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1. Introduction and theorems

Consider the defocussing cubic non-linear Schrôdinger equation (NLS)

for complex valued function 03C8 with periodic boundary conditions

03C8(x + 1, t) = 03C8(x, t). It is well known that (NLS) is a completely integrable
infinite dimensional Hamiltonian system. The periodic eigenvalues of the

corresponding self-adjoint AKNS-system are invariant under the flow of (NLS),
where the AKNS-system is given by

with qi(x, t) = p(x, t) - iq(x, t). Define for N ~ N

For N  1 the Liouville tori of (NLS) in the phase space ye Nare the isospectral
sets

tPartially supported by NSF.
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For every N, IsoN( p, q) is compact, connected and generically an infinite product
of circles.

For (p, q) ~ XN (N = 0, 1) let {03BBk(p,q)}k~Z be the periodic and antiperiodic
spectrum of H( p, q). One knows that the gap length map y from X1 into l’N
defined as

is continuous (but not analytic), onto and 03B3-1(03B3(p,q))=Iso1(p,q), where
l2N = {(ak)k~Z/03A3k~Zk2N|ak|2  ~} (N  0). (see [Gre-Gui]).

In Appendix A we prove

THEOREM 1.1. (1) The gap-length map 03B3: X°  l2 is continuous and

(2) ~(p, q)~X0 is a spectral invariant, i.e. constant on Isoo( p, q).

Knowing the Dirichlet-spectrum {03BCk(t)}k~Z of the operator H( T p, 1;q), where
(T,f )(x) = f (x + t) one can reconstruct p and q by the trace formulas

Here {k(t)}k~Z is the Dirichlet-spectrum of H(T q, - T p). The dependence of t of
{03BCk(t)}k~Z is given (see [Gre-Gui]) by a system of singular differential equations.
For finite gap potentials ,uk(t) can be explicitly calculated by geometric methods
(see [Pre]). In this article we compute the image of 03BCk(·), or equivalently the

image of the flow by translation Tt on Iso(p, q), for non-finite gap potentials. To
do this we introduce the space

and a map detN from AN into l’ defined as

We will prove

THEOREM 1.2. For N = 0, 1 there exists a real analytic one-to-one map 4) from
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yeN into JltN with 03A6(IsoN(p, q)) = detN 1(det,«D(p, q))). For N = 1, 03A6 is onto and

bianal ytic.

This theorem gives a geometrical description of the "foliation" IsoN(p, q) in
ye N. A similar theorem for the Kd V equation has been proved by T. Kappeler in
[Kp]. In section 2 we construct the map 4Y using results from [Gre-Gui] and
[Kp]. Theorem 1.2 follows immediately as in [Kp] using arguments from [Gar-
Tru, 1, 2] and

THEOREM 1.3. The derivative of 03A6 at (p, q) is an isomorphism from eN to JIN
(N = 0, 1).

Theorem 1.3 is proven in section 3.

Let (D = (03A6k)k~Z. The above mentioned result concerning the flow by trans-
lation is now a consequence of Theorem 1.2 and proved at the end of Section 2:

THEOREM 1.4. Suppose (p, q) ~ X0 (resp. el). Then for every k with

À,2k-l(P, q)  À,2k(P, q) there exists a continuous (resp. cont. differentiable) function
~k(·): R ~ R such that

This shows that the image of Jlk(.) by the flow of translation consists, for all
k e 0, of the whole gap [03BB2k-1(p, q), 03BB2k(p, q)].

Similarly as in [Kp] for Kd V Theorem 1.2 can be applied to the so called
finite gap potentials. Define, for a finite subset J g Z,

Elements in GapJ,r are called regular J-gap potentials. It is well known that the
potentials in Gapj are, in fact, real analytic. Further, observe that

Gapj = 03A6-1{R = (Rk)k~Z ~ M0 : Rk = 0 ~ k ~ J } and thus Gap, is a 2N dimen-
sional manifold where N = # J. Clearly GapJ,r is open in Gapj and

(diffeomorphically) where R+:= {x:x &#x3E; 0} and T N
denotes the N-torus (Sl)N. Obviously Gapj,, is invariant by NLS. Therefore,
with the symplectic structure coming from NLS, it follows from Theorem 1.2
that (R+)N x TN is a symplectic manifold of dimension 2N with a trivial fibration
by Lagrangian tori TN. We thus obtain (cf. [Dui])

COROLLARY 1.5. When restricted to Gapj,,, NLS admits global action-angle
variables.
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2. Global coordinates on ye N

