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Introduction

Let N  1 be a square-free integer, and let f, g and h be three holomorphic cusp
forms of weight 2 for the group ro(N). We assume that f, g and h are all

normalized eigenforms for the Hecke algebra, and are all newforms of level N.
The function F(zl, Z2, Z3) = f(zl)g(zz)h(z3) is then a newform of weight (2, 2, 2) for
03930(N)3.
The triple product L-function L( f Q g (D h, s) = L(F, s) is defined by a con-

vergent Euler product (1.6) in the half-plane Re(s) &#x3E; 5/2. Using an in-

tegral representation of this function discovered by Garrett [9], we show that
it has a holomorphic continuation to the entire s-plane and satisfies a simple
functional equation (Theorem 1.1) when s is replaced by 4 - s. The sign in this
functional equation is given by the formula 03B5 = - 03A0p|N 03B5p, with

8p = -ap(f)ap(g)ap(h) = ±1 given by the product of the p-th Fourier coeffi-
cients. The proof follows the argument given by Garrett for the case N = 1, but
the genus 3 Eisenstein series E(Z, s - 2) which appears in the integral represen-
tation of L(F, s) depends on the local constants 03B5p for all primes p 1 N. Because of
these considerations, which are essentially local in nature, we use an adèlic
version of Garrett’s argument, following Piatetski-Shapiro and Rallis [31].
The Eisenstein series which occurs in the integral considered in [31] is

constructed from a section 03A6(s) of a certain family of induced representations
I(s). If this section is factorizable, then the global integral, (7.7) below, can be
unfolded and written as a product of local ’zeta’ integrals (2.3), which involve the
local Whittaker functions determined by f, g and h, and the local components of
03A6(s). At primes p not dividing the level, there is a natural choice of 03A6p(s) ~ Ip(s)
and, for this choice, the local zeta integral gives precisely the local factor

Lp(F, s + 2) times a normalizing factor, cf. (2.5). This ’spherical’ vector 03A6p(s) is
also an eigenvector for the local intertwining operator Mp(s):Ip(s) ~ 1 p( - s).
Moreover, its value O)(0) lies in an irreducible subspace of the induced

*Partially supported by NSF Grant DMS-9003109.
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representation Ip(0) which arises via the Weil representation associated to a split
quadratic form in 4 variables, (i) of Proposition 8.2. Our main local problem is to
find an analogous section 03A6p(s) E 1 p(s) for primes p 1 N. As mentioned above, this
o)(s) will depend on Bp, and it will lie in the space of Iwahori fixed vectors in Ip(s).
The calculation of the local zeta integrals for such vectors is given in Section 4.
Our choice of 03A6p(s), given by (5.10), is an eigenvector for the action of an ’Atkin-
Lehner’ operator on the space of Iwahori fixed vectors, see (3.9), and has the
property that its value at s = 0 arises from the Weil representation associated to
the quaternion algebra over Qp which is ramified if Ep = -1 and split if Bp = + 1,
see (ii) of Proposition 8.2. This particular choice is not an eigenvector for the
local intertwining operator, but is shifted by a vector which gives zero in the
local zeta integral, see (5.5) and (5.6). These facts allow us to obtain a good
functional equation for the complete L-function, Proposition 1.1. In fact, our
calculations of local zeta integrals etc. at primes p 1 N, together with some
additional work at the archimedean place (cf. Section 6) will allow us to give a
precise functional equation and to prove holomorphy for any triple of newforms
of arbitrary weights ( 2) for ro(N) and the same square free level N.
We then turn to a study of the central critical value L(F, 2), using the

Weil-Siegel formula [24,33] for E(Z, 0). We obtain an expression for

L(F, 2) = Q(F) . A(F), where 03A9(F) is the period

with t = # {p:p|N} and A(F) is a real algebraic number in the subfield of C
generated by the coefficients of the Dirichlet series of L(F, s). We then give an
interpretation of A(F) as a "height pairing", which allows us to show that
A(F)  0, and to give a simple algebraic criterion for its vanishing.
More precisely, assume that the sign in the functional equation of L(F, s) is

+ 1, and let B be the definite quaternion algebra over Q which is ramified at the
odd set of primes where 03B5p = -1. Let R be an Eichler order of reduced
discriminant N in B, and let X be the curve over Q associated to R, which was
introduced in [13]. Then X is the disjoint union of n rational curves, where n is
the class number of R. Let A be the codimension 2 cycle consisting of X
embedded diagonally in the 3-fold X3. We show that A(F) is the "height pairing"
of the F-isotypic component OF in the cycle group.
Unwinding the definition of this pairing gives us the following formula. The

global correspondence of Jacquet-Langlands and Shimizu between automor-
phic forms on GL2 and on B x (which, in this case, can be proved by Eichler’s
methods [7]) shows that the eigenforms f, g and h determine real valued
eigenfunctions 03BBi(f), 03BBi(g) and 03BBi(h) on the set of left ideal classes of R. The
theorem of multiplicity one for these groups shows that each eigenfunction is
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well defined up to scaling. If 2wi is the order of the group of units in the right
order Ri of the class Ii, we have

We note that when N = p is a prime, R is a maximal order in B and the left
ideal classes of R correspond to the isomorphism classes of supersingular elliptic
curves in characteristic p. For eigenforms f on F,(p) with rational Fourier
coefficients, the eigenfunctions Âi(f) on the set of supersingular curves have been
extensively tabulated by Mestre and Oesterlé [28]. For square-free N  300 and

f with rational Fourier coefficients, Birch [2] has calculated the integers aei(f)
using the theory of ternary quadratic forms. We thank these authors for
generously sharing their data with us, some of which appears tabulated in
Section 12. We also wish to thank Buhler and Zagier for their computational
assistance on the problem of determining the values L(F, 2); this was a welcome
check on the many constants in the final formula.

We end the paper with a conjecture on the first derivative L’(F, 2) when the
sign in the functional equation for L(F, s) is -1 (and, hence, L(F, 2) = 0). Let X
be the Shimura curve associated to an Eichler order of reduced discriminant N

in the indefinite quaternion algebra B ramified at the even set of finite primes
where ëp = -1. Let A be the codimension 2 cycle of X embedded diagonally in
the threefold X3. Loosely speaking, we conjecture that

where AF is the F-eigencomponent of A in the Chow group and ~, ~BB is the
Bloch-Beilinson height pairing. Actually, one must first modify A to obtain a
class which is homologically trivial, and the eigencomponent AF only is known
to exist in the quotient of the Chow group by the radical of the height pairing.

Special values of the triple product L-function have been considered by a
number of people, beginning with the fundamental work of Garrett [9]. Other
work includes that of Blasius and Orloff [3, 30], Garrett and Harris [10] and
Harris and Kudla [17]. This last paper describes the central critical value in a
more general case and proves a conjecture of Jacquet concerning the vanishing
of such values, but for the special case of weight (2, 2, 2) and square free level it
gives less precise information than is obtained in the present paper. Of

fundamental importance in [ 17] and, implicitly, in the present paper is the work
of D. Prasad [32], which gives the uniqueness of certain invariant trilinear forms
and characterizes their existence in terms of epsilon factors.
The existence of a good function functional equation for the triple product L-

function was first shown by Shahidi [36]. His more recent work also establishes
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the finiteness of the number of poles and holomorphy at the center of the critical

strip [37], Cor. 6.9, p. 582. Finally, T. Ikeda considered the functional equation
[19] and gave a precise description of the poles [20] of triple product L-
functions.

