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Let E be an elliptic curve over Q, L(E, s) its L-function, and W(E) the associated
root number, defined intrinsically as a product of local epsilon factors (Deligne
[6]) and hypothetically as the sign + 1 in the conjectural functional equation of
L(E, s):

(N(E) denotes the conductor of E). The Birch-Swinnerton-Dyer Conjecture
implies that

Over the years this conjectural formula has been a frequent source of insight in
the study of elliptic curves. Here it will be used to study some elliptic surfaces.
Our project is inspired by some recent ideas of Mazur concerning the

"topology of rational points" on an algebraic variety over Q, and in particular
by the case where the variety in question is an elliptic surface over Q with base
the affine line. Given such a surface, consider the family of elliptic curves Et over
Q which arise as smooth fibers over rational points t in the base. Mazur
conjectures that a sharp dichotomy governs the variation of the rank of E,(U)
with t: either there are only finitely many t e o such that the rank of Et(Q) is
positive, or else the set of all such t is dense in R. With this hypothesis in mind we
shall look at a few examples, seeking evidence not only for Mazur’s conjecture
but also for the existence of a similar dichotomy in the variation of W(E,) with t.
The first example we shall consider is the family
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THEOREM 1. Given jE Q, j =F 0, 1728, write

with fi, y c- { ± 11 and positive integers a, b, c such that a and c (hence also a and b)
are coprime. If a, b, and c are square-free and relatively prime to 6, and

yac = 1 (mod 4), then

The arguments of Gouvêa-Mazur [10] yield a corollary:

COROLLARY. Put

Then J + and J - are both dense in R.

If we grant (0.1), then Mazur’s conjecture for the family {Ej} follows from the
density of J - in R. 1 do not know whether the counterparts to J + and J - are
dense in Il for an arbitrary family with nonconstant j-invariant. However, for
families with constant j-invariant it can happen that neither set is dense, as we
shall now explain.
Given an elliptic curve E over 0 and a nonzero rational number d, let Ed

denote the quadratic twist of E by d, so that if y2 = X3 + ax + b is an equation
for E then dy2 = x3 + ax + b is an equation for Ed. Our second theorem
concerns families of the form

Et = Ef(t)

(t E Q, f(t) ~ 0), where E is a given elliptic curve over Q and f is a nonzero
polynomial with rational coefficients. Using a method of Waldspurger ([22],
Prop. 16), we shall prove:

THEOREM 2. Put

One of two mutually exclusive alternatives holds: Either
(1) the sets T + and T - are both dense in R; or,
(2) one of the sets T ± is (t E Q: f(t) &#x3E; 01 and the other is {t E Q: f(t)  O}.
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Furthermore, if E is given, then there exists f such that (2) holds and such that the
number of sign changes of f on R exceeds any preassigned value. On the other
hand, there exists f such that (1) holds if and only if E does not acquire everywhere
good reduction over any abelian extension of Q.

It is easy to give examples of elliptic curves over Q which do not acquire
everywhere good reduction over any abelian extension of Q: for example, any
elliptic curve over 0 with multiplicative reduction at some prime has this
property. According to the theorem, for such elliptic curves we can realize both
alternatives (1) and (2) by an appropriate choice of f. On the other hand, there
exist elliptic curves over which do acquire everywhere good reduction over
some abelian extension of Q, and for these curves only the second alternative
can occur. As examples of the latter class of elliptic curves we mention two
curves of conductor 37’: the curve

which has invariant j = 212 and minimal discriminant A = 373, and the curve

which has invariant j = 33 x 37 and minimal discriminant A = - 372. (The
second example was also found by Masato Kuwata.) Other examples are given
in [12], pp. 9-11, and in a forthcoming paper of Connell [5], who gives a
complete characterization of such elliptic curves using congruences on the j-
invariant. In addition, the list of elliptic curves in Edixhoven-De Groot-Top [7],
although compiled for a different purpose, actually contains several curves with
the property at issue here.
At first glance, the fact that the second alternative in Theorem 2 really does

occur may appear to cast doubt on Mazur’s conjecture. Suppose for example
that E is either of the elliptic curves (0.3) and (0.4), and choose f to be any
quadratic polynomial over Q with two distinct real zeros. Then Mazur’s

conjecture and (0.1) together imply that the set of tc-0 for which Ef(’)(0) has
positive rank is dense in R. This conclusion may appear implausible, because the
function t H W(Ef(t)) is identically equal to 1 on one of the sets {t E Q: f(t) &#x3E; 01
and {t ~ Q: f(t)  0}. Nevertheless, in the case at hand one can verify Mazur’s
conjecture directly by an elementary argument:

