di(—5)). (5.6)

We will now determine the function a,(s).

PROPOSITION 5.1.

e, (L—ep ™2+ N1+ P
(1 —ep' 51 —p'™*) '

,(s) = &p

First we have

PROPOSITION 5.2.

~ 3 -~
M, (s)@° = ,ZO ()P (=),

where
e (L=p H1—=p)
éO(S) =Pp ¢ (1 _ pl—4s)(1 _ pl-Zs)
e 1_ —11_ —2s——l)
i) =p st El — ﬁl_l(s)(l _ppl—ZS)
1 — -1
&) =p ((1—_7’1—))
and
&) =p >3

Proof. We use a result of Igusa [18].
LEMMA 5.3. (Igusa)

wa (1-p%  [A—p
Sym,(2,) detxdx = 1 (I—p 775 | 1—p
ymu(£, i= - — "
' P d=r" if nis odd.
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Now for 0 <j < 3, we compute

M, (5)@°(w)) = J O%(w;n(b)w;, s)db.

Sym] P

Write
X .
b= <'y i) with xeSym;_;(Q,) yeM;_;;(Q,) zeSym;(Q,).

Then, as in (4.11),

0, L3)wsn(b)w; = ‘a” e, 1;)

(1 —=ylx O
-\ —z|y 1)

and so
-1 x 0
ry 1 4
and
c= X —x = 0 (mod p)
_tyx—l —z+'yx_1y

— j-2s-2
JX_I_Omodpldetxl dxdydz

y=0mod
ZEOmodg
=p—j(3—j)p—j(j+1)/2 |detx|j_zs‘2dx.
x~"!'=0modp

Since the measure |det x| =2 dx on Sym; _ (@,) n GL, _;(Q,) is invariant under
inversion, the last integral becomes

|det x|~ 2dx
x=0modp
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which is just
p~ G 2s= DG p/2]
times the integral whose values are given in Lemma 5.3. Since

61'(8) = pj(—s+ I)Mp(s)q)o(wj)’

we obtain the claimed expressions. O

Note that, for any s, the e-eigenspace for u,, is spanned by the vectors

PO(s) = DO(s)(1 + eu,) and Wi(s) = D)1 + eu,). (5.7)
It follows from Proposition 5.2 that

M (s)¥° = (&o + e&3)¥(—3) + (& + &) P! (). (5-8)
On the other hand, since

O (s)(1 + eu,) = (1 + ep**3)Wos) + p** (1 + ep* )P (s), (59
we may use (5.3) and (5.8) to determine M ,(s)¥'. It is then a routine, though

tedious, matter to solve for «,(s). This was done using Mathematica; we omit the
details. O

For use in the proof of the functional equation in the next section, we now let

Dy (s) if p{ N

3ls) = {é,,(s)‘l- 2(s) if p| N, with e =¢, = —a,b,c,, (5.10)
where, as before,

Ex(8) = 26,077 + 1)1 — £,p )2, (s), (5.11)
in the second case. Note that

E0)=2e,p M (p+ )31 +e,p M2 (5.12)
We may then summarize our calculations:

Z(s, W2, ®i(s)) = L Ly(m, s +3), (5.13)

’ by(s)
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and

Z(@)) Z(—s, WP, ®(—5)) (5.14)

p

Z(—s, W2, M, (s)®}) = 6,(s)

Here a,(s) and b,(s) are given by (5.2) and (5.4), respectively, and

1 if pf N

05(8) =1 85(=9) Byl ©=cp- if p|N. (5.15)

$p(8)  a,(s)

6. The archimedean case

Next we review the archimedean case. Since we have assumed that the newforms
£, g and h all have weight 2, the necessary local factors were computed by Garrett
[9]. The groups G, P, H, etc. are defined as in the p-adic case, with R replacing
Q,. We let G* denote the subgroup of G for which the scale v(g) takes values in
RZ, and we fix the maximal compact subgroup

K= {k - (_Z Z)eSp3(R)‘k=a+ ibe U(3)}, 6.1)

of G*. The archimedean local components of the triple of automorphic cuspidal
representations determined by our newforms are all the discrete series represen-
tation of GL,(R) of ‘weight’ 2. For the discrete series representation of even
‘weight’ 2n the ‘holomorphic’ vector is given in the Whittaker model, by [12]

1 x\(y 0\/z 0 e(x)|y|"e"2™e?m if y >0
WZn — 3
0 ((0 1)(0 1><0 z> k") {0 ify <. €2

cosf sin@

. . Define a function on H by
—sinfl cosf

Here e(x) = ¢2™* and k, = (

W2(h) = WE(hy) W' (ho) W' (hs).

Note that the support of W liesin H* = HN(GL,(R)*)* = HN G*.

As before, a section ®(s) € I(s) is determined by its restriction to K; and so, for
any even integer 2n, we let ®*"(s) denote the section whose restriction to K is
given by

D>"(k, s5) = (det k)>". (6.3)
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We want to compute the local zeta integral Z(s, W?", ® ~2"(s)), again given by
(2.3), with this choice of W and ®(s). Noting that H* = Z;-SL,(R)? we fix the
invariant measure dh on the coset space ZzU,\H' by taking coset
representatives

h = u(x)t(a)k,
with u(x) and t(a) given by (4.8) and (4.7), respectively, and with
kg = (kg,, ko,» Ko,).
Then let
dh = |a|? dx d*a dk,,
with dky = d6,df,d0; and d*a=d"a, d*a, d*as;, for d*a;=|a;| "' da;, and

for df; and da; the standard Lebesque measure on R. We then obtain

Z(s, W2, &~ (s)) = J @~ 2"(5h, syW>"(h)dh
ZU\H

=%8n3 J J ®~ 2"(Su(x)t(a), s)W 2" (u(x)t(a))|al % dx d”a.
R J(R})?
(6.4)

Here observe that 87° = vol((SO(2)%) and that the intersection of Z; with
SL,(R)? has order 2.

The calculation which follows is substantially that of Garrett and Harris [10];
we include the details for the sake of completeness and because we need precise
information for our functional equation.

First we determine the Iwasawa decomposition of Ju(x)i(a). Write
ou(x)t(a) = nm(a, 1)k with ke K. Then

(0, 1,)- du(x)t(a) (;1; > =i'a" 'k, (6.5)

where ke U(3) is the element associated to k. On the other hand,

i—iaf i—ia% i—ia§ a; !

0, 1) s - } . ;1

O 1-dun@(, 7 J=i\" T T “
1 0 1 %
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Setting

z=x+i(a} + a3 + a3),
we obtain

deta] = [allz| !,

with |a| = |a,a,a,], and

|N|

detk = —.
zZ

Thus

O~ 2" (6u(0(@), 5) = a2+ 2|~ <i>

||

6.7)

(6.8)

(6.9

Substituting this expression into the zeta integral and using the formula for

W?" we obtain

Z(s, W2, @~ (s))

5\ —2n
=473 j f Ia'2s+2nlzl—2s—2<ﬁ> e(x)e—27t(af+a§+a§)dx d*a.
R J(R)? z

Setting a? = y;, and substituting —x for x, this becomes

3 @ o [fo [foo
7 . , . |y|s+n|z|—2s-2+2nz—2ne(_x)e—2n(yl+y2+y3)dxd><y.
- 00

Recalling that [10]

Jw e(—x)(x + iy)"%(x — iy) " #dx

(—2mi)*(2mi)? J‘ ® 11—
_ Ve SR t+ 1) 1p—1g-2mp(1 420 4y
T@r@  Jo
and setting a =s+ 1 + nand f =s + 1 — n, we obtain

(_ 1)"(27I)2s+ 2
I's+1+ml(s+1—n)

-
2

(6.10)

(6.11)
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times the integral

o [ ®© [ ©
|pfsne = 4mon 4yt D 4 =11 gp g%y,
o Jo Jo Jo

=(4n)—3s-—3nr(s+ n)SJ‘ (t + 1)—3s—3n+a—1tﬂ—1dt
0

IF'BIr@s+3n—a—p+1)
I'Gs+3n—a+1) '

=(@m)~ 373" (s + n)®

Collecting terms and simplifying we obtain

I'(s +n)3C(s+3n—1)
TG+n+ DI2s+2n)

(6.12)