1. The triple product L-function

Let N  1 be square free, and let f, g, and h be three (not necessarily distinct)
cuspidal newforms of weight 2 on ro(N). Assume that the Fourier expansions of
f, g, and h are given by

with a 1 = b 1 = c = 1. For a prime 1 not dividing N, we write:

Then lall = 1/311 = 11’11 = l1/2 [8, 40, Chapt. 7]. For a prime p dividing N, the
coefficients ap, b p, and c p are equal to ± 1. We put

Define the modular form F = f ~ g ~ h of weight (2, 2, 2) for FO(N)3 by:

for (z,, Z2, Z3) C D3. For p N, we have an involution up = Wp x WP x WP on the
space of forms of weight (2, 2, 2) where wp is the Atkin-Lehner involution on the
space of forms on ro(N), and

Indeed, f wp = - ap·f, and similarly for g and h.
We define the triple product product L-function L( f Q g Q h, s) = L(F, s) by

an Euler product, convergent in the half plane Re(s) &#x3E; 5 2:
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Here

have degree 3 in p-s. The absolute convergence in Re(s) &#x3E; 2 follows from a
comparison of L(F, s) with ((s -1)8.
Our choice of local L-factors for F follows a general recipe of Serre [35],

applied to the 8-dimensional 1-adic representation 03C3f Q 03C3g Q Qh of Gal(Q/Q).
Here uf, 03C3g, and 6h are the 2-dimensional Galois representations associated to
the newforms f, g, and h. Similarly, we define the archimedean L-factor. Set

Then

as the Hodge numbers of the motive attached to F are h3,0 = hO,3 = 1 and

in Re(s) &#x3E; 5 2, and define

where

PROPOSITION 1.1. The function A(F, s) has an analytic continuation to the
entire s-plane and satisfies the functional equation:

This will be proved in Section 7 using the local results of Sections 2-6. If we
put
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then the functional equation of Proposition 1.1 takes the simpler form

In particular, we see that

as all other factors in A*(F, s) are non-zero at s = 2.

2. Local factors

In this section we turn to local considerations and describe the local zeta

integrals which arise in the Garrett and Piatetski-Shapiro, Rallis integral
representation of the triple product L-function.
We begin with the p-adic case. Let G = GSp3(Qp) be the similitude group of

the six dimensional symplectic vector space Q6p (row vectors) with standard
symplectic form given by

and let v: G ~ Q p be the scale map. Let P = MN be the maximal parabolic
subgroup of G with

and

Let K = GSp3(Zp), and let ZG ~ Q p be the center of G.
For s ~ , we consider the induced representation I(s) = IndGP 2s consisting of

smooth functions (i.e., locally constant) 03A6(s) on G such that

Note that such functions automatically have compact support modulo P, and
that ZG acts trivially in this representation.
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Let 03C8 be the standard additive character of Op with conductor Zp, and, for an
irreducible admissible and infinite dimensional representation rc of GL,(U,), let
1r(n) be the Whittaker model of 03C0 with respect to gi [21].

Let

and recall that H is embedded as a subgroup of G [9, 31]. Let

and let

For a triple of irreducible admissible infinite dimensional representations of
03C01, 03C02 and 03C03 of GL2(Qp), and for Whittaker functions Wi ~ W(03C0i), i = 1, 2, 3,
define a function W on H by

Then, for 03A6(s) E I(s), the local zeta integral associated to W and 03A6(s) is

where

and dh is an H-invariant measure on ZGU0BH which will be specified below.
Note that ô is a representative for the unique ’non-negligible’ orbit of H in the
flag variety PBG. Recall [31] that PBG may be identified with the space of
maximal isotropic subspaces in the symplectic vector space Q6p. The group H
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has a finite number of orbits in this space, and the orbit of ô is the only one for
which the stabilizer of a point does not contain the unipotent radical of a proper
parabolic subgroup of H. The isotropic subspace corresponding to à is the span
of the bottom three rows of this matrix. This particular choice of ô is due to
Garrett and Harris [10].

If rcl, 03C02 and 7r3 are unramified principal series representations of GL2(Qp), let
W9 E 1r(ni) be the unique GL2(Zp) fixed vector with W?(e) = 1, and let W0 be
the corresponding function on H via (2.2). Also let 03A60(s) E I(s) be the unique K
fixed vector with 03A60(k, s) = 1 for k E K. Note that, because of the Iwasawa
decomposition G = PK, any function in I(s) is determined by its restriction to K.
Then [9 and 31, p. 57]

where Te = 7rl Q 03C02 Q 03C03, and Lp(03C0, s) is the local Langlands L-factor associated
to 03C0 and the degree 8 representation of the L-group of GL2(Q)3, and

Note that if 03C01, n,, and rc3 are the representations of GL2(Qp) determined by the
p-th Hecke eigenvalues of our cusp forms f, g, and h of Section 1 when p ~ N, then

for the local factor defined in Section 1. Note that the shift here is due to the

convention that the Langlands L-function will have a functional equation
relating s to 1 - s, while the functional equation of the Eisenstein series and
hence of the global analogue of Z(s, W, (D(s» involves s and - s.

In order to obtain precise information about the central value of the triple
product L-function, we will need to have an analogue of (2.5) when p 1 N. Note
that a local factor L,(F, s) has been defined for such p by (1.8) of Section 1. We
then define Lp(03C0, s) by (2.6), i.e.,

Our main result in the next two sections will relate Lp(03C0, s + 2) to a zeta integral
as in (2.5), but with W° and 4Y° replaced by functions invariant under the
Iwahori subgroup.

Since N was assumed to be square free, the triple of local representations Jti,
03C02, and 03C03 determined by the newforms f, g, and h for p 1 N are twists of the
special representation Sp on the locally constant functions on P1 ~ BBGL2(Qp)
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modulo the constant functions (B the standard Borel subgroup) [5, 6], by
unramified quadratic characters 03C9i satisfying

We need a formula for the unique Whittaker vector in these representations
which is fixed by the Iwahori subgroup

The following result can be extracted from [5]:

LEMMA 2.1. Let 6 = Sp Q 11 be an unramified special representation with trivial
central character, and let 11 be the associated unramified quadratic character. Let
WO E W(6) be the unique 03930(p) fixed vector with W’(e) = 1. Then

and

Note that since

the values given in Lemma 2.1 give a complete description of W°.
For our triple of local components 03C01, 03C02, and n3, with quadratic characters

col, wz, and cv3, we set

and

For the Iwahori fixed Whittaker vectors W? E W(03C0i) furnished by Lemma 2.1,
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we again let W0 be the function on H given by (2.2). As in Section 1, let

Then

LEMMA 2.2.

Proof. This follows from the fact that

3. Iwahori fixed vectors

Next we must choose a function in I(s) for use with W0 of Section 2, in the local
zeta integral. Let

and note that the reduction mod p of Ko(p) is the maximal parabolic subgroup
P(Fp) in GSP3(Fp). The usual double coset decomposition of GSp3(IF p) with
respect to this parabolic yields a decomposition

where

Note that the double coset of wi is precisely the set of all a b ~ K such that
the rank of c (mod p) is i.

For 0  i  3 let 03A6i(s) E I(s) be the function whose restriction to K is the
characteristic function of Ko(p)w,K,(p). Note that 03A60(s) is the characteristic

function of K°(p); in the next section we will compute its zeta integral against
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W°. Also note that the normalized K fixed vector in I(s) is

Moreover, for any fixed s, the four functions 03A6i(s) form a basis for the space
I(s)Ko(p) of Ko( p) fixed vectors. This basis will not turn out to be the most
convenient one.

Since the image in G of the element up defined above normalizes Ko( p), we
may consider the action of this element (which acts as an involution) in the space
I(S)Ko(p).

LEMMA 3.1.

Proof. For convenience, let

We want to calculate the value 03A6i(Wj~, s) as a function of i and j. Note that

where the last factor on the right hand side lies in Kp and has c of rank
3 - j (mod p). Thus this last factor lies in the double coset K0(p)w3 - j K0(p) in
(3.1) and we get

as claimed.

Setting
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we have

Next observe that conjugation by u p carries the fixed maximal compact
subgroup K = GSp3(Zp) into another maximal compact subgroup
K’ = up Ku-1p, and that these are the only maximal compact subgroups
containing Ko(p). The normalized fixed vectors then have the expressions

and

Note that these two vectors actually coincide at s = - 1, and this is due to the
fact that the trivial representation of G occurs as a submodule of 1( -1)
(~ C~(PBG)).

Define two more functions in I(s)Ko(P) by

These functions, whose significance will be explained in Section 4 below, satisfy

Moreover, we remark that for s ~ -1 fixed, the four functions 03A6K(s), 03A6K’(s), and
03A6±R (s) form a basis for I(S)K.(p).