THEOREM 3. Let E be an elliptic curve over Q and f a quadratic polynomial
with rational coefficient. If there exists t ~ Q for which f(t) :0 0 and Ef(l)(0) has
positive rank, then the set of all such t is dense in R.

So far we have made no reference to the group of sections of an elliptic surface
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or to the interplay between the rank of the group of sections and the rank of the
individual fibers. We shall end the paper by touching on this theme at least
briefly. In [4], Cassels and Schinzel consider the family

Using the root number calculations of Birch-Stephens [1] and granting (0.1) (or
using the descent calculations of Cassels [2] and granting Selmer’s conjecture;
see [3], p. 276, and [13]) they observe that each member of the family (0.5) has
positive Mordell-Weil rank while the group of Q-rational sections has rank 0.
We shall present a class of examples in the same spirit, still contingent on (0.1), in
which the curve y2 = x3 - x is replaced by any elliptic curve over Q and the
polynomial 7(1 + t4) by some other suitably chosen polynomial, which can
always be taken to be of degree four. Assuming (0.1) we shall also give examples
of families for which the group of Q-rational sections has rank 0 while the
individual members Et have Mordell-Weil rank  2 for a dense set of t ~ Q.
These applications appear as Proposition 9 in Section 9.

1. Root numbers

Let E be an elliptic curve over Q. As we have already mentioned in the
introduction, the root number of E has an intrinsic definition, independent of
any conjectures, as a product of local factors

where p runs over the prime numbers and infinity, Wp(E) = ± 1 for all p, and
Wp(E) = 1 for all but finitely many p. The local factor Wp(E) is an invariant of the
isomorphism class of E as an elliptic curve over Qp. It is defined by the formula

where V/ is any nontrivial unitary character of Qp, dx is any Haar measure on
Qp, 03C3’E,p is a certain representation of the Weil-Deligne group of Qp (here
denoted W’(Qp/Qp)), and 03B5(03C3’E,p, 03C8, dx) is the corresponding epsilon factor as in
Deligne [6] and Tate [19]. That the right-hand side of (1.2) is independent of the
choice of dx and 03C8 follows from formulas (3.4.3), (3.4.4), and (4.1.6) of [19]; in the
case of 03C8 we must also use the fact that det (1E,p is real-valued and positive. Here
we should explain that we are thinking of 03C3’E,p as a pair (03C3E,p, NE, p ), where (1 E,p is
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a continuous representation of the ordinary Weil group W(Qp/Qp) on a two-
dimensional complex vector space V, and NE, p is a nilpotent endomorphism of V
satisfying a certain compatibility with (1 E,p. The precise definition of 03C3’E,p will be
recalled in stages as needed, but we mention at the outset that it breaks up into
three cases: the case where p = oc, the case where p  oo and E has potential
good reduction at p, and the case where p  oo and E has potential multipli-
cative reduction at p. It is only in the last case that the nilpotent endomorphism
NE,p comes into play; in the other two cases we simply set NE, p = 0 and identify
03C3’E,p with 03C3E,p. Corresponding to the three cases just enumerated, there are three
types of formulas for Wp(E) which are needed for the proof of Theorem 1. The
first of these allows us to rewrite (1.1) in the form