Z(S, WZ", (D—Zn(s)) =(_ 1)n2—4s—6n+ 17T_s_3"+5

Now, as in Section 1, since the Hodge numbers associated to F are
pon=3.0 — p0.6n=3 _ | and pAn-2:2n-1 _ p2n-lan-2 _ 3

the predicted T factor for a triple of forms of weight 2n is
L (F,s)=Tc(s)le(s — 2n + 1)°,

and thus

L(F,s+3n—1)=L(n, s +% =Qn) % *!T(s + n)’I'(s + 3n — 1),

while (©1)
by (s) =3 2I(s + HI(2s + 1).
Thus
Z(s, W, @727(s)) = £ (5) ﬁ Ly(m, s +3), (6.14)
with

n_3n+2 F(S + l)r(zs + 1)
£ = (-t e S

=(—1)"z3"*2[(2s + 2n — 1)(2s + 2n — 2)- -
- (25 + 1)(s+n)(s+n—1)--~(s+1)]_1. (6.15)
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On the other hand, we know by [24, Lemma 4.6] that

M(s)® 2" = a (s, 2n)D~2"(—s), (6.16)
with

(XOO(S, 2}1) — (_ 1)n2—65+ 37'69/2

T2sF2s — HrQs — 1)
“Te+n+ D +n+ YT+ Ml —n+ DIG —n+ G —n)

(6.17)

(Note that, because of our normalization, we must replace s by 2s in Lemma 4.6
of [24]. Also, in that Lemma a factor of i’ was omitted from the expression for
d, (s, 1) and the second I" factor in the denominator of that expression should be
L,[(s + p,—1)/2].) Again we let

DI (s) = Eo(8) 1 DL2"(s), (6.18)

and, as in (5.13), we write

Z(—s, W, M(s)0%) = 500(5);‘”8 Z(—s, W, @ (—s)). (6.19)

We obtain, after a short calculation,

Sl —5) by(s)

= —1. 6.20
£ ane) =" (6.20)

Ou(s) =

Note that for n = 1 (the case of ultimate interest for us),

7{5

s+ D2s+ 1) (621)

Cls) =

and so ¢,(0) = —n°.

7. The global functional equation

In this section we will assemble the local results of Sections 2—6 to obtain the
functional equation of L(s, F).
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Let G,and Zg, P = MN, H, U, U,, etc., be the global analogues of the groups
considered in Section 2, and for each place v of Q, denote by G,, P, etc., the
corresponding completions. Let

K =[]K,,

where K, is the maximal compact subgroup of G, fixed in Section 2 and Section
6.ForseC,let I(s) = ®,I,(s) be the global induced representation, consisting of
smooth, right K-finite functions on G(A) which satisfy the global analogue of
(2.1) for all ae GL;(A), ve A™ and ne N(A). For an entire section O(s) € I(s), we
have the Eisenstein series

Eg s, ®= ) @0y s) (7.1)
7eP(@\G(@)

which is absolutely convergent for Re(s) > 1. As is well known, this series has a
meromorphic analytic continuation to the whole s plane and has a functional
equation

E(g, S, (I)) = E(g’ =S, M(S)(I)), (72)

where M(s): I(s) — I(—s) is the global intertwining operator which, for Re(s) > 1,
is given by the integral

M(s)@(g) = JN(A) d(w;ng, s)dn. (7.3)

Now let F denote the function on (GL,(Q)\GL,(A))® associated to
F =f® g ® h of (1.4). Explicitly, we define a compact open subgroup

Lo(N) =[] To@) x [1 GL,(Z,) (14)
pIN piN

of GL,(A), and for any ge GL,(A)*® we write g = y-g,, -k with ye GL,(Q)>,
d.€GL> (R)?, and keI ((N)3. Then we set

F(9) = j (9> ) 2F(g0(0)), (1.5)

) b,
Wherea for 9o = (gla g2> g3) Wlth gj = (z] dl>€GL;(R),

j J

J(Gws 1) = (c1i + dy)cai + dy)c;i + ds)det(g19293) ™ > (7.6)
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For a factorizable section ®(s) = ®,P,(s)eI(s), the basic formula due to
Garrett [9] and to Piatetski-Shapiro and Rallis [31] is

Z(s, F, ®) = j F(R)E(h, s, ®)dh
ZA)H(Q)\H(A)

=[1Z.(s, W, ®,), (1.7)
where Wy = ®, Wy, is the global Whittaker function determined by F and

[12], and where Z (s, W; ,, ®,) is the local zeta integral considered in section 2.
Note that, by the functional equation of E(g, s, ®),

Z(s, F, ®) = Z(—s, F, M(s)D). (7.8)
We now choose the local components of @(s) as in Section 2; let
D¥(s) = ®, Di(s), (7.9)

where the function ®}(s) is given by (5.10) for the finite places and by (6.18) for
the archimedean place. By (5.13) and (6.14) we have

PROPOSITION 7.1.

Z(s, F, ®") = J F(h)E(h, s, ®*)dh = 1 A(F, s+2), (7.10)
ZG(A)H(@)\H(A) b(s)

where A(F, s) is as in Section 1, and b(s)={*(2s + 2){*(4s+2).

Here (*(s) = n~*2I'(s/2){(s), so by the functional equation {*(s) = {*(1 — s) we
have a(s) = b(—s). On the other hand, by (5.14) and (6.19),

Z(—s, F, M(s)®") = <]‘[ 5v(s)>-@- Z(—s, F, ®'(—s))
v b(s)
ais) 1
:(1‘[ 5,,(s)>-@ 5 A(F, —s + 2). (7.11)
This yields
AF, s +2) = (]‘[ 5,,(s)>-A(F, -5+ 2). (7.12)

Shifting s by 2 and using the values of d,(s) given in (5.15) and (6.20), we obtain



Critical values of triple product L- functions 175

the functional equation

A(F, s) = —(]‘[ sp>~N‘5”1°A(F, 4—5), (7.13)

pIN

claimed in Section 1.

We will now show that A(F, s) is entire. This fact should follow immediately
from the results of Tkeda [20], provided we were to check that our ‘bad’ Euler
factors agree with his. Instead of doing this, we will sketch a proof that there are
no poles based on the results of [26] and [25], [34].

Consider again the integral representation

AF,s +2)= j F(h)b(s)E(h, s, ®*)dh,
ZA)H@)\H(A)

of (7.10). By the functional equation, it suffices to show that the right hand side of
this expression has no poles in the half plane Re(s) > 0. Let S = {oo} U {p: p| N}
and observe that we have

b(s)E(g, s, ¥*) = (]l Co(9)” ‘b.,(S)> “bs(s)E(g, s, D°),

where by(s) = [,s b, (s), and

DHs) = @, %(5) ® (® v DX, (NN ®pyn Pk, (5))-
By (5.11) and (6.21)

&) hy(s) = &,p° M + 1’1 —e,p 1) 72,
and

E(8) Thoo(s) = — 1 TT(s + 2)['(2s + 2).

These factors are holomorphic in the half plane of interest. On the other hand, it
is proved in [26] that for any standard section ®(s) (the restriction of such a
section to K is independent of s) which is K, invariant for p¢ S, the normalized
Eisenstein series bg(s)E(g, s, ®) has at most simple poles at s = 1,4 —1 —1.
(Note that the variable s of [26] must be replaced by 2s to obtain the Eisenstein
series of our present paper.)

Since the central character of our Eisenstein series is trivial, the residue at the
point s = 1 is a constant function of g, while the residue at s = 4 is a (regularized)
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theta series associated to a split binary quadratic form [25]. These results hold
for the series bg(s)E(g, s, D%(s)) as well, since ®%(s) is a finite linear combination of
standard sections with entire coefficients. But since E(g,s, ®%s)) is an
eigenfunction with non-trivial eigencharacter for K, its residue at s = 1 must

vanish. Thus the only possible pole of A(F, s + 2) in the half plane Re(s) > 0 is at

1

=1

To exclude this pole we observe that the restriction to H(A) of the regularized
binary theta series can be shown to be orthogonal to all cusp forms on this
group.

Thus we have:

COROLLARY 7.2. A(F, s) is entire.

Note that the key ingredients in the proof—the fact that the residue of the
regularized Eisenstein series at s = 4 is a theta series series associated to a split
binary quadratic form and the fact that the restriction of such a series to H(A) is
orthogonal to all cusp forms-require only that the product of the central
characters of the triple of cusp forms be trivial. Thus the same argument shows
that the triple product L-function is entire under this condition.

Actually, Tkeda [20] shows that, up to twisting each of the given triple of
cuspidal automorphic representations 7; of GL(2, A) by a character of the form
|det g|* for some s;€ C, the triple product L function can only have poles when
the product of the central characters is a non-trivial quadratic character w. In
this case, if K is the quadratic extension corresponding to w, there exist
quasicharacters y,, y, and y; of K with y,x,x3 = 1 such that =n; = n(y;). The
poles of the Langlands L-function (with functional equation relating s to 1 — s)
then occur at s =0 and 1.