4. In which we compute a p-adic zeta integral

We now consider the zeta integral Z(s, W°, (D(s» with W° as above and with
03A6(s) E I(s)Ko(p). Recall that 8 = 8p = - apbpcp is fixed as above. It is easily checked
that

and, hence, that Z(s, W0, 03A6(s)) vanishes identically if 03A6(s)|up = -03B503A6(s).
Moreover, by a direct calculation, we have
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LEMMA 4.1.

Proof. Now

Since (D, is right K-invariant, we may substitute for W0 its KH-invariant
projection:

where vol(KH, dk) = 1. But this projection is zero. In fact, via the Iwasawa

decomposition of H and the triviality of the central characters, it suffices to

verify this for

in which case we obtain, via (2.8), a sum of values W0(hk) as k runs over a set of
representatives for the (p + 1)3 cosets of KH/(r 0(p)3 n H). These values are
given by Lemma 2.1, and it is easy to check that their sum is zero. D

Thus the zeta integral Z(s, W°, (D(s» for any 03A6(S) E I(S)Ko(p) is proportional to
Z(s, WO, 03A603B5R(s)).

Using (4.1) we find that

By the preceeding Lemma we find that

and thus
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Next we (brutally) compute the zeta integral Z(s, W°, à°(s)), where we recall
that à°(s) = 03A60(s) is supported on PK0(p).
PROPOSITION 4.2.

Proof. First write

where

Here we continue to abuse notation and view the matrix (p 1) as embedded
diagonally in H. Setting

we have

with U and ZG as above, and with

Note that T n Z, has order 2.
We now fix our choice of measures. First, note that any h E H° can be written

as h = z ’ M ’ t(a) · k for the Iwasawa decomposition (4.6), and that the map

is proper and surjective. On the product space we take the measure
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where lai = |a1a2a3| and d  a = d  a1 d  a2 d  a3 with vol(Z p , dai) = 1. We also
take du = du1 du2 du3 with vol(Zp, dui) = 1, and require vol(Z p , d z) = 1 and
vol(KH, dk) = 1. The pushforward of this measure to H0 defines a Haar measure
dh on this group, and since H0 is an open subgroup of H, determines a unique
Haar measure on H, which we also denote by dh. Note that, if we let

then {u(x)| x E Qp} is a set of coset representatives for U0BU. If we write a coset
representative h = u(x)t(a)k E H’, then the measure dh on the open set ZG U0BH0
is given by |a|-2 dx d  a dk, while on the open set

where we again use representatives h on the right hand side, the measure is

as is easily checked.
Thus

and we write Z1(s) and Z2(s) for the two terms on the right hand side.
First, noting that the inverse image in Z. x U x T x KH of a fundamental

domain for the action of ZG Uo in HO is a fundamental domain for the action of
this same group in Z. x U x T x KH, we obtain

with the normalization of measures fixed above. We decompose KH using (2.8)
componentwise, and we must evaluate the two functions in the integrand in
(4.10) on each coset.
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Note that the support of 03A60(g, s) is the set P. Ko(p), and write

with k = c :)EKO(P), 1XEGLiOp) and v ~Q p. Note that c ~ 0 (mod p) and

d ~ GL3(Zp), and that it is possible, by adjusting a if necessary, to assume that
d = 1. Since v(03B4) = 1 and g E ôH’, we may set v = 1 and absorb any further scale
into the Ko(p) component. Now, using the second expression for g,

while, using the first expression,

with C, D E M3(Qp). Since the rows of (c, 13) span a free summand of Z6p, we must
have

Here, the right hand side is the maximum of the absolute values of the 3 x 3
minors of the matrix (C, D)k -1.

Observe that by right Ko(p) invariance, it suffices to calculate our functions
when each component of k is one of the coset representatives 1 or

in (2.8). Since D is invertible, we see that k can involve at most

one t
Suppose that k = 1, so that,
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and

Thus

and the condition

Note that this last condition implies (4.14).

LEMMA 4.3. If k Er 0(p)3 n H, then

with lai = lalaza31, and

Proof. From the calculation above, it only remains to note that

via our assumption of trivial central character and Lemma 2.1.

Thus we obtain the contribution

from the trivial coset. This integral is relatively easy to evaluate.
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LEMMA 4.4. The expression (4.18) is equal to

Proof. First the piece of the integral in which |x| &#x3E; 1 gives

The remaining part is

Next suppose that

so that

Here (c, 1) is the bottom 3 by 6 block of an element of Ko(p). Thus

and the condition



161

amounts to

Note that this condition again implies (4.23), and we obtain

LEMMA 4.5. If k is in the ro(p)3 n H coset with representative given by (4.21),
then

and

Note that the condition |a21|  p is equivalent to |a1|  1.

The contribution of this coset to (4.7) is then

The factor gi(x + a)x?) is 1 in this range, and we obtain

We remark that result is independent of x’. Moreover, it is easy to check that the

other cosets with precisely one component involving (- 1 1) yield the same
answer. The total contribution of thèse 3p cosets is thus

Finally, we observe that if more than one component of k involves
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then the argument of 03A60 fall outside of P · Ko(p), and the coset in question yields
zero. Combining these results, we obtain

Next we consider Z2(s). First, it is not difficult to check that

Thus we may use the expressions given in the Lemmas above for 03A60(s) on the
relevant cosets. The corresponding expressions for W° are given in the

following:

LEMMA 4.6. If kEro(p)3, then

Here |pa2i|  1 is equivalent to lail  1.

If k is in the 03930(p)3 coset with representative given by (2.7) above, then

Note that in this last expression, the condition for non-vanishing may be
written as

The contribution of the coset of k = 1 is then

and this is equal to
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Next, each of the terms in which precisely one component of k involves

contributes:

Again the factor 03C8(p(x + a21x’)) is 1 in the given range, and the integral becomes

Thus the total contribution of such cosets is

This yields

Combining these terms we obtain

This is the claimed value!
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COROLLARY 4.7.

5. Local intertwining operators

Several additional facts will be needed when we consider the functional

equation. Recall that there is an intertwining operator

defined, for large real part of s, by the integral

This integral has a meromorphic analytic continuation to the whole s plane and
the normalized operator

with

is entire and non-vanishing for all s [31]. Since Mp(s) is G intertwining, it carries

Ip(S)K0(p) to Ip( - S)Ko(P) and respects eigenspaces of up and K and K’ fixed vectors.
For example,

with
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as before. Similarly, we must have

for some meromorphic functions ap(s) and 03B2p(s). Note that by Lemma 4.1

We will now determine the function ap(s).

PROPOSITION 5.1.

First we have

PROPOSITION 5.2.

where

and

Proof. We use a result of Igusa [18].

LEMMA 5.3. (Igusa)
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Now for 0  j  3, we compute

Write

Then, as in (4.11),

and so

and

Thus our integral becomes

Since the measure ldet xlj/2 - 2 dx on Sym3 - h(Qp) n GL3 - j(Qp) is invariant under
inversion, the last integral becomes
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which is just

times the integral whose values are given in Lemma 5.3. Since

we obtain the claimed expressions. D

Note that, for any s, the e-eigenspace for up is spanned by the vectors

It follows from Proposition 5.2 that

On the other hand, since

we may use (5.3) and (5.8) to determine Mp(s)03A81. It is then a routine, though
tedious, matter to solve for ap(s). This was done using Mathematica; we omit the
details. D

For use in the proof of the functional equation in the next section, we now let

where, as before,

in the second case. Note that

We may then summarize our calculations:



168

and

Here a,(s) and bp(s) are given by (5.2) and (5.4), respectively, and

6. The archimedean case

Next we review the archimedean case. Since we have assumed that the newforms

f, g and h all have weight 2, the necessary local factors were computed by Garrett
[9]. The groups G, P, H, etc. are defined as in the p-adic case, with R replacing
Qp. We let G + denote the subgroup of G for which the scale v(g) takes values in
R +, and we fix the maximal compact subgroup

of G +. The archimedean local components of the triple of automorphic cuspidal
representations determined by our newforms are all the discrete series represen-
tation of GL2(R) of ’weight’ 2. For the discrete series representation of even
’weight’ 2n the ’holomorphic’ vector is given in the Whittaker model, by [12]

Here e(x) = e21tix and Define a function on H by

Note that the support of W lies in H+ =: H n (GL2(R)+)3 = H n G+.
As before, a section 03A6(s) E I(s) is determined by its restriction to K; and so, for

any even integer 2n, we let 03A62n(S) denote the section whose restriction to K is
given by
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We want to compute the local zeta integral Z(s, W2n, 03A6- 2n(s)), again given by
(2.3), with this choice of W and 03A6(s). Noting that H+ = ZG ’ SL2(R)3 we fix the
invariant measure dh on the coset space ZGU0BH+ by taking coset

representatives

with u(x) and t(a) given by (4.8) and (4.7), respectively, and with

Then let

with dk, = dOl de2 d03 and d’a = dXa1 d’a2 d’a3, for d’a, = Bad-1 dab and

for dOi and dai the standard Lebesque measure on R. We then obtain

Here observe that Sn3 = vol((SO(2)3) and that the intersection of Z. with
SL2(R)’ has order 2.
The calculation which follows is substantially that of Garrett and Harris [10];

we include the details for the sake of completeness and because we need precise
information for our functional equation.