PROPOSITION 1. W~(E) = -1.
Proof. This is completely standard, but for the sake of completeness we say a

few words. At the infinite prime the Weil-Deligne group is simply the Weil group
W(C/R), defined by

where J2 = -1 and JzJ-1 = z for z ~ C . The representation 03C3’E,~ = (1E,oo is

canonically associated to the Hodge decomposition of H1(E(C)) and can be
described as follows: if we write 1%’(C/C) for the subgroup C x of W(C/R), then
03C3E,~ is the induced representation

where ~:C (=W(C/C)) ~ C  is the character z~z-1. To compute the

associated root number, put 03C8R(x) = e2"ix and 03C8C(z) = 03C8R(trC/R(z)), and let dx
and dz denote respectively Lebesgue measure on Il and twice Lebesgue measure
on C. Also let 1R and le denote the trivial representations of ir(CjlR) and
W(C/C) respectively, and let "sign" denote the nontrivial character of W(C/R)
with kernel 1%’(C/C). Inductivity of the epsilon factor in degree 0 gives

while
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by additivity. Hence the proposition follows from formulas (3.2.4) and (3.2.5) of
[19].

2. The case of potential good reduction

Let p be a prime and let Qp denote a fixed algebraic closure of Qp. We recall that
the Weil group W(Qp/Qp) is the subgroup of Gal(Qp/Qp) consisting of those
elements which induce an integral power of the Frobenius automorphism
x - xP on the residue class field of Qp. By its very definition, W(Qp/Qp) comes
equipped with a homomorphism

such that 03C9(03C3) = p" if (1 induces the n-th power of the map x - xP on the residue
class field of Qp. By an inverse Frobenius element of W(Qp/Qp) we shall mean
any élément C such that 03C9(03A6) = p -1.

Let I denote the inertia subgroup of Gal(Qp/Qp). Then I is contained in

ir(QpjQp) and is in fact the kernel of co. We make (Qp/Qp) into a topological
group by requiring that I be open in W(Qp/Qp) and that it retain the topology it
inherits as a subgroup of Gal(Qp/Qp).
Now let E be an elliptic curve over Qp with potential good reduction. We

write Qp,unr for the maximal unramified extension of Qp in Qp and L for the
minimal extension of Op, unr over which E acquires good reduction. If m  3 is an
integer prime to p, then it is known ([15], p. 498, Cor. 3) that

where E[m] denotes the group of points on E of order dividing m. Furthermore,
putting

we have exactly four possibilities for A:

(a) 039B ~ Z/eZ, with e = 1, 2, 3, 4, or 6.
(b) p = 3 and A xé Z/32 - Z/4Z, where the semidirect product is taken with

respect to the unique nontrivial action of Z/4Z on Z/3Z.
(c) p = 2 and 039B ~ H 8’ the quaternion group of order 8.
(d) p = 2 and 039B ~ SL(2, Z/3Z).

Cf. [14], p. 312. The classification follows from the argument used to prove [15],
Thm. 1 together with the list of possible automorphism groups of elliptic curves
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over finite fields, as in [17], pp. 325-329. Note in particular that A is abelian
only in case (a).

Let W(L/Qp) denote the subgroup of Gal(L/U,) consisting of elements which
induce an integral power of the map x H xP on the residue class field of L. The
natural identification

endows *’(L/U,) with the discrete topology, because Gal(QpjL) is open in
lq-«Dpl0p). If 03A6 is any inverse Frobenius element of 1f/(LjQp) (i.e. the image in
W(L/Qp) of any inverse Frobenius element of W(Qp/Qp)) then we have an
isomorphism

where ~03A6~ 1» denotes the infinite cyclic group generated by 03A6.

Now choose a prime 1 ~ p, and fix an embedding of 0, in C as well as a Zi-
basis for the Tate module T (E). These choices determine a representation

where the first arrow represents the natural action of W(Qp/Qp) on Tl(E). The
isomorphism class of this representation is independent of the choices made to
define it by virtue of [15], Thm. 2 and Cor. to Thm. 3. We define (1E,p to be the
contragredient of (2.2). Note that with this definition we have

because 039B2Tl(E) is isomorphic as a Gal(U,/U,)-module to the Tate module of
the group of 1-power roots of unity. It follows from (2.3) that the kernel of O"E,p is
contained in 7. In fact by taking m = ln in (2.1) with n arbitrarily large, we see
that the kernel of 03C3E,p is precisely Gal(QpjL), so that 03C3E,p may be viewed as a

faithful representation of 1Y(LjQp).
Our assumption that E has potential good reduction means that there is a

finite extension of Qp over which E acquires good reduction. Part (ii) of the
following proposition specifies conditions under which we can choose this
extension to be abelian over Qp. Parts (iii) and (iv) give formulas for W,(E) in this
special case. Part (v) gives a formula in the general case, but only for p &#x3E; 3. Part

(i) merely recalls a well-known fact.