It is perhaps enlightening to describe the Eisenstein series which occurs here
in classical language. We will do this only in the case N = p is a prime; the
general case goes along the same lines.

For convenience we write K =[], K, where K, = GSp,(Z,) is our fixed
maximal compact subgroup of G, and let

T = G(Q) ~ (GR)* - K) = GSp4(2). (7.14)
Similarly, we let K’ = Ko(p) x [ [, 2, K, and let
I = GQ) N (GR)* - K') = Ty(p), (7.15)

be the corresponding congruence subgroup of I'. Note that WK) = wK’) = 7"
so that, by the strong approximation theorem,

G(A) = G@G(R)* K = GQ)GR)* K.
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Since E(g, s, %) is left G(Q) and right K’ invariant, it suffices to evaluate it for
geG(R)*, which we view as an element of G(A) with trivial components at all

finite places. Moreover, since ®’, is an eigenfunction of K ,, we may assume that
g = g, has the form

9w = nx)m(v) = (1 f)(v ,v_1>, (7.16)

with ve GL4(R)*, and we set

Z=x+iy=x+ivv =g 15)€H;. (7.17)
We also observe that
LEMMA 7.3.

PQ\G(Q) ~ (P(Q) n DN,

In particular, a set of coset representatives for P(Q)\G(Q) may be taken to lie in
Sps(2).

Thus we obtain

E@g, s, ®)= Y  ®L0g 9P,0) (7.18)
yeP(@)NIN\I'

and it only remains to evaluate the two factors of each term.
b
Ify= (a d)eG(@) with v(y) = 1, we write yg = nm(a, 1)k in the Iwasawa
c

decomposition, with « € GL;(R)* and have

1
o 13)'vg'<i_f >= ia” 'k (7.19)
3

as in (6.5). On the other hand, we find that

(o, 13)'yg-(i_1133> =i(cZ +dyv !, (7.20)

and thus,

det(x) = |[det(a)| = det(v)-|det(cZ + d)| "1, (7.21)
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and
det(k) = det(cZ + d)|det(cZ + d)| 1. (7.22)

Thus, recalling (6.18) and the fact that det(y) = det(v)?, we have
LEMMA 74.
@ (vg, 5) = E(s) " 1det(cZ + d)~?|det(cZ + d)|> >~ 2-det(y)***

where
E(8) = —n3(s + 1)(2s + 1).

Next note that we must have ¢, = —a,b,c, = —1, since N =p. Thus,
recalling (5.10), (5.11), (5.4),

DOi(s) = &, ()P (),
with

(1 _ p—2s—2)(1 _ p—4s—-2)
(1 +p—s—1)2 :

&6 = 3 p 4 1)

Now by (3.8) and the definition of ®i(s) given after (3.2), we have, for yeI as
above,

() = (—1y7p 7700, (723

where r,(c) is the rank (mod p) of the matrix c € M 3(Z). Collecting these facts we
obtain the expression

PROPOSITION 7.5. If N = p is a prime, then

E(Z, s) = det(v) " 2E(g, s, ®°)

s g1 s(L—p 1 —p ™7
=5 (s + D2 + DpH(p + 1) 5

x Y (=1yrOp @t det(cZ + d)~2|det(cZ + d)|” 2 det(y).
yePAIN\I"

Here, y = (j Z) €Sps(Z) and r,(c) denotes the rank(mod p) of c.
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Note that E(Z, s) is a (non-holomorphic) Siegel modular form of weight —2
for I'" = I'y(p), while E(Z,5) is a (non-holomorphic) Siegel modular form of
weight 2 for I = I'y(p).

8. The Weil-Siegel formula and consequences

In this section we will recall the relation between the central value of the
Eisenstein series E(g, s, ®) of Section 7 and a certain type of theta series
associated to a definite quaternion algebra. This relation is the Weil-Siegel
formula as extended in [24,33], and in our present situation, it provides an
explicit formula for the central value of the triple product L-function. If, for our
given F, the sign &= —nplN(—apbpcp) in the functional equation of L(F,s) is
—1, then L(F,2) = 0. Thus we will restrict our attention to the case in which
¢ = +1. In fact, it can be shown that when ¢ = — 1, we have E(g,0,®") =0 as
well, where E(g,s, ®") is the Eisenstein series which occurs in the integral
representation (7.10).

Let S={p:p|N and ¢,= —a,b,c,= —1}U{0} be the even set of places of
Q determined by F and let B be the unique definite quaternion algebra ramified
at the places in S. Let R = B be an Eichler order with reduced discriminant N.
Note that R is unique up to local conjugacy. Let v: B — Q be the reduced norm,
and let V, (, ) be the rational vector space V =B with quadratic form
v(x) = (x, x). Here the associated bilinear form is given by (x, y) = trp(x)")
where x+ x' is the main involution of B, and trg: B — Q is the reduced trace.

Define a Schwartz function ¢ = ® ,¢,€ S(V(A)) by

¢, = characteristic function of R, (R,=R®z7Z,) (8.1)
and

Qo(x) = e~ 2™, (8.2)
Then let

?=0®¢®peS(V(A)) (8.3)

Let G = GSp; and let G! = Sp, be the kernel of the scale map. Also let O(V)
be the orthogonal group of V, (, ). We will describe O(V) more explicitly in
terms of B™ in a moment. Recall that for our fixed additive character i there is a
Weil representation @ = w, of G'(A) on S(V(A)3), which commutes with the
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natural action of O(V)(A) [42]. The theta function

(g, r; ¢) = VZW (A(g)P)r'x) (8.4)

is left G'(Q) invariant as a function of ge G'(A) and left O(V)(Q) invariant as a
function of reO(V)(A). Moreover, since B is a division algebra so that the
quadratic space V, (, ) is anisotropic, the space O(V)@)\O(V)(A) is compact
and the integral

I(g, ) = j O(g, r; ¢)dr (8.5)
O(VXQ\O(V)A)

is absolutely convergent. Here we normalize the invariant measure dr so that
vol(O(V)(@)\O(V)A), dr) = 1.
For P = MN and K as in Section 7, we have an Iwasawa decomposition
G(A) = N(A)M(A)K, g = nm(a, v)k,

with ne N(A), ke K, and where, for ae GL;(A) and ve A ™, m(a, v) is given by
(2.0). Although a and v are not uniquely determined by g, the quantities

la(g)l = |detala  and  [v(g)l = vla

are well defined.
For seC, g, e G(A) and @ e S(V(A)?) as above, we let

D191, 8) = (@(g)PNO) - lalg)] > (8.6)

Here the subscript ‘flat’ refers to the fact that the restriction of this section to K is
independent of s. Note that by the formulas for the action of M(A) and N(A) in
the Weil representation, the function g, — (w(g,)@)(0) lies in 1(0), and, hence, the
function g, — ®(g,, s) lies in I(s). For any g € G(A), we let

_ (1 )
g1 = v(g)_l 9,

and set

(Dflal(g’ S) = lv(g)l_ss_aq)flat(gb S)‘ (87)
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It is not difficult to check that @, (s) lies in the space I(s), the global induced
representation defined in Section 7. As in that section, we may then form the
Eisenstein series E(g, s, ®f,,), Which extends by analytic continuation to a
meromorphic function on the whole s plane. The function E(g,s, @y,,) is
holomorphic at s = 0 and the Weil-Siegel formula [24, 33] asserts that

E(g, 0, @y, = 21(g, §). (8.8)
Note that the factor of 2 occurs because we are on the unitary axis [24].

We next must determine the local components of @, (s) = ®,Dgy,, ,(S).
First we consider ¢, the characteristic function of R, = B,,. Let

R, = {xeB,|trp(xy") € Z, for all yeR,}, (8.9)
and let
Pplx) = L Y(trp(xy"))e,(y)dy, (8:10)

be the Fourier transform of ¢,, where dy is the self dual measure on B, for the
pairing <{x, y) = Y(trg(xy"). Then it is easy to check that

LEMMA 8.1.
¢, = K, the characteristic function of Iip,
where

p~' if pIN

K, = Vol(R,, dx) = {1 i pIN.

Also recall that the group SL,(Q,) acts on S(V,) via the Weil representation
o'V determined by our fixed y, and that, for this action [21]

1
“’“)((_1 )) o(x) =¢, L W(trs(xy)o) dy = &,¢,(x), @.11)
where we recall that

. - {—1 if B, is a division algebra 8.12)

1 otherwise.
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Similarly, the group Sps(Q,) acts on S(V;) ~ S(V,) ® S(V,) ® S(V,) via the Weil
representation w = »®, and the restriction of this representation to the
subgroup SL,(Q,)? is the outer tensor product of the representations " on the
three factors. In particular, the element w; of (3.2), for 0 < i < 3, acts by (8.11) on
the last i components of an element ¢ = ¢, ® @, ® @, and acts trivially on the
other components.