First we determine the Iwasawa decomposition of l5u(x)t(a). Write

l5u(x)t(a) = nm(a, 1)k with k E K. Then

where k E U(3) is the element associated to k. On the other hand,
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Setting

we obtain

with lai = la1a2a31, and

Thus

Substituting this expression into the zeta integral and using the formula for
w2n, we obtain

Setting a; = yi, and substituting - x for x, this becomes

Recalling that [10]

and setting a = s + 1 + n and p = s + 1 - n, we obtain
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times the integral

Collecting terms and simplifying we obtain

Now, as in Section 1, since the Hodge numbers associated to F are

the predicted r factor for a triple of forms of weight 2n is

and thus

while

Thus

with
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On the other hand, we know by [24, Lemma 4.6] that

with

(Note that, because of our normalization, we must replace s by 2s in Lemma 4.6
of [24]. Also, in that Lemma a factor of il was omitted from the expression for

dn,v(s, 1) and the second r factor in the denominator of that expression should be
0393n[(s + Pn -1)/2].) Again we let

and, as in (5.13), we write

We obtain, after a short calculation,

Note that for n = 1 (the case of ultimate interest for us),

and so 03BE~(0)= -03C05.

7. The global functional equation

In this section we will assemble the local results of Sections 2-6 to obtain the

functional equation of L(s, F).
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Let G, and ZG, P = MN, H, U, Uo, etc., be the global analogues of the groups
considered in Section 2, and for each place u of Q, denote by G,, Pv, etc., the
corresponding completions. Let

where K, is the maximal compact subgroup of G, fixed in Section 2 and Section
6. For SEC, let I(s) = ~vIv(s) be the global induced representation, consisting of
smooth, right K-finite functions on G(A) which satisfy the global analogue of
(2.1) for all a E GL3(A), v E.AB x and n ~ N(A). For an entire section 03A6(s) E I(s), we
have the Eisenstein series

which is absolutely convergent for Re(s) &#x3E; 1. As is well known, this series has a

meromorphic analytic continuation to the whole s plane and has a functional
equation

where M(s): I(s) - I( - s) is the global intertwining operator which, for Re(s) &#x3E; 1,
is given by the integral

Now let F denote the function on (GL2(Q)BGL2(A))3 associated to

F = f ~ g ~ h of (1.4). Explicitly, we define a compact open subgroup

of GL2(A), and for any g ~ GL2(A)3 we write g = 03B3·g~·k with 03B3 ~ GL2(Q)3,
g~ ~GL+2(R)3, and k E ro(N)3. Then we set

where, for g~ = (gi, g2, g3) with
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For a factorizable section 03A6(s) = Q" (D,(s) E I(s), the basic formula due to
Garrett [9] and to Piatetski-Shapiro and Rallis [31] is

where WF = OU WF," is the global Whittaker function determined by F and gi
[12], and where Zv(s, WF,", 03A6v) is the local zeta integral considered in section 2.
Note that, by the functional equation of E(g, s, 03A6),

We now choose the local components of 03A6(s) as in Section 2; let

where the function 03A6v(s) is given by (5.10) for the finite places and by (6.18) for
the archimedean place. By (5.13) and (6.14) we have

PROPOSITION 7.1.

where A(F, s) is as in Section 1, and b(s) = (*(2s + 2)03B6*(4s + 2).

Here (*(s) = 03C0-s/20393(s/2)03B6(s), so by the functional equation (*(s) = (*(1 - s) we
have a(s) = b( - s). On the other hand, by (5.14) and (6.19),

This yields

Shifting s by 2 and using the values of 03B4v(s) given in (5.15) and (6.20), we obtain
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the functional equation

claimed in Section 1.

We will now show that A(F, s) is entire. This fact should follow immediately
from the results of Ikeda [20], provided we were to check that our ’bad’ Euler
factors agree with his. Instead of doing this, we will sketch a proof that there are
no poles based on the results of [26] and [25], [34].

Consider again the integral representation

of (7.10). By the functional equation, it suffices to show that the right hand side of
this expression has no poles in the half plane Re(s)  0. Let S = {~} ~ {p : p |N}
and observe that we have

where bs (s) = Ilpes bp(s), and

By (5.11) and (6.21)

and

These factors are holomorphic in the half plane of interest. On the other hand, it
is proved in [26] that for any standard section 0(s) (the restriction of such a
section to K is independent of s) which is Kp invariant for p ft S, the normalized
Eisenstein series bs(s)E(g, s, 03A6) has at most simple poles at s = 1, 1 2, -1 1.
(Note that the variable s of [26] must be replaced by 2s to obtain the Eisenstein
series of our present paper.)

Since the central character of our Eisenstein series is trivial, the residue at the

point s = 1 is a constant function of g, while the residue at s = 2 is a (regularized)
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theta series associated to a split binary quadratic form [25]. These results hold
for the series bs(s)E(g, s, 03A603B5(s)) as well, since 03A603B5(s) is a finite linear combination of
standard sections with entire coefficients. But since E(g, s, 03A603B5(s)) is an

eigenfunction with non-trivial eigencharacter for K~, its residue at s = 1 must
vanish. Thus the only possible pole of A(F, s + 2) in the half plane Re(s)  0 is at
s = 1 2.
To exclude this pole we observe that the restriction to H(A) of the regularized

binary theta series can be shown to be orthogonal to all cusp forms on this
group.
Thus we have:

COROLLARY 7.2. A(F, s) is entire.

Note that the key ingredients in the proof - the fact that the residue of the
regularized Eisenstein series at s = 2 is a theta series series associated to a split
binary quadratic form and the fact that the restriction of such a series to H(A) is
orthogonal to all cusp forms - require only that the product of the central
characters of the triple of cusp forms be trivial. Thus the same argument shows
that the triple product L-function is entire under this condition.

Actually, Ikeda [20] shows that, up to twisting each of the given triple of
cuspidal automorphic representations 03C0i of GL(2, A) by a character of the form
Idet glSi for some si E C, the triple product L function can only have poles when
the product of the central characters is a non-trivial quadratic character (o. In
this case, if K is the quadratic extension corresponding to 03C9, there exist

quasicharacters xl, X2 and X3 of K with XlX2X3 = 1 such that ni = n(Xi). The
poles of the Langlands L-function (with functional equation relating s to 1 - s)
then occur at s = 0 and 1.

It is perhaps enlightening to describe the Eisenstein series which occurs here
in classical language. We will do this only in the case N = p is a prime; the
general case goes along the same lines.
For convenience we write K = Ilq Kq where Kq = GSP3(Z,) is our fixed

maximal compact subgroup of Gq and let

Similarly, we let K’ = K0(p) x 03A0q ~ pKq and let

be the corresponding congruence subgroup of r. Note that v(K) = v(K’) = 
so that, by the strong approximation theorem,
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Since E(g, s, 03A6) is left G(Q) and right K’ invariant, it suffices to evaluate it for
g ~ G(R)+, which we view as an element of G(A) with trivial components at all
finite places. Moreover, since O) is an eigenfunction of K~, we may assume that
g = g~ has the form

with v E GL3(1R) +, and we set

We also observe that

LEMMA 7.3.