We first define the map 03A6 mentioned in the introduction.
If 03BB2k-1(p, q) ~ 03BB2k(p, q) (k E Z) one denotes by F2k-1(·; p, q) and F2k(· ; p, q)

the two corresponding eigenfunctions of H( p, q) such that, for j = 2k - 1, 2k

If À2k-l(P, q) = Â2k (p, q) then F2k-1( ·; p, q) and F2k(· ; p, q) are two orthonormal
eigenfunctions such that

As the eigenvalues îj are periodic or antiperiodic one has

Let E, (p, q) be the two-dimensional subspace of L2 generated by F 2k-l and F2k.
As in [Kp], in order to introduce an orthonormal basis (G2k-1(·;p,q),

G2k(·;p,q)) of Ek(p,q) depending analytically on (p,q)~X0 one needs the
following lemma.

LEMMA 2.1. For ( p, q)~X0 and for every k ~ Z the map

from Ek( p, q) into R2 is a linear isomorphism.

Before proving Lemma 2.1, let us introduce some more notations and a few
elementary results from [Gre-Gui] which will be used later.
Denote by

the fundamental solutions to H( p, q)Fj = À-Fj such that

The 03BCk(p, q)’s (resp. 03BDk(p, q)’s) are the simple zeroes of Z1(1, ·; p, q) (resp. Y2(l, -;
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p, q)) in C. (03BCk(p, q))k~Z(resp. (03BDk(p, q))k~Z) is a strictly increasing sequence of real
numbers.

Further

Denote by 0394(03BB) the discriminant

The collection of periodic and antiperiodic eigenvalues (Â-k(p, q))k~Z written in

increasing order and with multiplicities have the following asymptotics

and

where the error terms are uniform on bounded sets of potentials
(p, q) ~ L2([0, 1])2.

It follows that for j = 2k - 1, 2k

and

Finally, for A,2k - 1 (p, q)  03BB2k(p, q) one has J = 2k - 1, 2k)

where 03B5j(p, q) = + 1.

Proof of Lemma 2.1.
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Fix k and ( p, q). It suffices to show that

where

is the Wronskian of F2k and F2k-1. Using the equation H(p, q)Fj = 03BBjFj one
derives

(cf. [Gre-Gui]).
Thus, if Â2k = Â2k-l’ we conclude that W(F2k, F2k-1) is constant. As F2k and

F2k - 1 are linearly independent, this constant is different from zero. In the case
where Â2k-l 03BB2k we first show that W(F2k, F2k - )(x) has at most simple
zeroes. Assume that this is not the case. Then there exists 0  x0  1 and

0  ~(x0)  21t such that

and

where here 1.1 denotes the Euclidean norm in R2.
But both |F2k(x0)| ~ 0 and |F2k-1(x0)| ~ 0 which leads to a contradiction.
Let us consider the smooth path (tp, tq) in X0. Denote by

to = max(0 5 t 5 1; À,2k(tp, tq) = À,2k-l(tp, tq)l. Then 0  to  1. Choose L2-
normalized eigenfunctions F2k( ’ , tp, tq) and F2k -1( ’ , tp, tq) such that for t = 1,
2k(·, p, q) = F2k(·, p, q) and F2k-1(·, p, q) = F2k-1(·, p, q) and F2k and F2k-1
are continuous in t, i.e. f2k and F2k-l E C([to, 1], (H1[0, 1])2). In particular
we conclude that 2k(·; t0p, t0q) and F2k-1(·;t0p,t0q) are L2-normalized

orthogonal eigenfunctions for 03BB2k(t0p, t0q). We conclude that for t = to
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W(2k, 2k-1) is constant and différent from zero. Clearly W(t, x):=
W(F2k( ’ , tp, tq), 2k-1(·,tp,tq))(x) is continuous in 0  x  1 and t0 
t  1. To simplify notation assume that W(to, x) &#x3E; 0 (0  x  1). For fixed
t0  t  1, W(t, x) can have at most simple zeroes and thus by a classical
argument from homotopy theory we conclude that W(t, x) can never vanish for
0  x  1 and t0  t  1 and Lemma 2.1 is proved.
We use Lemma 2.1 to define G2k -1( ’ ; p, q) as the unique function in Ek( p, q)

satisfying

G2k(·; p, q) is then defined to be the unique function in Ek( p, q) such that

Clearly, G2k and G2k-1 can be expressed in terms of F2k and F 2k-l. There
exist a unique 03B8k(p, q) E [0, 2n) such that

where Ex = sign W(F2k(·; p, q), F2k-1(·; p, q»(0).
Using a perturbation argument (cf. [Ka]) one proves as in [Kp] that

G2k(·; p, q) and G2k-1(·; p, q) are both analytic functions of (p, q) as maps from
(L2([0, 1]))2 into (H’([O, 1]))2.