PROPOSITION 8.2. For any prime p, let §,= ¢, ® ¢, ® ¢,eS(V3) with ¢,
given by (8.1).
(i) if p{ N, then for all ge G'(Q,),

D5100(9, 0) = (@(9)2,)(0) = Pk, (9, 0),

where ®y (s) is the normalized K, invariant section of I,(s), as in Section 3.
(ii) If p|N, then for all ge G1(Q),),

Dp1ar (9, 0) = (0(9)P,)N0) = D, (9, 0),

where ¢, is as above and <I>‘;{p(s) is the section defined in Section 3, (3.8).

Note that (ii) is the main reason for our choice of the functions (I)ﬁ{P(s) in
Section 3, and also that the section Q;f’p(s) ‘twists away’ from @y, (s) as we move
away from the point s = 0.

Proof. For convenience, we will write ¢ for @,. First note that it suffices to
prove these identities for g = ke K, n G(Q,). Moreover, for any element
ke Ko(p) n G*(Q,) we have a decomposition

a b\ (1 bd\(d' 0y 1 0
(a6 e ) 19

Note that the element d here lies in GL3(Z,). Now we have

LEMMA 8.3. ¢ = ¢, is K((p) invariant.
Proof. By (8.13) and the standard formulas for the action of Sp,;(Q,) in the
Weil representation,

1 0
o(k)p(x) = w(% tr(bd ™~ (x, x»)-(w ((p ey 1)) <p> (x'd™).

Since

1 0\ _ 1 —pd~'c¢\ _,
pdtc 1)"" o 1 )M
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we have

1 0 1
w<<p d-lc 1)) Pp(xtd™ )= L Y < —5ptr@” e(y, y)))l//(tr(d “1x, Y)o(—y)dy,

where, by Lemma 8.1, ¢ is x> times the characteristic function of (R,)* < V3.
Thus this integral becomes

K J & Y(—3ptrd ™ e(y, IW(tr(d ™ (x, y))dy.

The following fact is easily checked

LEMMA 8.4. If y, and y, are in Iig, then trg(y,y3)€K," Z,, where K, is as in
Lemma 8.1.

Now let d " 'c = T ='Te M,(Q,). Then

te(T(y, y)) = Z T;:2v(y) + Z: 2T, jtrp(yiyj) €2k, 7,
i<j

i

and so

Y(—3ptr(d 'e(y, y) =1
for ye R3. Thus our integral is just

1 ifxeR}
0 otherwise.

Kp ﬁi’ Y(te(d ™ (x, y))dy = {

Since, for xe R}, Yy(3tr(bd ™ '(x, x))) = 1, we obtain w(k)p = ¢, as claimed. [J

Since, by the Lemma just proved, the function g — (w(g)@)(0) lies in the space
1,(0)%®), it suffices to compute the values of this function on the w;s for
0 <j < 3. But, as remarked above, w(w;) acts componentwise, so that

(@(w))e)0) = (e,x,)".

Thus
(w(g)(/’)(o) = Z (Epr)jq)j(g’ 0)9
J

as claimed. 0
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In the archimedean case, since B is definite, it is not difficult to check that if
P =P ® 0o ® 0, With @ (x) = € 2™ as in (8.2), then

(@(9)P,)(0) = @3, (g, 0), (8.14)

for all ge GX(R). Here ®2"(k, s) = (det k)>" as in (6.3). In fact, since Vf is positive
definite of dimension 4, it is well known (see, for example, [23]) that the
Gaussian @, is an eigenvector for the action of K, = U(3) with character
det(k)?. On the other hand, the K -types in the induced representation I,(0)
occur with multiplicity 1 [27], so that the function g+ (w(g)®.,)(0) must be a
multiple of ®2 (-, 0). Since both functions take the value 1 at g = e, we obtain
(8.14). Also, taking the complex conjugate, we have

D.%(9, 0) = @7, (9, 0) = (9)d,(0). (8.15)

Now let ®°(s)=®,®"(s)e I(s) be the section chosen in Section 7, with local
components given by (5.10) and (6.18). Then we define

¥ 9) = "G 9 [ | ¥%,9p, 9 H O, (g, 5)

= éoo(S)'l;[v &,(5)- @(g, 3). (8.16)

Recall that &,(s) and £ (s) are given by (5.11) and (6.21), respectively. Note that
the section

(g, 5) = ¥(g, 3) = P, H DK, (Gps 9)° H @, (9p> 5)

is not standard, i.e., its restriction to K is not independent of s, but that the
difference

Dyice(g, 5) = Vg, 5) — Prya(9, )

has at least a simple zero at s = 0. Here ®y,,,(s) is the standard section associated
to our fixed Schwartz function @ of (8.3). Now

E(g, s, ®°(s)) = &(s5)" ' Eg, s, W), (8.17)
where

&(s) = &) Il]v &,H(5). (8.18)
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Then

E(ga §’ "P) = E(g7 5’ (i)) = E(g7 S, (D) = E(g’ S, q)flat) + E(g, S, (I)diff)'
Thus by the Weil-Siegel formula (8.8)
E(g9 S, (Dh(s))ls=0 = é(o)_ lE(ga S, ‘P)ls=0

= £(0) " '[E(9, 5, Ppia)ls=0 + E(9; S, Pige)ls=0]
= &(0)"'21(g, §). (8.19)

9. A formula for L(F, 2)

Using the Weil-Siegel formula of the last section together with the integral
representation (7.7) and (7.10), we obtain the following formula:

L(F, 2) = 2b(0)5(0) "' Lo,(F, 2)™* f F(g)l(g, §)dg. ©.1)
Z (M H(@)\H(A)

Note that

b(0) = n~2((2)?,
Ly(F,2)=@2m)"°
o(0) = —m°

and
£,(0) = Zapp_‘(p + 1731 + app“)‘z. 9.2)

Using these values and the fact that IT, ye, = — 1, this becomes
N
LF,2)=2"Y"2?— [ (p + 1)’(1 +¢,p7")?
24% S

: f F(g)l(g, )dg, (9.3)
Zg(A)H(Q)\H(A)

where t = #{p:p|N}.
Next we want to reduce this integral to a more classical form. Suppose that Q
is a function on h* which is left invariant under the action on I'y(N)3. For
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geH(A), write g = y-g,, -k with ye H(Q), g, € HR)* = (GLj (R))> n H(R), and
ke K, = To(N)>n H(A); and let

Q) = Qg.(i)) = Ay, 25, 23), 9.4)
where g.,(i) = (z;, 25, 23). Note that Q is left Z;(A)H(Q)-invariant and right K’

invariant, where K’ = K/, - K; with K, = SO(2)*. Let Z' = Zz(A;) n K, and
note that

Zs(A) = Zg(QZs(R)*Z'.
Also observe that

H(Q)Zg(A)nHR)* K = HQ)Z;(R)*Z' n HR) "K',
= Zg(R)*Z' - To(N)>.
Recall that in section 4 and section 6 we have fixed measures dg, on each of
the groups H, and that the measure dg on H(A) is the corresponding product

measure. Then, noting that vol(SO(22)}/(+1)*)=n* and that |a|”2dxd*a
=1y~2dxdy, and using the observations above, we have

j Q(g)dg = J Q(g)dg
Zo(AH(@)\H(A) HQ)Zo(R)* Z\H@H(R)* K,

Q(g)dg

JZG(R)+Z' ‘To(N\H(R)* K

Qg.,,)dg.,
.Lo(NP\(SLz(R)axl'\K'f) 6} dg

( (p+1)’3)'f (g..)dgo

pIN ZT(NP\SL,(R)?