In particular, a set of coset representatives for P(Q)BG(Q) may be taken to lie in
SP3(Z)-

Thus we obtain

and it only remains to evaluate the two factors of each term.

we write yg = nm(a, 1)k in the Iwasawa

decomposition, with oc c- GL3(R)’ and have

as in (6.5). On the other hand, we find that

and thus,

det(03B1) = |det(03B1)| = det(v) - ’ldet(cZ + d)|-1,
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and

Thus, recalling (6.18) and the fact that det(y) = det(v)2, we have

LEMMA 7.4.

where

Next note that we must have 03B5p = - apbpcp = -1, since N = p. Thus,
recalling (5.10), (5.11), (5.4),

with

Now by (3.8) and the definition of (D’ p (s) given after (3.2), we have, for 03B3 ~ 0393 as
above,

where rp(c) is the rank (mod p) of the matrix c ~ M3(Z). Collecting these facts we
obtain the expression

PROPOSITION 7.5. If N = p is a prLme, then
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Note that E(Z, s) is a (non-holomorphic) Siegel modular form of weight - 2
for r’ = ro(p), while E(Z, s) is a (non-holomorphic) Siegel modular form of

weight 2 for 0393’ = I-’o (p).

8. The Weil-Siegel formula and consequences

In this section we will recall the relation between the central value of the

Eisenstein series E(g, s, 03A6) of Section 7 and a certain type of theta series

associated to a definite quaternion algebra. This relation is the Weil-Siegel
formula as extended in [24, 33], and in our present situation, it provides an
explicit formula for the central value of the triple product L-function. If, for our
given F, the sign 03B5 = -03A0p|N( -apbpcp) in the functional equation of L(F, s) is
- 1, then L(F, 2) = 0. Thus we will restrict our attention to the case in which
e = + 1. In fact, it can be shown that when G = -1, we have E(g, 0, 03A6) = 0 as
well, where E(g, s, 03A6) is the Eisenstein series which occurs in the integral
representation (7.10).

Let S={p:p|N and 03B5p= -apbpcp= -1}~{~} be the even set of places of
Q determined by F and let B be the unique definite quaternion algebra ramified
at the places in S. Let R c B be an Eichler order with reduced discriminant N.
Note that R is unique up to local conjugacy. Let v: B ~ Q be the reduced norm,
and let V, ( , ) be the rational vector space V = B with quadratic form
v(x) = -2-(x, x). Here the associated bilinear form is given by (x, y) = trB(xyl)
where x - x’ is the main involution of B, and trB: B ~ Q is the reduced trace.

Define a Schwartz function ç = ~v~v ~ S(V(A)) by

and

Then let

Let G = GSp3 and let G’ = SP3 be the kernel of the scale map. Also let O(V)
be the orthogonal group of V, ( , ). We will describe O(V) more explicitly in
terms of B " in a moment. Recall that for our fixed additive character 03C8 there is a
Weil representation ev = cv, of G1(A) on S(V(A)3), which commutes with the
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natural action of O(V)(A) [42]. The theta function

is left G1(Q) invariant as a function of g E G1(AB) and left O(V)(Q) invariant as a
function of r E O(V)(A). Moreover, since B is a division algebra so that the
quadratic space V, ( , ) is anisotropic, the space O(V)(Q)BO(V)(A) is compact
and the integral

is absolutely convergent. Here we normalize the invariant measure dr so that

For P = MN and K as in Section 7, we have an Iwasawa decomposition

with n ~ N(A), k E K, and where, for a E GL3(A) and v ~ A , m(a, v) is given by
(2.0). Although a and v are not uniquely determined by g, the quantities

are well defined.

For seC, gl ~ G1(A) and (p E S(V(A)3) as above, we let

Here the subscript ’flat’ refers to the fact that the restriction of this section to K is
independent of s. Note that by the formulas for the action of M(A) and N(A) in
the Weil representation, the function g 1 H (03C9(g1))(0) lies in 1(0), and, hence, the
function g 1 H (D(g,, s) lies in I(s). For any g E G(A), we let

and set
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It is not difficult to check that 03A6flat(s) lies in the space I(s), the global induced
representation defined in Section 7. As in that section, we may then form the
Eisenstein series E(g, S, 03A6flat), which extends by analytic continuation to a
meromorphic function on the whole s plane. The function E(g, s, 03A6flat) is

holomorphic at s = 0 and the Weil-Siegel formula [24, 33] asserts that

Note that the factor of 2 occurs because we are on the unitary axis [24].
We next must determine the local components of 03A6flat(s) = ~v 03A6flat,v(s).
First we consider ~p, the characteristic function of Rp c Bp. Let

and let

be the Fourier transform of 9,, where dy is the self dual measure on Bp for the
pairing x, y) = 03C8(trB(xyl)). Then it is easy to check that

LEMMA 8.1.

where

Also recall that the group SL2(Qp) acts on S(Vp) via the Weil representation
(O(’) determined by our fixed 03C8, and that, for this action [21]

where we recall that
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Similarly, the group Sp3(0p) acts on S(V3p) ~ S(Vp) ~ S(Vp) Q S(Vp) via the Weil
representation cv = W(3), and the restriction of this representation to the

subgroup SL2(Qp)3 is the outer tensor product of the representations W(l) on the
three factors. In particular, the element wi of (3.2), for 0 :c( i :c( 3, acts by (8.11) on
the last i components of an element ~ = qJ1 ~ ~2 ~ qJ3, and acts trivially on the
other components.

PROPOSITION 8.2. For an y prime p, let (pp = ~p ~ ~p ~ ~p ~ S(V3p) with qJp
given by (8.1).
(i) if ptN, then for all g ~ G1(Qp),

where 03A6Kp(s) is the normalized Kp invariant section of Ip(s), as in Section 3.
(ii) If p 1 N, then for all g E G’(0p),

where 03B5p is as above and 03A603B5pRp(s) is the section defined in Section 3, (3.8).
Note that (ii) is the main reason for our choice of the functions 03A603B5pRp(s) in

Section 3, and also that the section 03A603B5pRp(s) ’twists away’ from 03A6flat(s) as we move
away from the point s = 0. 

Proof. For convenience, we will write ~ for (pp. First note that it suffices to
prove thèse identities for g = k ~ Kp ~ G1(Qp). Moreover, for any element

k ~ K0(p) ~ G1(Qp) we have a decomposition

Note that the element d here lies in GL3(Z,). Now we have

LEMMA 8.3. 9 = (pp is Ko(p) invariant.
Proof. By (8.13) and the standard formulas for the action of SP3(Qp) in the

Weil representation,

Since
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we have

where, by Lemma 8.1,  is xp times the characteristic function of (Rp)3 c v3
Thus this integral becomes

The following fact is easily checked

Lemma 8.1.

and so

for y ~ 3p. Thus our integral is just

Since, for XE R;, 03C8(1 2tr(bd-1(x, x))) = 1, we obtain 03C9(k)~ = 9, as claimed. D

Since, by the Lemma just proved, the function g ~ (03C9(g)~)(0) lies in the space
Ip(0)Ko(p), it suffices to compute the values of this function on the w/s for
0  j  3. But, as remarked above, cv(wJ) acts componentwise, so that

Thus

as claimed.
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In the archimedean case, since B is definite, it is not difficult to check that if

~ = ~~ ~ ~~ Q qJ 00’ with ~~(x) = e - 21tv(x) as in (8.2), then

for all g E G1(1R). Here 03A62n~(k, s) = (det k)2" as in (6.3). In fact, since VR is positive
definite of dimension 4, it is well known (see, for example, [23]) that the
Gaussian (p 00 is an eigenvector for the action of K 00 = U(3) with character
det(k)2. On the other hand, the K~-types in the induced representation I~(0)
occur with multiplicity 1 [27], so that the function g ~ (03C9(g)~)(0) must be a
multiple of 03A62~(·, 0). Since both functions take the value 1 at g = e, we obtain

(8.14). Also, taking the complex conjugate, we have

Now let 03A6(s)= ~v03A6v(s)~I(s) be the section chosen in Section 7, with local
components given by (5.10) and (6.18). Then we define