F2x and F2k-1 are eigenfunctions of H(p, q) but they cannot depend
analytically on (p, q) due to possible multiplicity of the eigenvalue À2k. G2k and
G2k - 1 are not necessarily eigenfunctions but they depend analytically on (p, q).
For (p, q) E XN (N = 0, 1) and for k E Z define 

where 1:k = (03BB2k + À2k-l)/2. One easily shows that

where 03B3k(p, q) = Â2k(p, q) - Â2k-l(P, q).
The matrix 03A6k(p,q) is symmetric and its trace is zero. Its eigenvalues are
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+ [03B3k(p, q)/2]. For every k E Z, 03A6k(·, ·) is a compact map from Je° into the space
of real symmetric trace free matrices. (See [Kp] for a proof.)
Furthermore it is proved in [Gre-Gui] that (03B3k(p, q»)kEZ E l2(Z) (resp. l21(Z)) for

(p, q)~X0 (resp. Yf 1) and, for N = 0, 1, Lk 03B3k(p, q)2k2N  00 uniformly on
bounded sets of potentials in XN.

DEFINITION 2.2. For (p,q)~XN set

It follows that 03A6( ., .) is a bounded map from yeN (N = 0, 1) into JIN.

As in [Kp] one shows that 03A6(., .) is real analytic. Furthermore 03A6(., .)
preserves isospectrality in the following sense: (D(p, q) and (D(p’, q’) are isospec-
tral, i.e., spec 03A6k(p, q) = spec 03A6k(p’, q’) for every k, if and only if

Yk (P, q) = 03B3k(p’, q’) for every k. It is shown in [Gre-Gui] that, for ( p, q) and (p’, q’)
in X1, Yk(p, q) = Yk(p’, q’) for every k implies 03BBk(p, q) = 03BBk(p’, q’) for every k. For
(p, q) and (p’, q’) in X0 the same conclusion follows from Appendix A (see
Corollary A.4) by the same argument given for the case N = 1 in [Gre-Gui].

REMARK 2.3. M0 (resp. M1) can be identified with 1’(;Z) (resp. 1’(Z» by the
map

It then follows that for (p, q) ~ XN with N = 0,1

In particular 03A6( ., .) coordinatizes XN globally.
It follows that for ( po, q0) ~ XN

One recovers the well-known result that IsoN(po, qo) is a compact set, generically
an infinite product of circles, the radii of which are in l2N(Z).
We now prove Theorem 1.4. Following [Kp, Thm. 4] one easily shows that

there exists a continuous (resp. continuously differentiable in the case
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(p,q)~X1) function t/1k(t, s) such that

for (t, s) ~ [0, 1]2 where, for s0  s  1, F2k( ’ ; sp, sq) and 2k-1(·;sp, sq) are
chosen as in the proof of Lemma 2.1 with s0 = max{0  s  1;
03BB2k(sp,sq) = 03BB2k-1(sp,sq)}. Taking possible crossings of the eigenvalues
03BB2k(sp, sq) and 03BB2k-1(sp,sq) into account (cf. [Ka]), 2k(·; sp, sq) and

2k-1(’ ;sp, sq) can be chosen to depend smoothly on s, 0  s  so, if one allows
F2k(’; sp, sq) to be either a (normalized) eigenfunction for 03BB2k(sp, sq) or

03BB2k-1(sp, sq) and similarly for 2k-1(·; sp, sq).
Define ~k(t):=03C8k(t, 1 ) and the winding numbers hk(s):=

(03C8k(1 + t, s) - t/1k(t, s»In, hk(· ) being a continuous function of s with values
in Z. Therefore hk(s) = hk(0) = k for every s ~ [0,1] and thus ~k(1+t)
- lfJk(t) = k1t.

REMARK 2.4. For (p,q) ~ X1 one shows that

Then, for |k| sufficiently large, one has

i.e. 03A6k(Ttp, Ttq) winds Ikl times around the origin without stopping, clockwise if
k  0 and counterclockwise if k &#x3E; 0.

3. The derivative ouf (D

In this section we compute the derivative of O and show that it is a linear

isomorphism from XN onto MN for N = 0, 1.

As in [Kp] it is convenient to write C in a slightly different form. One writes O
as a map T from ye N into l2N(Z) (see Remark 2.3) with 03A8(p, q) = (03A8k(p, q))k~Z
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where

Let d(p,q) ’JI 2k (resp. d(p,q) ’JI 2k -1) denote the derivative of 03A82k(·,·) (resp.