=< <p+1)—3)"—- f Q(z) du(z), 935)
Co(N\H?

with

3 dx.dy;
du(z) = [] =LY
=1 Y

Y

Here the factor I1,y(p + 1)72 is the index of K’ in Ky, and is equal to the
volume of the group Z\K}. Taking Q(g) = F(g)l(g, ®), with F(g)=
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F(9.,(0)j(g.,1) 2 (see (7.5)), we obtain

N
LF,2)=2"" — 1+e¢ _12'J F(2)j(9o,1) *1(go, @) dp(2).
(F,2) sz W e | @G0 ) G ) duE)
9.7
Note that we may take

9o = (91> 92> 93)

with

_(1xi\(a O — 12
gj_<0 1><0 aj‘1>’ a;=Yj % 9.8)

so that j(gy, ) "2 = y1V2)3.
To compute

1(go, §) = f 0(9., 1; @) dr,
OVXD\O(VYA)

we need a classical expression for the theta function 6(g,,, r; @). Let

M = (B* x B*)y = {(by, b;)e B* x B* | v(b;) = v(b,)}, 9.9)
and define an involution ©: M —» M by

t:(by, by)—>(by v 1, byvh), (9.10)
where v = v(b,) = v(b,). There is then a surjective homomorphism

p:M><{1) - O(V) (9.11)
where, for xe V = B,

p(by, by)x = b, xb; !, 9.12)
and

p(t)x = x". (9.13)
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This yields an exact sequence

1-Zy->M><{t)->0()->1, 9.14)
with
Zy ={(z, z)e B* x B* | zecenter of B*}. (9.15)

Note that Z,, has index 2 in the center of M. Here we are extending the classical
isomorphism M/Z,, > SO(V) by the orthogonal involution x> x', which has
determinant — 1. For the Eichler order R as above, let R = R ®; 7 and let

Ky = (R* x R*),, (9.16)

so that K, is a compact open subgroup of M(A,). For each place v, let
1,: M, > M, be the involution which extends 7, and let

C =T <z 9.17)

We note that p maps C isomorphically to a compact subgroup of O(V)(A), and
give C the corresponding topology. Note that for each p the group
Ky, = (R; X R;), is preserved by the action of 7, and that the image of
Ky >aI1,{7,) under p is a compact open subgroup of O(V)(A/).

There is a double coset decomposition

B} = .]:[1 B*BZb,R*, (9.18)

where we may choose the representatives b; to have b; ,, = 1 and v(b;) = 1. Recall
that v(B*) = QI [43, p. 206].

LEMMA 9.1. (i)

M(A) = ~U1 M(Q)M(Rym; ;K ,
i,j=
where m; ; = (b;, bj)e(BA x Ba)o = M(A).
(ii) Let

;= M(Q) n M(Rym, ;Kym; ;!
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and
I, = B& n Bib;R*b; 1.
Then I'; j and T; are finite groups and
r,;~T;xT;.
Proof. If m = (my, m,)e M(A) with m;e By, write
m; = y;m; b, .k;

with y;€ By, m; , € Br, ki€ R* and b,, one of the coset representatives of (9.18).
Then, since v(m,) = v(m,), we have

Wyiyz ) = vimy m,, ) vky k) eRY-Z* A Q7

which implies that v(y,) = w(y,), and hence that v(m, ,)=v(m,,) and
v(k,) = v(k,). Thus we may write

m= (Vu YZ)(ml,am mz,oo)(brl’ brz)(kla kZ)

with each factor in M(A), as required in (i). We omit the proof of (ii), which is
similar. O

We fix a measure on M(A) as follows. First, on M(A ) fix the Haar measure
for which the compact open subgroup K, has measure 1. Note that
Zy(R) ~ R* and that M(R) ~ Z,,(R)* x M(R)! where Z,/(R)* is the identity
component of Z,,(R) and M(R) is the subgroup of M(R) consisting of elements
(by, by) with v(b,) = v(b,) = 1. We choose Haar measure on M(R) to be the
product of d*z=z"'dz (dz the Lebesque measure on R) on Z,(R)* and the
measure on the compact group M(R)! with vol(M(R)!) = 1. Finally we nor-
malize the measure on the compact group C to have vol(C) = 1.

Now p induces a map

(Zu(R)* M@Q)\M(A)) x C > O(V)@\O(V)A) (9.19)

which is surjective and proper. Pushing forward the measure defined above, we
obtain a measure dor on O(V)(@Q)\O(V)(A) characterized by the identity

j f(r)der= j Sf(p(m, ¢))dmdec. (9.20)
O(VYQN\O(V)A) (Zu(R)" MQ)\M(A)) x C
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In particular,

vol(O(VY@N\O(VXA), dor) = vol(Z, (R)* M(Q)\M(A), dm)
1

1 Wi

: (9.21)

Bl—=

M=

by the decomposition of Lemma 9.5, and with

4w, ; =T ;| = IM(Q) N (M(R) m; ;K pym; ;)| 9.22)
By (ii) of Lemma 9.1, w; ; = w;w;, where

2w; = |y = |Bg N (Bg - (b; R*b; V). (9.23)
Thus the measure dr of the Weil-Siegel formula, which is normalized to have

vol(O(VYQN\O(V)A), dr) =1

is

1 -2
dr = , 9.24
r <Z.: 2W.~> dor (9.24)
Thus we obtain
(g, @) = J 0(go» 15 @)dr
O(VYQ\O(V)A)
1 -2
= (Z —) : J 0(g» p(m, c); @)dmdc. (9.25)
T 2w, Z(R)* M@)\M(A)x C

Note that the function ¢ is invariant under K,;, C, and M(R)!, so that the
integral here is just

J e(goo, p(ms C), (b) dmdc
Zy(R)* M(Q)\M(A)x C

f 0(9 > p(m); §)dm
Zy(R)* M(Q)\M(A)

f . 0(g, p(mm, ;); p)dm
Li JZu(R) l",-.]\M([R)m,JKMm,Jl
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1 o
I JM(R)I - 0(g 0, pmm; ;); @) dm

i,Jj L

1

ij WiW;

09 > p(m; j); @). (9.26)

#I'—

But for g, as above, and for x = (x, x,, x3)€ V(R)?,
(0(g)PNX) = y1y2y3eltr(zv(x)), 9.27)
with tr(zv(x)) = z;v(x,) + z,¥(x;) + z3¥(x3). Thus,

0(9 o> P(M; ;); D) = V123 Y, eltr(zv(x)
xe(Bgnb;Rb; ')

= 8y1y2y30i,j(zl)ei,j(ZZ)ei,j(zs)a (9.28)
where, for ze 9,
1
0.42) =5 Y, e(zv(x), (9.29)
xel,;
with
I,;= Bgnb;Rb; *. (9.30)
For ze 3, let
1
0(z) = Z — Oi,j(zl)gi,j(ZZ)Bi,j(ZB)' (9.31)

i,j WiW;

so that the preceeding analysis yields

- 1\ 2 S
1(g» <7>)=2'<Z 2W> “Y1Y2)3 O(2). 9.32)

i i

Combining the pieces we finally obtain

THEOREM 9.2.
28—-t 5 -
LF,2)=— f F(2)- ©@)(y1y2y5)" duz).
FoN)\?

with du(z) defined in (9.6) and ©O(z) defined in (9.30).
Proof. It only remains to check the value of the constant. Combining (9.7),



192 Benedict H. Gross and Stephen S. Kudla
and (9.25)-(9.30), we find

N 1)°2
7-t.5 -1\2,
277 p[] (1 +e,p7Y) 2(2—2%) . 9.33)

IN i

But by Eichler’s class number formula [41],

1 N
(Z z—vv'> = EZ I3 (1 + Epp_l). (9.34)

Thus the constant is
28 - 'nS/N

as claimed.

10. The diagonal cycle

We recall that N > 1 is a square free integer and for each prime p|N we
have a sign ¢, = +1 determined by F=f®g®h We assume that
¢ = —II,ye, = +1, so that there is a definite quaternion algebra B over Q
(unique up to isomorphism) which is ramified at the even set of places
S={p:e,= —1}u{co}. Let R be an order of reduced discriminant N in B. At
places peS, R,=R® Z, is the unique maximal order in the local division
algebra B, = B® Q,. At places p¢S, R, is conjugate to the Eichler order

{(“ b)eMZ(Zp)lc = 0 (mod Nz,,)}
c d

in the matrix algebra B, >~ M,(Q,). In any case, R exists and is unique up to
local conjugacy.

LetR=R®Zandlet B=B®Z = B ®gqA/. Let D be the curve of genus 0
over Q associated to the quaternion algebra B, with a right action of the group
B*/Q¥, and let X be the curve defined by [13, section 3, 4]

X = (R*\B*)x D)/B". (10.1)

In (10.1) the group B* acts simultaneously on the set R *\B* and the curve D.
Since the double coset space R*\B*/B* is finite, X is a disjoint union of curves
of genus 0 over Q. Indeed, let {g,,...,g,} be a set of representatives for the
double cosets and put R;=Bng; ! Iig,.. Note that we may as well take
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g; = b7 ! = bl asin section 4. Then R, is another order of reduced discriminant N
in B and the group I'; = R;*/{ £ 1) is finite of order w;. We have an isomorphism
[13, sections 3, 5]

X ~ i];"ll D/T, (102)

taking the coset Iig,- x y (mod B™) to the coset y (mod I';) on the ith component
of X.

