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We have been informed by Vo Van Tan on an omission in Theorem (5.5) of our
paper [K-P]. In fact, Enoki constructed in [E] compact complex surfaces Sn,a,t
depending on parameters n ~ N, oc c- C, 0  loci  1 and t ~ Cn, with second Betti
number b2(Sn,a,t) = n, admitting an effective divisor D = Dn,03B1,t with n irreducible
components such that D2 = 0. He proved that any compact complex surface S of
class VIIo with b2(S) = n &#x3E; 0 having a divisor D:O 0 with D2 = 0, is isomorphic
to some Sn,a,t and D = r Dn,a,t.

Moreover, Sn,«,tBDn,a,t is an affine C-bundle over an elliptic curve which is a
line bundle if t = 0. This affine bundle can be compactified to a ruled surface over
an elliptic curve.

It is easily checked that Sn,03B1t/Dn,03B1,t is Stein for t ~ 0 (for instance by [V]
p. 4, 5). Taking this into account, Theorem (5.1) of [K-P] formulates now:

(5.1) THEOREM. Let X be a compact complex surface and G-c X an irreducible
curve with C2 = 0 such that XBC is Stein. Then one of the following statements
holds :

(i) X is algebraic,
(ii) X is a Hopf surface of algebraic dimension 0 with exactly one curve,
(iii) X is isomorphic to some S1,a,t with t ~ 0 (and Gis rational by [E]).

In the same spirit, we have to add all surfaces Sn,a,t, t ~ 0, in Theorem (5.5) of
[K-P]. This does not cause any trouble for the applications in Section 5 of loc.
cit., since the divisor D there contains always an elliptic curve which is wrong for
D = Dn,«,t ~ Sn,«,t by Enoki’s paper.
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