THEOREM 3.1. Suppose (u, v) ~ X0. Then

where ’·’ denotes the scalar product in 1R2.
Proof of Theorem 3.1. The derivative d(p,q)03A82k-1[(u, v)] is given by
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The chosen normalization of G, imply that

Further

One then gets

Hence one finally obtains

Let us now compute d(p,,)Tk 1(u, v)].
Define, for fixed k ~ Z, the open set Uk ~ X0

À2k(.’ .) and À2k-l(., .) are continuously differentiable on Okk.
Using H(p,q)Fj=03BBj(p,q)Fj (j=2k-1,2k) one obtains for (p,q)~Uk
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Thus

Expressed in terms of the Gk’s we obtain

Now Okk is dense in Je° and both sides of the least equality are continuous
functions of (p, q) in e’. Thus this equality expresses d(p,q)03C4k in terms of the Gk’s
on YCO. d(p,q)Bf! 2k is calculated in the same way as d(p,q)03A82k-1.
The derivatives d(p,q)Bf! 2k and d(p,q)03A82k-1 can be expressed in a slightly

different way as follows.

COROLLARY 3.2. Suppose (u, V)EJe°. Then
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where Ek = sign W(F2k( ’ ; p, q), F2k-1(·; p, q»(0).

We now study the asymptotics of d(p,q)03C82k and d(p,q)03C82k-1. First of all it will
be useful to bring

into another form.

LEMMA 3.3.

The proof of Lemma 3.3 follows as in [Kp; Lemma 5.3].
In order to bound F2k-1(·) and F2k(·) uniformly with respect to k we use the

following lemma.

LEMMA 3.4. For (p, q) ~ X0 and K ~ Z denote 1 k( .) the unique function in

Ek(p, q) such that ~Ik(·)~L2([0,1])2 = 1 with I(1)k(0) &#x3E; 0 and I(2)k(0) = 0. Then for
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The error terms are uniform with respect to 0  x  1 and ( p, q) in any bounded
set of X0.

REMARK. We present a proof of Lemma 3.4 which generalizes easily to a
situation encountered in Lemma 3.14 below.

Proof of Lemma 3.4. (1) Assume that j = 2k. Observe that (see [Gre-Gui])

Existence and uniqueness of Ik(·) follow from Lemma 2.1. Then there exist Otk
and 03B2k satisfying

with 03B12k + 03B22k = 1.
Further

with (akYk)keZ E 12(Z).
Define

Then fk(-) satisfies

with

Set
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We then obtain

It follows from the estimates of F1(·, 03BB) and F2(-, 03BB) in [Gre-Gui; Section 1] that
there is a constant C &#x3E; 0 independent of k such that

Therefore we get

Further we get from [Gre-Gui; Section 1]

Thus

and (i) is proved with j = 2k. The case j = 2k - 1 follows exactly in the same
way.
To prove (ii) remark that

Further

Thus (ii) follows in the same way as (i) and Lemma 3.4 is proved.
Let us deduce from Lemma 3.4 that

uniformly with respect to k.
Consider F2k. For |k| sufficiently large it follows from Lemma 3.4 that

W(Ik, G2k-1)(·) ~ 0 because W(F1(·, Â2k), F 2(.’ 03BB2k)) = 1.
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Therefore

for |k| sufficiently large.
From ~F2k(·)~L2([0,1])2 = 1 we deduce that

uniformly with respect to k. (3.1) then follows from Lemma 3.4.
We now study the asymptotics of d(p,q) 03C82k and d(p,q)BP 2k-l. One easily shows

that

where the error terms are uniform with respect to 0  x  1. Furthermore since

G2k( ’ ; p, q) and G2k-1(·; p, q) are real analytic functions of (p, q) as maps from
£0 into H1R([0,1])2 it follows that d(p,q) G2k(·; p, q) and d(p,q) G 2k - 1 ( . ; p, q) are
bounded linear maps from £0 into H’([O, 1])2 which are still real analytic
functions of (p, q).

It follows from Lemma 3.3 and (3.1) that the norm of the linear map

is uniformly bounded with respect to (p, q) on bounded sets of :Yf° and to k E Z
(See [Kp; Prop. 5.4]).

It then follows from Theorem 3.1 and from the fact that (03C8k(p, q))k~Z is in l2(Z)
that we obtain

THEOREM 3.5.
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where the error term is bounded uniformly with respect to (u, v) and ( p, q) in any
bounded subset of X0.