In classical terms, the choice of coset representatives {gi,...,d,} in B~
corresponds to a choice of left ideals I, ..., I, for R which represent the distinct
left ideal classes (I; = Rg; n B) and R, is the right order of I,. The lattice

M; ;= Ij“I,. = gj‘lﬁgi NB= (biﬁbj'l N By (10.3)

in B has left order R; and right order R;. Its theta function

0:j=0m (@ =5 ) ¢ (10.4)
bsM‘.'j

N =

is a modular form of weight 2 for I'y(N) [7]. We have 8, ; = 0;; as the canonical
anti-involution of B identifies the lattice M, ; with a multiple of the lattice M ;.
The weighted sum, for any j, of the theta series 0, ;:

E=Y —0,=Y ¢q" (10.5)

i=1 W; n>0
is the unique Eisenstein series of weight 2 for I'o(N) which has first Fourier
coefficient ¢; = 1 and satisfies E|w, = ¢, E for all primes p| N (where w, is the

Atkin-Lehner involution). The constant term ¢, of E is given by Eichler’s mass
formula [41, Ch. V, Cor. 2.3]:

| 1
= = , 10.
Co ,':zl 2Wi 24 Hv (p + Bp) ( 6)
and the L-function L(E,s) = X, c,n”° is given by

L(E, s) = {(s){(s — 1) l|—1[v (1 +¢,p' 7). (10.7)

We note that E is not an eigenfunction for the Hecke operators T,, when p| N
and ¢, = +1.
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Let Pic(X) be the free abelian group of rank n of isomorphism classes of line
bundles on X. This has, as basis, the elements {e,, ..., e,} where ¢; has degree 1
on the component X; = D/I’; and degree 0 on X; for j # i Since we will
not be particularly concerned with questions of integrality here, we let
P = Pic(X) ® Q@ = ®?7-; Qe;. There is a non-degenerate positive-definite height
pairing [13, 4.5]

{, »PxP-Q (10.8)
defined by the formula {e;e;» = J, ;w; on basis elements. The linear form
deg: P —» Q defined by deg(Xa;e;) = X q; is given by the inner product with the
element a; = X(1/w)e;:

degb = <ag, b). (10.9)

Let M,(N) be the space of modular forms of weight 2 for I'o(N) with rational
Fourier coefficients, and define the pairing

¢: P x P — M,(N) (10.10)

by the formula ¢(e;, e;) = 6, ; on basis elements. Then

$(ag, b) = degh-E (10.11)
for all be P.
LEMMA 10.1. Let a, be P. Then the first Fourier coefficient a,(¢(a, b)) is equal to
{a, b).

Proof. The composite a; ° ¢ is a bilinear form on P, so to verify that it is equal
to <, > we must check that they agree on a basis. But a,(6; ) = J; ; . O

If I is a prime with /{ N we define the Hecke correspondence t; on X as in
[13, section 47; this correspondence is self dual, of bidegree I+ 1. The operators
t,act linearly on P, commute with each other, and are self-adjoint with respect to
the height pairing. They may therefore be simultaneously diagonalized on
Pr = Pic(X) ® R.

PROPOSITION 10.2. If f= X" ,c,q" is a cuspidal newform of weight 2 for
I'o(N), there is a unique line {a,) in Py such that

t’(af) = C,'af

for all primes 1{ N.
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Proof. This follows from Eichler’s trace formula and the theorem of multiplic-
ity 1, [13, 21]. ]

PROPOSITION 10.3. The pairing ¢: P x P > M,(N) satisfies

d(t,a, b) = ¢la, ,b) = P(a, )| T,

for all primes l’[ N, where T, is the Ith Hecke operator on forms of weight 2 for
[Co(N).

Proof. 1t suffices to check this for a = e; and b = ;. We do this via the theory
of Brandt matrices, as in [13]. 0

COROLLARY 104. Let f be a cuspidal newform for I'o(N) and a; a correspond-
ing eigenvector in Py. Then

Plas, b) = <as, by~ f

for all be Py.

Proof. By Proposition 10.3 and the multiplicity one theorem for M,(N),
¢(a,, b) is a multiple of f. We identify that multiple by equating first Fourier
coefficients, using Lemma 10.1. O

Note. If p| N one can define involutions u, of X as in [13, section 4]. The
formula analogous to that of Proposition 10.14 is:

b(u,a, b) = ¢la, u,b) = &, p(a, b)|w, (10.12)

where w, is the Atkin-Lehner involution. Since ag is fixed by all u,’s, this shows
that the Eisenstein series E is an eigenvector for all w,’s, with eigenvalue ¢,,.
Now let d > 1 be an integer; we have induced pairings

(Y% PPIx PO 5 Q (10.13)
$®4: PB4 P4 M,(N)®4,

IfA=0a,® - ®a,;and B=b; ® --- ® b, we have, by definition of the tensor
product,

<A, By®! = ljl <a;, by

and

¢®d(A, B) = ¢(ay, b1)q1)d(az, b,)as) -+ das, balqa),

with g; = ™. From our results when d = 1, we immediately deduce
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COROLLARY 10.5. (i) The Fourier coefficient ¢y ;.. 1 0f 419 - qain $®44, B)
is equal to (A, B)®.

(@) If F=fi® - ® fy is a product of newforms and Ap=a; ® --- Qay, is
the corresponding eigenvector (unique up to scalars) in P%d, then

¢®4(Ap, B) = Ay, BY®!-F

®d
for all Be Py

Henceforth we take d = 3 and define the diagonal element

LS|
A=Y —e® (10.14)

i=1 W

in P§3. This can be viewed as the codimension 2 cycle X, embedded diagonally
in the 3-fold Y = X°.

PROPOSITION 10.6. We have

n 1
¢®3(A, A) = Z — 9i,j(Q1)6i,j(CI2)9i,j(‘I3)
ij=1 Win
= G(QI’ qd2, q3)
in M,(N)®3,
Proof. By definition

1

¢®3(A, A)ZZ ) ¢®3(ei®ei®ei’ e;®e;Qe))

i,j WiWj

and ¢(e;, e;) = 0, ;. 0O

Let F = f ® g ® h be our given cuspidal eigenform in M ,(N ),,% 3 We then have
an orthogonal decomposition

PR} = (Ap> ® (Ap)*

with respect to the height pairing ¢ , »>®? where (A;) is 1-dimensional.
Similarly, we have an orthogonal decomposition

MoN)Z® = (Fy ® CF)*
with respect to the Petersson inner product. If B is in P%i we let B be its

component in the space {Ap); if ¥ isin M 2(N)n% 3, we let ¥y be its component in
the space <{F).
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COROLLARY 10.7. In M,(N)®? we have
O = {Ap, A)®-F.
Proof. We have ¢®3(A, A) = @ by Proposition 10.6. Applying a projector in

the Hecke algebra to the F-eigenspace, we find that ¢®3(A, A) = ©,. But by
Corollary 10.5, $®3(Ap, A) = (Ap, AY®3 F = (Ap, Ap>®3-F. ]

Note. Since 0, ; =3+ %, ¢,q", the constant Fourier coefficient of

1
0= ®3
;j Win 01,1
is given by
1/1 2
O)=31|5; : 10.
€0,0,0(®) ) (24 E)Iv (p+ 8p)> (10.15)

Indeed

1 1\* 1 1 1
Lo (5) =3 2% Loy

and the sums are equal to 55T,y (p + ¢,) by Eichler’s mass formula (10.6).

Finally, we give an elementary expression for the height pairing (A, Az>®3
which appears in Corollary 10.7. Recall that F = f ® g ® hand let a,, a,, and a,
be corresponding eigenvectors in Pp. We may write

ar = z 4i(f)e;
a, =y Alg)e; (10.16)
ay = z Ai(h)e;,

in terms of our canonical basis <e;» of P, where the coefficients A;(f) lie in the
totally real field Q(f) and are uniquely determined up to a scalar (and similarly
for A;(9) and A;(h)).

PROPOSITION 10.8.

o EowRA(N A0
B A = L P W@ Es wi )

Proof. Write Ay = f-(a, ® a, ® a,) in PY°, with fe R*. Then
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{Ap, a,® a, ® a,y®’

h= ay, ap)<ay, agy<ay, ap)
_ Ziwi Ai(f)Ai(g)Ai(h)
i wi ki (NN widi(9)P)Es widi()?)
Since

{Ap, AF>®3 = ﬁ2<af’ af><ags ag<ay, ay),

this gives the stated result. O
COROLLARY 10.9. The projection Ap = 0 in P§3 if and only if

> wiA(f)Ai(@)hi(h) = 0.