Recall that 03BEp(s) and 03BE~(s) are given by (5.11) and (6.21), respectively. Note that
the section

is not standard, i.e., its restriction to K is not independent of s, but that the
différence

has at least a simple zero at s = 0. Here Cfiat(-s) is the standard section associated
to our fixed Schwartz function (p of (8.3). Now

where
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Then

Thus by the Weil-Siegel formula (8.8)

9. A formula for L(F, 2) 

Using the Weil-Siegel formula of the last section together with the integral
representation (7.7) and (7.10), we obtain the following formula:

Note that

and

Using these values and the fact that 03A0p|N Ep = -1, this becomes

where t = # {p : p | N}.
Next we want to reduce this integral to a more classical form. Suppose that Q

is a function on b3 which is left invariant under the action on ro(N)3. For
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g ~ H(A), write g = Y. g~ ·k with 03B3 ~ H(Q), goo ~ H(R)+ = (GL2+(R))3 n H(R), and
k ~ K’f = 03930(N)3 ~ H(Af); and let

where g~(i) = (Zl, Z2, Z3). Note that fi is left ZG(A)H(Q)-invariant and right K’
invariant, where K’ = K’oo . K’f with K) = SO(2)3. Let Z’ - ZG(A f) n K’f and
note that

Also observe that

Recall that in section 4 and section 6 we have fixed measures dgv on each of
the groups Hv and that the measure dg on H(A) is the corresponding product
measure. Then, noting that vol(SO(2)3/(±1)3) = 03C03 and that |a|- 2 dx d a
- 1 2y- 2 dx dy, and using the observations above, we have

with

Here the factor 03A0p|N(p + 1)- 3 is the index of Ki in KH,f and is equal to the
volume of the group Z’BKi. Taking 03A9(g) = F(g)I(g, ~), with F(g) =
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F(g~(i))j(g~, i)-2 (see (7.5)), we obtain

Note that we may take

with

so that j(g~, i)-2 = y1y2y3.
To compute

we need a classical expression for the theta function O(g 00’ r; ~). Let

and define an involution i: M ~ M by

where v = v(bl) = v(b2). There is then a surjective homomorphism

and
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This yields an exact sequence

with

Note that ZM has index 2 in the center of M. Here we are extending the classical
isomorphism M/ZM  SO(V) by the orthogonal involution x - x’, which has
determinant -1. For the Eichler order R as above, let R = R ~Z  and let

so that KM is a compact open subgroup of M(Af). For each place v, let

iv : Mv ~ Mv be the involution which extends T, and let

We note that p maps C isomorphically to a compact subgroup of O(V)(A), and
give C the corresponding topology. Note that for each p the group

KMp = (R’ x Rp )o is preserved by the action of ip and that the image of

KM  03A0p 03C4p&#x3E; under p is a compact open subgroup of O(V)(Af).
There is a double coset decomposition

where we may choose the representatives bi to have bi,oo = 1 and v(bi) = 1. Recall
that v(B ) = Q + [43, p. 206].

LEMMA 9.1. (i)
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and

Then Fi,j and ri are finite groups and

with 03B3i ~ B Q, mi,~ ~ B R, ki ~  and bri one of the coset representatives of (9.18).
Then, since v(m1) = v(m2)’ we have

which implies that V(Y1) = v(y,), and hence that v(m1,~) = v(m2,~) and

v(k1) = v(k2). Thus we may write

with each factor in M(A), as required in (i). We omit the proof of (ii), which is
similar. 0

We fix a measure on M(A) as follows. First, on M(Af) fix the Haar measure
for which the compact open subgroup KM has measure 1. Note that

ZM(R) ~ tR" and that M(R) = ZM(R)+  M(R)1 where ZM(R)+ is the identity
component of ZM(R) and M(R)1 is the subgroup of M(R) consisting of elements
(b 1, b2) with v(b1) = v(b2) = 1. We choose Haar measure on M(R) to be the
product of d"z = z -1 dz (dz the Lebesque measure on R) on ZM(R)+ and the
measure on the compact group M(R)1 with vol(M((R)1) = 1. Finally we nor-
malize the measure on the compact group C to have vol(C) = 1.
Now p induces a map

which is surjective and proper. Pushing forward the measure defined above, we
obtain a measure dor on O(V)(Q)BO(V)(A) characterized by the identity
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In particular,

by the decomposition of Lemma 9.5, and with

By (ii) of Lemma 9.1, wi,j = wiwj, where

Thus the measure dr of the Weil-Siegel formula, which is normalized to have

is

Thus we obtain

Note that the function ~ is invariant under KM, C, and M(R)1, so that the
integral here is just
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But for g~ as above, and for x = (xi, x2, x3) ~ V(R)3,

where, for

with

so that the preceeding analysis yields

Combining the pieces we finally obtain

THEOREM 9.2.

with dy(z) defined in (9.6) and 0(z) defined in (9.30).
Proof. It only remains to check the value of the constant. Combining (9.7),
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and (9.25)-(9.30), we find

But by Eichler’s class number formula [41],

Thus the constant is

as claimed.

10. The diagonal cycle

We recall that N  1 is a square free integer and for each prime p 1 N we
have a sign 03B5p = ± 1 determined by F = f ~ g ~ h. We assume that

e = -03A0p|N 03B5p = + 1, so that there is a definite quaternion algebra B over Q
(unique up to isomorphism) which is ramified at the even set of places
S={p:03B5p = -1}~{~}. Let R be an order of reduced discriminant N in B. At
places p E S, Rp = R Q Zp is the unique maximal order in the local division
algebra Bp = B 0 Qp. At places p ~ S, Rp is conjugate to the Eichler order

in the matrix algebra Bp ~ M 2(Op). In any case, R exists and is unique up to
local conjugacy.

Let R = R (D 2 and let Ê = B Q Î = B (De Af Let D be the curve of genus 0
over 0 associated to the quaternion algebra B, with a right action of the group
B /Q , and let X be the curve defined by [13, section 3, 4]

In (10.1) the group B x acts simultaneously on the set B  and the curve D.
Since the double coset space B /B  is finite, X is a disjoint union of curves
of genus 0 over Q. Indeed, let {g1, ... , gn} be a set of representatives for the
double cosets and put Ri = B ~ g-1igi. Note that we may as well take
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gi = b-1i - bi as in section 4. Then Ri is another order of reduced discriminant N
in B and the group ri = R i/± 1) is finite of order Wi. We have an isomorphism
[13, sections 3, 5]

taking the coset Rgi x y (mod B ) to the coset y (mod 0393i) on the ith component
of X.

In classical terms, the choice of coset representatives {g1, ... , gn} in B X
corresponds to a choice of left ideals I1..., ln for R which represent the distinct
left ideal classes (I, = Rgi n B) and Ri is the right order of 1i. The lattice

in B has left order Rj and right order R;. Its theta function

is a modular form of weight 2 for ro(N) [7]. We have 03B8i,j = 03B8j,i as the canonical
anti-involution of B identifies the lattice Mi,j with a multiple of the lattice Mj,i.
The weighted sum, for any j, of the theta series 03B8i,j:

is the unique Eisenstein series of weight 2 for ro(N) which has first Fourier
coefficient ci = 1 and satisfies E w p = 03B5p · E for all primes p | N (where wp is the
Atkin-Lehner involution). The constant term co of E is given by Eichler’s mass
formula [41, Ch. V, Cor. 2.3]:

and the L-function L(E, s) = 03A3n1 cnn-s is given by

We note that E is not an eigenfunction for the Hecke operators Tp, when p 1 N
and Ep = + 1.
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Let Pic(X) be the free abelian group of rank n of isomorphism classes of line
bundles on X. This has, as basis, the elements {e1, ... , en} where ei has degree 1
on the component Xi = DIFI and degree 0 on Xi for j ~ i. Since we will

not be particularly concerned with questions of integrality here, we let

P = Pic(X) (x) Q = ~ni=1 Qei. There is a non-degenerate positive-definite height
pairing [13, 4.5]

defined by the formula ei, ej&#x3E; = l5i,jWi on basis elements. The linear form
deg: P -+ 0 defined by deg(Laiei) = Lai is given by the inner product with the
element aE = 03A3(1/wi)ei:

Let M2(N) be the space of modular forms of weight 2 for ho(N) with rational
Fourier coefficients, and define the pairing

by the formula ~(ei, ej) = Oi,j on basis elements. Then

for all b E P.