PROPOSITION 2. (i) The representation 6E,p is semisimple.
(ii) The following are equivalent:
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(1) E acquires good reduction over some finite abelian extension of Op
(2) 1Y(LjQ p) is abelian.
(3) 03C3E,p is reducible.

(4) E acquires good reduction over some totally ramified cyclic extension of Up
of degree lAI.

Furthermore, f p &#x3E; 3, then the preceding conditions are equivalent to

where A is the discriminant of any generalized Weierstrass equation for E over Op,
(iii) Suppose that the equivalent conditions in (ii) hold, and let K be any totally

ramified cyclic extension of Op of degree e = lAI such that E has good reduction
over K. Let Jl be any character of Q; of order e which is trivial on N K/Op (K X).
Then

(iv) If E has good reduction over Op, then Wp(E) = 1.
(v) Suppose that p &#x3E; 3. Put e = JAI and let A E Q p be the discriminant of any

generalized Weierstrass equation for E over Q p. Then

and

Proof. (i) The endomorphism ring of an elliptic curve over a finite field is an
order in an imaginary quadratic field or in a quaternion algebra, and as such it
contains no nilpotent elements. The semisimplicity of the matrix 03C3E,p(03A6) is a
consequence of this fact. The semisimplicity of (1 E,p as a representation follows
because ~03A6~ has finite index in ir(LjQp) (cf. [19], p. 20).

(ii) We begin with a general remark. Let K be any finite extension of GP. By
the criterion of Néron-Ogg-Shafarevich,
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E has good reduction over K ~ Gal(QpjK) ~ I ~ ker 6E,p.

Since I = Gal(Qp/Qp,unr) and ker 03C3E,p = Gal(Ù,,/L), this equivalence amounts
to:

E has good reduction over K ~ KQp,unr ~ L. (2.4)

Suppose now that the left-hand side of (2.4) holds with K abelian over Qp.
Then L is contained in the compositum of two abelian extensions ofQp and so is
itself abelian over Op. Hence (1) implies (2).
Next suppose that W(L/Qp) is abelian. Then A is abelian and the action of

~03A6~ on A is trivial. Recalling the four possibilities for A, we see that A xé Z/eZ
(with e = 1, 2, 3, 4 or 6) and that W(L/Qp) ~ 7Lje7L x ~03A6~. Let K be the subfield
of L fixed by ~03A6~ (i.e. fixed by the closure of ~03A6~ in Gal(L/Op». Then K is a
totally ramified cyclic extension of Qp of degree e, and E has good reduction
over K by (2.4). Therefore (2) implies (4). Since (4) trivially implies (1) we see in
fact that (1), (2), and (4) are equivalent. Now a faithful two-dimensional
semisimple complex representation of a group is reducible if and only if the
group is abelian. This gives the equivalence of (2) and (3). Finally, the

equivalence of conditions (4) and (5) when p &#x3E; 3 will be verified in the course of

proving (v).
(iii) By assumption, E has good reduction over the extension KGp,unr. Since L

is the minimal extension of U p,unr with this property, L is contained in KQp,unr·

On the other hand, since K is totally ramified over Qp, we have

and therefore L = KQp,unr. Thus Gal(L/Op, unr) is isomorphic to Gal(KjQp), and
the Artin map affords identifications

the second isomorphism being an expression of the fact that K is totally ramified

over Qp.
Since u,,p is a reducible semisimple representation of 1f/(LjQp) of determinant

03C9-1 (cf. (2.3)), we have

for some one-dimensional representation v of W(L/Qp). Furthermore, since the
restriction of co to Gal(L/Op unr) is trivial while (1 E,p is faithful we see that the
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restriction of v to Gal(L/Qp,unr) is also faithful. Hence if v is regarded as a
character of Q p using (2.5), then

for some k E (Z/eZ) . In particular,

Now let § be a nontrivial unitary character of Qp and dx a Haar measure on Qp.
By (2.6) we can write

03B5(03C3E,p, 03C8, dx) = 03B5(03BD,03C8, dx)03B5(03C9-103BD-1, 03C8, dx).