11. The main formula

In Theorem 9.2 we established the following analytic identity for the special
values of L(F,s) at s =2

28 ~rn5

N

L(F, 2) = f  F@®G)(y1y2y:)* du(2), (1)
To(NP\H

where F(z,, z,, z3) = f(z,)9(z,)h(z5) and O(z,, z,, z3) is the sum of the genus 3
theta series of certain quaternary quadratic forms, restricted to the diagonal in
Siegel space. The precise definition of ©(z) is given in (9.31).

In Proposition 10.6, we showed that @(z) was equal to the value ¢p®*(A, A),
where A is the diagonal cycle on the 3-fold X3 defined in (10.14). As a corollary
(10.7), we deduced that the projection ®p of ©(z) to the F-component of
M 2(N)‘,? 3 was given by the formula

O = (Ap, Ap)®3F, (11.2)

where ¢ , »>®3 is the height pairing on P®3,
Let us normalize the Petersson product on M,(N)®3 by defining

(F, G) = 2°n f

 FGE)(y1y2y3)? du(z). (11.3)
LM\

The integral converges provided F is cuspidal. Since the eigencomponents of ©
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other than @ are orthogonal to F, we may combine (11.1), (11.2) and Theorem
9.2 to obtain

THEOREM 11.1.

(F, F)
2nN2!

L(F,2) = (A, BpY®. (11.4)

In some sense, this is the main formula, although we will make its dependence
on the triple f ® g ® h a bit more explicit later. It expresses the special value as
the product of a period

(F, F)

dﬁn 27'CN2' (1 15)

Q(F)
with the algebraic height pairing (A, Ap>®>. This leads to the useful

COI;?LLARY 11.2. (a) We have L(F, 2) > 0, with equality if and only if Ap =0
in P,

(b) Theratio L(F,2)/QUF) = A(F) lies in the subfield Q(F) of C generated by the
coefficients of the Dirichlet series L(F,s). For all automorphisms ¢ of C, we have
A(F)° = A(F°).

Proof. (a) We have Q(F) = (F,F)/2nN2' >0 and {(Ap, Az>® > 0. Since
{, Y®3is positive definite on P§3, {Ap, Ap>®? = 0 if and only if A = 0.

(b) These statements are clear for (Az, Ap>®?, as the height pairing is defined
on the rational vector space P®? and the eigencomponent Ay is defined in
P® ® Q(F). O

Now recall that F(z)= f(z,)g(z,)h(z5). Hence, the Petersson product (F, F),
which is given by the integral (11.3), can be written as the product of 3 integrals

s |f(zl)|2dx1 dy, -8n? f s Ig(22)|2 dx,dy,

of

(F, F) = 8x? j

Lo

x 872 f |h(z3)|? dx; dy;
To(N\H
= [l l1? lwgl? - |yl (11.6)

with @, =2mi f(z,)dz, = f(q,) dq,/q, the normalized eigendifferential on X o(N)
(and similarly for w, and ,) [16]. Using the elementary expression for
{Ap, Ap>®3 given in Proposition 10.8, we obtain a “factored” form of our main
formula:
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COROLLARY 11.3.

ol g ol (S WA
U ®g®h ) = N EwA( ) Ewihe) S wh ()

where the algebraic numbers A,(f), A;(g) and A;(h) are defined in (10.16). In
particular, L(f ® g ® h, 2) = 0 if and only if

Z w?Ai(f)Ai(g)Ai(h) = 0.

We now consider the implications of Corollary 11.3 in the degenerate case
when g = h. In that case, the 4-dimensional l-adic representation

0, ® 0, = 62> = Sym?s, @ \’0, = Sym* 5, ® Q,(— 1)

is decomposable, and we obtain a corresponding factorization of the triple
product L-function

L(f ®9®g,s)=L(f ® Sym*g, )L(f, s — 1) (11.7)

in the right half plane Re(s) > 3 of convergence of the Euler product. Our results
on the analytic continuation of L(f ® g ® g, s), along with the classical results of
Hecke on the analytic continuation of L(f,s — 1), show that L(f ® Sym?g, s)
has a meromorphic continuation to the entire s-plane, and satisfies a functional
equation when s is replaced by 4 —s. By results of Gelbart-Jacquet [11],
Jacquet-Piatetski-Shapiro-Shalika [22], and Waldspurger [29] (cf. Shahidi [38]
p. 256 Theorem 4.3 for details), L(f ® Sym? g, s) is entire, i.e., the function
L(f ® g ® g, s) is divisible by L(f,s — 1).

PROPOSITION 11.4. Assume that L(f,1)=0. Then the eigenvector ZA;(f)e;=
a; is orthogonal in Pg to all vectors of the form

b, = Z w;Ai(9)%e;.
Proof. We have
{ag, by = Z wi 2:()2:(9)4:(9),

which, by Corollary 11.3, is zero if and only if L(f ® g ® g, 2) = 0. Since we are
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assuming that L(f, 1) = 0 and since L(f ® Sym?g, s) does not have a pole at
s = 2, this follows from (11.7).

In the case f = g we have the further factorization

L(f ® f ® f,5) = LSym’f, s)L(f, s — 1), (11.8)
By the Corollary on page 264 of [38], L(Sym?f, s) is regular at s = 2.
COROLLARY 11.5. If L(f, 1) = 0 we have

Y w2 (/) =0,

where a; = Z; ,(f)e; in Pg.

The formula in Theorem 11.1 continues to hold in certain cases where f, g, and
h are not cusp forms. For example, assume that N = p is a prime and that
f =g = h = E, the Eisenstein series of weight 2 on ['o(p). Then

L(F, s) = {()(s — 1)3s — 2)%(s — 3)1 — p* ™)1 = p> 79’1 = p*7).  (11.9)

At s = 2 we have

L(F, 2) = {Q)UO0P°L(— 1)<1 - I—l)>(1 — p)-lim (s — D1 — p*7)°

s—2

2 1\3 1
(o) (-3 (-t ) prtosny
__ m*(p—1)*(logp)’
- e osR) (11.10)

On the other side, since [13, p. 168]:

_mlogp-(p—1) (11.11)

2 _
gl * = B

by evaluation of a residue in a Rankin L-function, we have

3 3, —1)3
n*(logp)”-(p — 1)° (11.12)
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Since az = X(1/w))e;, we find that

1 2
L)
( Wy _ 12 (11.13)

) "

A(F) = <AF’ AF>®3 =

Hence,

(F, F)
47p

L(F, 2) = - A(F)

as in Theorem 11.1. We view this degenerate case as a good check on our
constants.

12. Examples

For small level N, we tabulate in Table 12.5 the coefficients A;(f) of the
eigenfunction

a; = i; 2 e; (12.1)

associated to f in Pic(X) ® R. We will only consider the case when f = X a,q"
has integral Fourier coefficients, where the calculations are due to Birch [2] and
to Mestre and Oesterlé [28]. In this case we may take a, to be an indivisible
element in Pic(X), so the coefficients A;(f) are integers with total gcd = 1. This
normalizes them up to sign; we note that X_, 4,(f) =0, as f is a cusp form.

We also tabulate the algebraic part of the special value of the L-function of the
triple product F = f ® f ® f. We have the factorization

L(F, s) = L(Sym>f, s)L(f, s — 1)* (12.2)
and the formula

&,(F) = —a,(f)’ = —a,(f) = the eigenvalue of w, on f. (12.3)
We only consider f where &(F) = —II,y¢,(F) = + 1. Then A(F) is given by

A(F) = W (12.4)

(=1 wiki(N)?)’?
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For some small square-free levels N we give the eigenvalues ¢, (for ascending
factors p| N) of the rational newforms f, the rank of the Z-module Pic(X), the
values 4;(f) (with a subscript w; if w; # 1), and the value of A(F) with numerator
and denominator separated as in (12.4). In all cases listed, f is the unique
newform of level N with the given eigenvalues ¢,. We note that A(F) = 0 for f of
levels N = 55 and 73; some other small levels where A(F) = 0 are N = 85, 109,
139. In all of these cases L(Sym? f,2) = 0, as one knows that L(f, 1) # 0.

As a supplement to this table, we record in Table 12.6 a few approximate
numerical values of the period Q(F) and of L(F, 2), which were computed directly
by Joe Buhler. Combined with the values of A(F) from Table 12.5, these provide
a numerical check on the identity of Theorem 11.1. Here we should remark that
in all cases X y(N) has genus 1, and that, as in Corollary 11.3,

(o 1?)?
F)y=—11°
(F) 2nN2!

where f is the unique normalized newform and ¢ = # {p:p|N}. Now |w,|? is
the volume of the period lattice of a Neron differential, with respect to the
measure dzdz = 2dxdy. In each case, we let ¢* be the smallest real period and
¢~ the imaginary part of the smallest imaginary period. Then

PE ct-c™  if there is one component on the real locus
(€] = . .
I 2¢t ¢~ if there are two components in the real locus.