We need to introduce some more notation. For ( p, q) E Jfo set

Then, for k E Z, define

For k ~ J set

and for k E J define

Then, from Corollary 3.2, it follows that

THEOREM 3.6. Suppose ( p, q)E.Yt°. Then d(p,q) 03A6 is a linear isomorphism form
eo onto M0.
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The proof of Theorem 3.6 is rather long and several steps are needed.
Theorem 3.5 shows that d(p,q) 03C8 is a Fredholm operator of index zero.

Therefore it suffices to show that d(p,q) 03C8 is one to one in order to prove Theorem
3.6. 

Assume that d(p,q) 03C8[(u, v)] = 0 where (u, v) E £0. From the above formula we
conclude that (Hk(·; p, q), (u(·), v(· ))) = 0 for every k E Z. Therefore, in order to
prove that d(p,q) 03C8 is one to one, one must prove that {Hk(·; p, q)lk.Z is a Riesz
basis of £0. Using the definition of the Hk’s and the asymptotic behavior of the
Gk’s one shows that {Hk(· ; p, q)}k~Z is quadratically close to the orthonormal
basis (Tk(·; p, q)) of eo where

Thus to prove that (Hk(·; p, q))kEZ is a basis of yeO it remains to prove that the
Hk’s are linearly independent, i.e., if (ak)kEZ is a sequence of real numbers such
that

then ak = 0 for all k.

First, let us recall that the set Isoo( p, q) of isospectral potentials is a countable
intersection of manifolds and that one can define the normal space N(p, q) and
the tangent space T(p, q) of Isoo( p, q) at (p, q). Using results of [Gre-Gui], an

easy computation shows that {H2k(·; p, q)}k~Z and {H2k-1(·; p, q)}k~J belong to
the normal space N(p, q) of the isospectral set Isoo( p, q) at (p, q).

Set for k’ ~ Z

where (a, b) = ( - b, a), (vk’(p, q))k’EZ is one of the two Dirichlet auxiliary spectra
defined in section 2.

Clearly ( pk,, qk’) is in the tangent space T(p, q) of Isoo( p, q) at (p, q). Hence it
follows that for every k’

The proof of Theorem 3.6 consists of three steps. In the first one we show that
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03B12k -1 = 0 for k E J. In the second one we prove that a2k = (X2k -1 = 0 for k e J
and in the third one we finally show that a2k = 0 for every k in J.

3.1. The first step

Let us begin with a computational lemma.

LEMMA 3.7. If (u, v) E T( p, q) and k in J such that Â2k -,(p, q)  vk( p, q)
 A2k(P, q), then

Proof of Lemma 3.7. We first prove that for (u, v) ~ T(p, q)

as follows:

Using H( p, q)Fj = 03BBjFj one gets
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Thus (3.4) follows from the definition of H 2k-l. To compute d(p,q) 03B8k[(u, 03BD)] take
the derivative of 0 = G(1)2k-1(0) = sin 03B8k F(1)2k(0) + 03B5k cos 03B8k F(1)2k-1(0) and use a

similar argument as in [Kp, Lemma 6.8] to obtain

In the case where Vk(P, q) ~{03BB2k(p, q), 03BB2k-1(p, q)} the following result holds.

LEMMA 3.8. If k E J with vk(p, q) ~ {03BB2k(p, q), À2k-l(P, q)l, then, for k’ ~Z,

(H2k’-1(·; p, q), (pk(·), qu( - ))) = Ôk’kCk with Ck ~ o.

The proof of Lemma 3.8 follows as in [Kp, Lemma 6.10], once the following
result is proved:

"Every (p, q) ~X0 with Vk(P, q) E {03BB2k(p, q), À2k - 1 (p, q)l, for some k E J, is the
limit of a sequence (Pj, qj)jeN in Iso°( p, q) with 03BB2k-1(p, q)  03BDk(pj, qj)  îy2k(P, q)."

This result easily follows from Appendix A.
Thus using (3.3) and Lemma 3.8 one gets a2k -1 = 0 for every k E J - J where

J1 = {k ~ Z; 03BB2k-1(p,q)  vk(p, q)  03BB2k(p, q)}. We now prove that 03B12k-1 = o for
k ~ J1. For that purpose define

where (p,,, qk’) is given by (3.2). Define

where bk’,k denotes the Kronecker delta function.
Let A (resp. B, C) be the linear operator associated with the matrix

(Ak’,k)(k’,k)~J1  J1 1 (resp. (Bk’k), (ek’k)O T’hen A (resp. B, C) ~B(l2(J1)) has the

following properties.