Dividing both sides by their absolute values and applying formulas (3.4.4),
(3.4.5), and (3.4.7) of [19], we obtain W,(E) = v(-1), whence the desired formula
follows from (2.7).

(iv) This is a special case of (iii) (and a well-known fact).
(v) If p &#x3E; 3 then the only possibility for A is ZleZ, with e = 1, 2, 3, 4 or 6.

Furthermore, since E has potential good reduction and p &#x3E; 3, we can apply a
well-known criterion to decide whether E has good reduction over a given
algebraic extension K ofQp: E has good reduction over K if and only if the order
of 0394 with respect to a uniformizer of K is divisible by 12 (cf. [17], p. 186, Ex. 7.2).
In particular, let d be an arbitrary positive divisor of e, and let K be the unique
extension of 0 p, unr of degree d contained in L. Then E has good reduction over
K if and only if

On the other hand, L was chosen to be the minimal extension of Qp,unr over
which E acquires good reduction. Hence the preceding congruence holds if and
only if d = e, so that

Before proving the formula for Wp(E) let us complete the proof of (ii) by
verifying that for p &#x3E; 3, conditions (4) and (5) in (ii) are equivalent. On the one
hand, (5) amounts to the congruence p ~ 1 (mod e), and by local class field
theory, this congruence holds if and only if Qp has a totally ramified cyclic
extension of degree e. Hence (4) implies (5). On the other hand, if p = 1 (mod e),
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and if K is a totally ramified cyclic extension of Q p of degree e, then the valuation
of 0394 relative to a uniformizer of K is congruent to 0 modulo 12, by (2.8). Then E
has good reduction over K. Therefore (5) implies (4).
To prove the formula for WP(E) we consider two cases, according as the

equivalent conditions in (ii) do or do not hold. First suppose that these

conditions do hold, so that p ~ 1 (mode). Let y be as in (iii). Then

Wp(E) - 03BC(-1), and the restriction of p to 7L; has order e. Hence if e = 1 or 3
then Wp(E) = 1. This conclusion is in agreement with the stated formula,
because if e = 3 then our assumption that p ~ 1 (mod e) implies that ( - 3/p) = 1.
Now if e = 2 or 6 then 03BC|Z p is the Legendre symbol at p times a character of
order 1 or 3 respectively. Hence 03BC(-1) = (-1/p), as claimed. Finally, suppose
that e = 4. Then p - 1 (mod 4), and 03BC(-1) is 1 or -1 according as -1 is or is
not a quartic residue modulo p. In other words, 03BC(-1) = ( - 21p), as claimed.
Next suppose that the equivalent conditions in (ii) are not satisfied, so that

03C3E,p is irreducible and p ~ 1 (mod e). Then e = 3,4, or 6, and ir(LjQp) is

isomorphic to Z/eZ ~03A6~, with the unique nontrivial action of ~03A6~ on Z/eZ.
Now the group Z/eZ  ~03A6~ contains 7Lje7L x ~03A62~ as an abelian normal

subgroup. Hence if we view O"E,p as a representation of the former group, then

0" E,p is induced from a one-dimensional representation of the latter group. Stated
more intrinsically,

where H is the unique unramified quadratic extension of Qp and ç is a one-
dimensional representation of 1r(LjH)( = W(L/Qp) n Gal(L/H)). Let (9H denote
the ring of integers of H. Via the Artin isomorphism we may identify 9 with a
quasicharacter ofNB and since O"E,p is faithful we know that ~|O H has order e.
Now choose a nontrivial unitary character 03C8: Qp ~ C  as well as Haar

measures dx and dy on Qp and H respectively. Let il denote the unramified
quadratic character of Q p and write 1Qp and 1 H for the trivial characters of Q p
and H x. As in (1.4) and (1.5), the inductivity of the epsilon factor in degree 0
gives

Dividing each side of this equation by its absolute value, and applying [19],
formula (3.2.6.1), we obtain
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where n is the largest integer such that 03C8(p-nZp) = 1 and