We have one component for N = 11,14,17,19 and two components for
N =15,21.

Table 12.5

N e, n = rank P the values 4;(f)., A(F)

11 —1 2 I,—1, 5253 =1
14 +1, -1 2 -1 3433 =1
15 +1, -1 2 1,—1 82/43 = 1
17 -1 2 1,—1 8%/43 = 1
19 -1 2 1,-1 333 =4
21 —~1, +1 2 1,1 82/4% = 1
33 +1, =1 4 Iy 1—1-1 82/6° = &
37 —1 3 2 -1 -1 62/6% =1
55 -1, +1 4 1 1-1-1 0*/4>=0
67 -1 6 1, 1.0 0-1-1 3?5 =135
73 -1 6 1 1 1-1-1-1 0%/6> =0
89 —1 8 1, 1 1 1-1-1-1-1 8¥10°=1
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Table 12.6
N c* c” Q(F) A(F)
11 1.269209304279553 2.917633233876991 0.36735781565218 1
14 1.981341956066883 2.650982479364973 0.41184233277353 1
15 1.400603042332602 1.596242222131783 0.23713761450161 1
17 1.547079753551120 2.745739118089753 0.35880388406686 1
19 1.359759733488310 4.127092391717245 0.74021117609074 1
21 1.804461621553968 1.910989780751829 0.62151107987297 1
Table 12.7

N Q(F)- A(F) L2, F)

11 0.07347156313043 0.07347156313043

14 0.13728077759118 0.13728077759118

15 0.23713761450161 0.23713761450162

17 0.35880388406686 0.35880388406684

19 0.24673705869691 0.24673705869692

21 0.62151107987297 0.62151107987296

Finally, in Table 12.8, we tabulate the values of A(F) for f of prime conductor

N satisfying 100 < N < 1000. We write A(F) = M2/M3 as in (12.4), with

n

My =Y wii(f)

i=1

Table 12.8

N M, M, N M, M,
109 4 0 503 38 8
113 12 8 557 182 2
139 6 0 563 52 0
179 9 3 571 48 0
233 54 40 571 120 24
307 13 3 593 116 8
307 10 0 643 32 0
307 11 3 659 141 47
307 15 3 701 42 30
353 48 40 709 44 0
389 40 0 733 48 12
431 40 8 739 33 3
433 28 0 997 96 0
443 62 30 997 48 0
503 100 16
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and

wiii(f)za

M=

M, =

i=1

]

and give the values of M, and M.
All cases when N = 389 and M5 = 0 are caused by the vanishing of L(f, 1), i.e.,
by the fact that the associated elliptic curve has positive rank over Q.

13. The first derivative

We now will present a conjectural formula for the derivative L'(F, 2), in the case
when the sign ¢ = —I1,y ¢, in the functional equation for L(F, s) is equal to — 1.
In this case, L(F, 2) = 0 by (1.14). Our conjectural formula has the same shape as
Theorem 11.1, but the three-fold X3 will be replaced by the triple product of a
Shimura curve X over Q and the pairing ( , )>®? by the Beilinson-Bloch height
on codimension 2 cycles which are homologically trivial.

Fix F=f®g®h in Sz(N)u%3 with &(F) = —1, and let B be the indefinite
quaternion algebra over Q (unique up to isomorphism) which is ramified at the
even set of finite places p| N where ¢,(F) = —a,b,c, = —1. Let R be an order in
B of reduced discriminant N; the order R is unique up to local conjugacy —at
places peS, R, is the unique maximal order in B,, and at places p¢S, R, is
conjugate to the Eichler order of M,(Z,) with ¢ =0 (mod NZ,). Let D be the
curve of genus zero over Q associated to B, and let X(C) be the Riemann surface

X(C) = (R*\B*)x (D(C) — D(R))/B*, (13.1)

where B acts simultaneously on the right of the left coset space R*\B* and on
the Riemann surface D(C) — D(R) ~ $*. Since B* = R*-B% by the strong
approximation theorem [7] —here B} consists of the elements with v(b) > 0—
and since every projective Z-module of rank 1 is free, we have an isomorphism

X(C) = $*/T, (13.2)

where I' = R* nBY = R is a discrete subgroup of (B® R)X ~ GL,(R),,
which acts properly discontinuously on $*. The quotient $*/I" is compact,
except in the case when S is empty. In that case, I is conjugate to the congruence
subgroup I'o(N) of SL,(Z) and the quotient in (13.2) can be naturally com-



206 Benedict H. Gross and Stephen S. Kudla
pactified by the addition of the finite set
D(Q)/T > PYQ)/To(N) (13.3)

of cusps, which has cardinality 2#*!™, We will henceforth use X to denote the
complete non-singular algebraic curve over C whose complex points form the
compactification of (13.2).

Shimura [39] proved that the curve X has a canonical model over Q, which is
the classifying space for polarized abelian varieties with endomorphisms by R.
For any integer m > 1 which is prime to N, we have a Hecke correspondence T,,
on X which is self-dual and defined over Q[39]. There is also a canonical class
d, in Pic!(X) ® Q = Pic!(X)q which is rational over Q and satisfies

T.(dy) = 0,(m)-d, (13.4)

for all (m, N) = 1. When X = X,(N), d, is represented by the class of any cusp

[15].
Let Y be the projective, non-singular 3-fold X3 over @ and let AX be the 1-
cycle of X diagonally embedded in Y. Let x; be a rational point of X, and define

the partial diagonal cycles

Aya(xy) = {(x, x, x;) | xe X }
A23(x1) = {(xl’ X, x)|xeX}
Ays(xy) = {(X, X15 X)IXGX}

(13.5)
Al(xl) = {(X, xla xl)IXEX}
Ay(xy) = {(x1, x, x;)| xe X }
AS(xl) = {(xla xl, x)IXGX}
Finally, define the 1-cycle on Y
AX(x1) = AX — Ayp(xy) — Ags(xy) — Azs(xy)
+A(xy) + Ay(xy) + As(xy) (13.6)

A short computation shows that AX(x,) has trivial image in the cohomology of
Y (the integral of any closed 2-form over AX(x,) is zero).

Let CH*(Y)q be the rational vector space of codimension 2 cycles on Y up to
linear (=rational) equivalence over @, which are fixed by Gal(@/Q). Let
CH?*(Y)3 be the kernel of the cycle class mapping

CHY(Y)q — H*(Y, Q(2)). (13.7)
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By the above remarks, the class of AX(x,) lies in CH*(Y)}. One shows easily
that this class depends only on the class of x; in Pic’(X)g. Hence we have a
natural diagonal class:

A =AX(d,) (13.8)

in CHX(Y)J.
Under mild technical restrictions (which are satisfied for our 3-fold Y), Bloch
[4] and Beilinson [1] have defined a symmetric, bilinear height pairing

C, YEBECHY(Y)Y x CHH(Y)3 — R (13.9)

as the sum of local terms ¢ , )PP They conjecture that this pairing is non-
degenerate, but we do not wish to assume this here. Let Ker®? denote the left
(and right) kernel of this pairing, and define the rational vector space

P = P(Y) = CH*(Y)}/Ker®2, (13.10)
We then have a non-degenerate pairing (by definition):
{, YBPxP-R (13.11)

The Hecke correspondences T,, of X give rise to symmetric correspondences
T, X T, x T,,, of Y = X 3. They give endomorphisms of CH*(Y)g which are self-
adjoint with respect to the pairing { , »®2 [15], and so preserve the subspace
Ker®®8 and act on P.

PROPOSITION 13.1. If t is a Q-linear combination of Hecke operators
T, X Ty, X T,,, which annihilates the space S,(N)®? then t-A =0 in P.

The proof is not difficult, and will be given in a forthcoming paper [14].

Using Proposition 13.1, we can define the F-isotypic component Ag of the
class A in Pg. Namely, let ¢t be an R-linear combination of Hecke operators
Ty, % Ty, % T,,, Which projects to the (1-dimensional) F-isotypic component in
S,(N)®3. We then define

Ap = tp- A€ Pp. (13.12)
Although t; is not unique, the difference (ty — tz)-A is zero in Pg, for two

different projectors t; and ty, by Proposition 13.1. Since ¢ , »2®is defined on
Pgr, we may calculate the pairing of Ap with itself.
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CONJECTURE 13.2. We have the formula

L(F,2) =

(F, F)

S Brs A,

where (F, F) is the Petersson product defined in (11.3) and (11.6).

Some evidence for Conjecture 13.2 will be presented in a forthcoming paper

with Zagier [14].
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