LEMMA 10.1. Let a, b E P. Then the first Fourier coefficient a1(~(a, b)) is equal to
(a, b&#x3E;.

Proof. The composite al o4J is a bilinear form on P, so to verify that it is equal
to , &#x3E; we must check that they agree on a basis. But a1(03B8i,j) = 03B4i,j  · wi. ~

If 1 is a prime with 1 IN we define the Hecke correspondence tl on X as in

[13, section 4]; this correspondence is self dual, of bidegree 1 + 1. The operators
tl act linearly on P, commute with each other, and are self-adjoint with respect to
the height pairing. They may therefore be simultaneously diagonalized on
PR = Pic(X) Q R.

PROPOSITION 10.2. If f = L:= 1 cnqn is a cuspidal newform of weight 2 for
ro(N), there is a unique line af&#x3E; in PR such that

for all primes 1 t N.
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Proof. This follows from Eichler’s trace formula and the theorem of multiplic-
ity 1, [13, 21]. D

PROPOSITION 10.3. The pairing 4J: P x P ~ M2(N) satisfies

for all primes 1  N, where Tl is the lth Hecke operator on forms of weight 2 for
r o( N).

Proof. It suffices to check this for a = ei and b = ej. We do this via the theory
of Brandt matrices, as in [13]. 1-1

COROLLARY 10.4. Let f be a cuspidal newform for ro(N) and a f a correspond-
ing eigenvector in PR. Then

for all b ~ PR.
Proof. By Proposition 10.3 and the multiplicity one theorem for M2(N),

~(af, b) is a multiple of f. We identify that multiple by equating first Fourier
coefficients, using Lemma 10.1. D

Note. If p 1 N one can define involutions up of X as in [13, section 4]. The
formula analogous to that of Proposition 10.14 is:

where Wp is the Atkin-Lehner involution. Since aE is fixed by all up’s, this shows
that the Eisenstein series E is an eigenvector for ail wp’s, with eigenvalue 03B5p.
Now let d  1 be an integer; we have induced pairings

and

we immediately deduce
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COROLLARY 10.5.

the corresponding eigenvector (unique up to scalars) in

Henceforth we take d = 3 and define the diagonal element

in p:3. This can be viewed as the codimension 2 cycle X, embedded diagonally
in the 3-fold Y = X3.

PROPOSITION 10.6. We have

Proof. By definition

Let F = f ~ g ~ h be our given cuspidal eigenform in M 2(N):3. We then have
an orthogonal decomposition

with respect to the height pairing (, &#x3E;~3, where (AF) is 1-dimensional.

Similarly, we have an orthogonal decomposition

with respect to the Petersson inner product. If B is in P~3R, we let BF be its
component in the space AF&#x3E;; if 03A8 is in M2(N)~3R, we let YF be its component in
the space F&#x3E;.
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COROLLARY 10.7. 1 n M2(N)~3R we have

Proof We have ~~3(0394, A) = 8 by Proposition 10.6. Applying a projector in
the Hecke algebra to the F-eigenspace, we find that ~~3(0394F, 0394) = 8F. But by
Corollary 10.5, ~~3(0394F, 0394) = 0394F, 0394&#x3E;~3. F = 0394F, 0394F&#x3E;~3 · F. D

Note. Since 03B8i,j = 2 + 03A3n1 cnqn, the constant Fourier coefficient of

is given by

Indeed

and the sums are equal to 1 2403A0p|N (p + 8p) by Eichler’s mass formula (10.6).
Finally, we give an elementary expression for the height pairing 0394F, 0394F&#x3E;~3

which appears in Corollary 10.7. Recall that F = f Q g Q h and let a f, ag, and ah
be corresponding eigenvectors in PR. We may write

in terms of our canonical basis ei&#x3E; of P, where the coefficients 03BBi(f) lie in the
totally real field Q(f) and are uniquely determined up to a scalar (and similarly
for 03BBi(g) and aei(h)).

PROPOSITION 10.8.

Proof. Write A, = 03B2 · (af Q ag Q ah) in 03 with 03B2 E R ’. Then
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Since

this gives the stated result.

COROLLARY 10.9. The projection AF = 0 in P~3R if and only if

11. The main formula

In Theorem 9.2 we established the following analytic identity for the special
values of L(F, s) at s = 2

where F(zi, z2, Z3) = f(z1)g(z2)h(z3) and 0398(z1, z2, Z3) is the sum of the genus 3
theta series of certain quaternary quadratic forms, restricted to the diagonal in
Siegel space. The precise definition of 8(z) is given in (9.31).

In Proposition 10.6, we showed that O(z) was equal to the value ~~3(0394, A),
where A is the diagonal cycle on the 3-fold X3 defined in (10.14). As a corollary
(10.7), we deduced that the projection OF of O(z) to the F-component of

M2(N)~3R was given by the formula

were ( , &#x3E;~3 is the height pairing on p03.
Let us normalize the Petersson product on M2(N)~3 by defining

The integral converges provided F is cuspidal. Since the eigencomponents of 0
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other than OF are orthogonal to F, we may combine (11.1), (11.2) and Theorem
9.2 to obtain

THEOREM 11.1.

In some sense, this is the main formula, although we will make its dependence
on the triple f Q g Q h a bit more explicit later. It expresses the special value as
the product of a period

with the algebraic height pairing 0394F, 0394F&#x3E;~3. This leads to the useful

COROLLARY 11.2. (a) We have L(F, 2)  0, with equality if and only if AF = 0
in P~3R.

(b) The ratio L(F, 2)/S2(F) = A(F) lies in the subfield Q(F) of C generated by the
coefficients of the Dirichlet series L(F, s). For all automorphisms 6 of C, we have
A(F)03C3 = A(Fl1).

Proof. (a) We have Q(F) = (F, F)/2nN2t &#x3E; 0 and 0394F, 0394F&#x3E;~3  0. Since

 , )°3 is positive definite on P~3R, 0394F, 0394F&#x3E;~3 = 0 if and only if AF = - 0.
(b) These statements are clear for 0394F, 0394F&#x3E;~3, as the height pairing is defined

on the rational vector space P~3 and the eigencomponent AF is defined in
Po3 0 Q(F). 0

Now recall that F(z) = f(z1)g(z2)h(z3). Hence, the Petersson product (F, F),
which is given by the integral (11.3), can be written as the product of 3 integrals

with 03C9f = 203C0i f(z1)dz1= f(q1)dq1/q1 the normalized eigendifferential on X o(N)
(and similarly for 03C9g and (Oh) [16]. Using the elementary expression for

0394F, 0394F&#x3E;~3 given in Proposition 10.8, we obtain a "factored" form of our main
formula:
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COROLLARY 11.3.

where the algebraic numbers aei(f), aei(g) and Âi(h) are defined in (10.16). I n

particular, L( f Qx g Qx h, 2) = 0 if and only if

We now consider the implications of Corollary 11.3 in the degenerate case
when g = h. In that case, the 4-dimensional 1-adic representation

is decomposable, and we obtain a corresponding factorization of the triple
product L-function

in the right half plane Re(s) &#x3E; 2 of convergence of the Euler product. Our results
on the analytic continuation of L( f Q g (D g, s), along with the classical results of
Hecke on the analytic continuation of L( f, s - 1), show that L( f Q Sym2 g, s)
has a meromorphic continuation to the entire s-plane, and satisfies a functional
equation when s is replaced by 4 - s. By results of Gelbart-Jacquet [11],
Jacquet-Piatetski-Shapiro-Shalika [22], and Waldspurger [29] (cf. Shahidi [38]
p. 256 Theorem 4.3 for details), L( f Q Sym2 g, s) is entire, i.e., the function
L( f 0 g Q g, s) is divisible by L( f, s - 1).

PROPOSITION 11.4. Assume that L( f 1) = 0. Then the eigenvector 1 Âi(f )ei =

a f is orthogonal in PR to all vectors of the form

Proof. We have

which, by Corollary 11.3, is zero if and only if L( f Q g Q g, 2) = 0. Since we are
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assuming that L( f, 1) = 0 and since L( f Q Sym2 g, s) does not have a pole at
s = 2, this follows from (11.7).