(the asterisk denotes an arbitrary character of H ’).
Write H = Qp(u), with u2 ~ Z p. We claim that

whence

after substitution in (2.9).
To verify (2.10), we first observe that

Indeed the formula for the determinant of an induced representation ([9]; or see
[6], p. 508) gives

whence (2.12) follows from (2.3). Now let 0 be the unramified character of H
such that 03B8(p) = -p-1. Following the convention of [6] and [19] for the
reciprocity law map, we have w(p) = 03C9(03A6) = p -1 = 10(p), so that ~03B8|Q p is

trivial, by (2.12). Hence the result of Frôhlich-Queyrut ([8], Thm. 3) gives

(In applying [8], note that the left-hand side of (2.13) is a priori independent of
the choice of § by virtue of formula (3.4.4) of [19] and the fact that ~03B8|Q p is

trivial.) On the other hand, 0 is unramified, and since pie the conductor-
exponent of ç is 1. Hence formula (3.2.6.3) of [19] gives

Together, (2.13) and (2.14) yield (2.10) and therefore (2.11).
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It remains to check that (2.11) coincides with the stated formulas for Wp(E) in
terms of Legendre symbols. If e = 3 then our assumption that p ~ 1 (mod e)
implies that ( - 3/p) = -1. This value coincides with (2.11), because cp(u) is equal
a priori to a cube root of unity and by (2.11) to ± 1, hence to 1. If e = 4 then

p --- 3 (mod 4), and u2 ~-1Z  2p. Thus the order of the subgroup of «9HIpCH)
generated by the image of u is divisible by 4 but not by 8, and cp(u) is 1 or -1

according as p2 - 1 is or is not divisible by 16. Therefore ~(u) = -(-2/p), as
desired. A similar argument for e = 6 completes the proof.

3. The case of potential multiplicative reduction

Let E be an elliptic curve over Qp with potential multiplicative reduction. The
distinction between ’ir’(QpjQp) and ir(QpjQp) now becomes important; the 1-
adic representations afforded by E are not trivial on an open subgroup of 7 and
hence do not define continuous complex representations of W(Qp/Qp). In
compensation for this, one exploits the correspondence between 1-adic represen-
tations of W(Qp/Qp) and certain complex representations of W’(Qp/Qp) ([19],
(4.2.1)), associating to E a representation 03C3’E,p = (6E, p, NE,p) of W(Qp/Qp) which
must now be made explicit.

Since E has potential multiplicative reduction, there is a unique Tate curve
ETate over Qp, together with an element d ~ Q p, uniquely determined modulo
Q  2p, such that E is isomorphic over Qp to the twist of ETate by d:

Let x = ~d,p be the character of Q p (quadratic or trivial) determined by the

extension Qp(d)/Qp, and define a continuous homomorphism

by

The matrix
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satisfies the compatibility relation

and so fixing a basis {e1, e2} for e2 we may view the pair (03C3E,p, NE, p ) as giving a
representation of W’(Qp/Qp) on e2. This is 03C3’E,p.

Put V = e2 and let VN denote the kernel of NE, p . We write V I for the subspace
of V fixed by 03C3E,p(I) and VJ for VI n vN .

PROPOSITION 3. (i) The representation 03C3’E,p is reducible but indecomposable.
(ii) The following are equivalent:

(1) E has additive reduction over Q p.
(2) ~d,p is ramified.
(3) VI = YN = {0}.

If these equivalent conditions hold, then Wp(E) = Xd,p( -1). In particular, if p is
odd, then

(iii) The following are equivalent :

(1) E has multiplicative reduction over 0..
(2) ~d,p is unramified.
(3) VI = V and YN = VN = Ce2.

If these equivalent conditions hold, then

W,(E) = - 1, if EjQp has split multiplicative reduction
1 if E/Qp has nonsplit multiplicative reduction.

Proof. Part (i) and the equivalence of conditions (1), (2), and (3) in parts (ii)
and (iii) are immediate consequences of the definitions and the theory of Tate
curves. The formulas for Wp(E) are also well known, but we say a few words for
the sake of completeness.

If 03C8 is a nontrivial unitary character of Qp, dx a Haar measure on Op, and
(D E W(Qp/Qp) an inverse Frobenius element, then

([19], (4.1.6)), and therefore