In the case f = g we have the further factorization

By the Corollary on page 264 of [38], L(Sym3 f, s) is regular at s = 2.

COROLLARY 11.5. If L( f, 1) = 0 we have

where a f = 03A3i03BBi(f)ei in PR.

The formula in Theorem 11.1 continues to hold in certain cases where f, g, and
h are not cusp forms. For example, assume that N = p is a prime and that

f = g = h = E, the Eisenstein series of weight 2 on ro( p). Then

At s = 2 we have

On the other side, since [13, p. 168]:

by evaluation of a residue in a Rankin L-function, we have
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Since aE = 03A3(1/wi)ei, we nna tnat

Hence,

as in Theorem 11.1. We view this degenerate case as a good check on our
constants.

12. Examples

For small level N, we tabulate in Table 12.5 the coefficients 03BBi(f) of the

eigenfunction

associated to f in Pic(X) Q R, We will only consider the case when f = Lanqn
has integral Fourier coefficients, where the calculations are due to Birch [2] and
to Mestre and Oesterlé [28]. In this case we may take a f to be an indivisible
element in Pic(X), so the coefficients 03BBi(f) are integers with total gcd = 1. This
normalizes them up to sign; we note that 03A3ni=1 Âi(f) = 0, as f is a cusp form.
We also tabulate the algebraic part of the special value of the L-function of the

triple product F = f Q f Q f We have the factorization

and the formula

We only consider f where , 
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For some small square-free levels N we give the eigenvalues Ep (for ascending
factors p 1 N) of the rational newforms f, the rank of the Z-module Pic(X), the
values 03BBi(f) (with a subscript wi if wi * 1), and the value of A(F) with numerator
and denominator separated as in (12.4). In all cases listed, f is the unique
newform of level N with the given eigenvalues Bp’ We note that A(F) = 0 for f of
levels N = 55 and 73; some other small levels where A(F) = 0 are N = 85, 109,
139. In all of these cases L(Sym3 f, 2) = 0, as one knows that L(f, 1) ~ 0.
As a supplement to this table, we record in Table 12.6 a few approximate

numerical values of the period S2(F) and of L(F, 2), which were computed directly
by Joe Buhler. Combined with the values of A(F) from Table 12.5, these provide
a numerical check on the identity of Theorem 11.1. Here we should remark that
in all cases Xo(N) has genus 1, and that, as in Corollary 11.3,

where f is the unique normalized newform and t = #{p : p | N}. Now ~03C9f~2 is
the volume of the period lattice of a Neron differential, with respect to the
measure dz dz = 2 dx dy. In each case, we let c+ be the smallest real period and
c - the imaginary part of the smallest imaginary period. Then

if there is one component on the real locus

if there are two components in the real locus.

We have one component for N = Il, 14, 17, 19 and two components for

N = 15,21.

Table 12.5
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Table 12.6

Table 12.7

Finally, in Table 12.8, we tabulate the values of A(F) for f of prime conductor
N satisfying 100  N  1000. We write A(F) = M’IM’ as in (12.4), with

Table 12.8
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and

and give the values of M2 and M3.
All cases when N  389 and M3 = 0 are caused by the vanishing of L( f, 1), i.e.,

by the fact that the associated elliptic curve has positive rank over Q.

13. The first derivative

We now will present a conjectural formula for the derivative L’(F, 2), in the case
when the sign e = - nplN 8. in the functional equation for L(F, s) is equal to -1.
In this case, L(F, 2) = 0 by (1.14). Our conjectural formula has the same shape as
Theorem 11.1, but the three-fold X3 will be replaced by the triple product of a
Shimura curve X over Q and the pairing  , &#x3E;~3 by the Beilinson-Bloch height
on codimension 2 cycles which are homologically trivial.

Fix F = f ~ g 0 h in S2(N)~3R with 03B5(F) = -1, and let B be the indefinite
quaternion algebra over Q (unique up to isomorphism) which is ramified at the
even set of finite places p 1 N where 03B5p(F) = -apbpcp = -1. Let R be an order in
B of reduced discriminant N; the order R is unique up to local conjugacy - at
places p E S, Rp is the unique maximal order in Bp, and at places p e S, Rp is
conjugate to the Eichler order of M 2(Zp) with c = 0 (mod NZp). Let D be the
curve of genus zero over Q associated to B, and let X(C) be the Riemann surface

where B  acts simultaneously on the right of the left coset space B  and on
the Riemann surface D(C) - D(R) ~ b±. Since  =  · B + by the strong
approximation theorem [7] - here B + consists of the elements with v(b) &#x3E; 0 -

and since every projective Z-module of rank 1 is free, we have an isomorphism

where 0393 =  ~ B + = R + is a discrete subgroup of (B ~ R) + ~ GL2(R)+,
which acts properly discontinuously on b+. The quotient b+/0393 is compact,
except in the case when S is empty. In that case, r is conjugate to the congruence
subgroup ho(N) of SL2(Z) and the quotient in (13.2) can be naturally com-



206

pactified by the addition of the finite set

of cusps, which has cardinality 2#{p|N}. We will henceforth use X to denote the
complete non-singular algebraic curve over C whose complex points form the
compactification of (13.2).

Shimura [39] proved that the curve X has a canonical model over Q, which is
the classifying space for polarized abelian varieties with endomorphisms by R.
For any integer m  1 which is prime to N, we have a Hecke correspondence T.
on X which is self-dual and defined over Q[39]. There is also a canonical class

dl in Pic’(X) (D 0 = Pic1(X)Q which is rational over Q and satisfies

for all (m, N) = 1. When X = Xo(N), d 1 is represented by the class of any cusp
[15].

Let Y be the projective, non-singular 3-fold X3 over Q and let AX be the 1-
cycle of X diagonally embedded in Y Let x 1 be a rational point of X, and define
the partial diagonal cycles

Finally, define the 1-cycle on Y

A short computation shows that 0394X(x1) has trivial image in the cohomology of
Y (the integral of any closed 2-form over 0394X(x1) is zero).
Let CH2(Y)(Q be the rational vector space of codimension 2 cycles on Y up to

linear (= rational) equivalence over 0, which are fixed by Gal«0/0). Let
CH2(Y)&#x26; be the kernel of the cycle class mapping
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By the above remarks, the class of 0394X(x1) lies in CH2(y)g. One shows easily
that this class depends only on the class of Xi in Picl(X)a. Hence we have a
natural diagonal class:

in CH2(y)g.
Under mild technical restrictions (which are satisfied for our 3-fold Y), Bloch

[4] and Beilinson [1] have defined a symmetric, bilinear height pairing

as the sum of local terms (, &#x3E;BBp. They conjecture that this pairing is non-
degenerate, but we do not wish to assume this here. Let KerBB denote the left
(and right) kernel of this pairing, and define the rational vector space

We then have a non-degenerate pairing (by definition):

The Hecke correspondences Tm of X give rise to symmetric correspondences
Tm1  T., x Tm3 of Y = X3. They give endomorphisms of CH2(y)g which are self-
adjoint with respect to the pairing , )BB [15], and so preserve the subspace
KerBB and act on P.

PROPOSITION 13.1. If t is a 0-linear combination of Hecke operators

Tm1 x Tm2 x T., which annihilates the space S2(N)~3, then t · 0394 = 0 in P.

The proof is not difficult, and will be given in a forthcoming paper [14].
Using Proposition 13.1, we can define the F-isotypic component AF of the

class A in PR. Namely, let tF be an R-linear combination of Hecke operators

Tm1 x Tm2 x Tm3 which projects to the (1-dimensional) F-isotypic component in

S2(N)~3. We then define

Although tF is not unique, the difference (tF - t’F) · 0394 is zero in PR, for two

different projectors tF and tF, by Proposition 13.1. Since  , &#x3E;BB is defined on
PR we may calculate the pairing of AF with itself. 



208

CONJECTURE 13.2. We have the formula

where (F, F) is the Petersson product defined in (11.3) and (11.6).

Some evidence for Conjecture 13.2 will be presented in a forthcoming paper
with Zagier [14].
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