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Let X be a normal 3-fold and 03C0: X - S’a proper morphism with 03C0* elx = US
such that the anticanonical divisor -KX is relatively 03C0-ample. A general
elephant (or simply a g.e.) in this article means a general element of a linear
system L c 1- Kx + 03C0*(d)|, where de Div(S) is "an ample enough" Cartier
divisor on S. We start by listing several well-known results on general
elephants in various situations.

0.1. THEOREM (Shokurov, [Shl]; Reid, [Rl]). Let X be a Fano 3-fold with
Gorenstein canonical singularities. Then a g.e. DE - Kxl is a K 3 surface with
Du ’val singularities only.

0.2. THEOREM (Reid, [R2]). Let P ~ X be a germ of a terminal singularity.
Then a g.e. D ~| - KX | has Du Val singularity.

0.3. THEOREM (Kollàr-Mori, [KoMo], Theorem 1.7). Assume that X has
only terminal singularities and that n: X ~ S is a contraction of an irreducible
curve. Then a g.e. D c- 1 - Kx + n*(d)1 has only Du Val singularities.

0.4. In this paper we consider the case of Q-Fano 3-folds, i.e. 3-folds with

Q-factorial terminal singularities, ample anticanonical divisor and p(X) = 1.
Although Theorems 0.1-0.4 suggest that a g.e. in this case should also have
only Du Val singularities, we do not prove this. Instead, we show that if a
Q-Fano 3-fold X has a big anticanonical system, in the sense that the image
of the rational map epi-KI has dimension 3, then X is birational to some

Q-Fano on which a g.e. has only Du Val singularities. We also prove that in
this case X is birational to a Gorenstein Fano variety with canonical singular-
ities and a free anticanonical system (Theorems 4.3 and 4.8).

0.5. Chapters 1-3 contain the main technique used later for proofs.

In Section 1 we introduce a new version of the Minimal Model Program
appropriate for linear systems and prove all the necessary statements.

In Section 2 we prove some basic results on the behavior of the anticanonical

system on Q-Fano and Del Pezzo fibration.
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Section 3 contains a generalization of the well-known "double projection" of
Fano to the cases of Q-Fano and Del Pezzo fibration.

In Section 5 we give another application of the main technique to partial
resolutions of 3-dimensional terminal singularities.

0.6. NOTATION AND TERMINOLOGY. All varieties are defined over an

algebraically closed field of characteristic zero. For a normal variety X we
don’t distinguish between a Weil divisor D and the corresponding reflexive
sheaf OX(D). K and -c1 denote the canonical Weil divisor on X.
When we say that a variety X has, say, canonical singularities, it means that

singularities are not worse than that, so X can be actually nonsingular. Also
we use standard notations and definitions, widely accepted in papers on the
Minimal Model Program. For example, the shorthand nef for a divisor D as
usual means that DC  0 for any curve C ~ X.

In the main part of the paper all varieties are supposed to be 3-dimensional,
although many definitions and theorems in Section 1 are valid for any
dimension.

1. Categories QLSt and QLSc

The Minimal Model Program (MMP) has been developed over the last 15 last
years by efforts of many mathematicians, see [KMM], [Ko2], [M2], [Sh3],
[W2] for an introduction and references. There are two well known variants
of MMP: the terminal/canonical and the log terminal/log canonical.

In both versions one first proves the basic theorems: the Cone theorem, the
Contraction theorem, the Flip theorems 1 and II. If one has these theorems for
the specific category (for example in the terminal/canonical version for 3-folds)
one can then use a simple algorithm to get the main result: the existence of the
minimal model of a variety in the chosen category.
Below we briefly recall MMP in the mentioned versions, as well as

generalizations due to V. V. Shokurov. After this we introduce a new variant
of MMP: the categories QLSt and QLSc and prove all the basic theorems for
these categories in dimension three.
We use [KMM], [Sh2] and [Sh3] as the sources for references for technical

results.

Reminder of the minimal model program

1.1. DEFINITION. A Q-divisor on a normal variety X is a formal
sum D = 03A3diDi, where D, are distinct Weil divisors, i.e. algebraic subvarieties
of codimension 1, and di E Q.
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1.2. DEFINITION. A Q-divisor D = EdiDi is said to be a Q-Cartier divisor
of some N &#x3E; 0 a multiple ND = E Nd,D, is a Cartier divisor, i.e. Ndi are
integers and ND is locally defined by one equation.

1.3. DEFINITION. A log divisor is a Q-Cartier divisor of the form K + B,
B = E bibi, where K is the canonical Weil divisor and Bi are distinct Weil
divisors.

1.4. DEFINITION. For any birational morphism f : Y ~ X we can define a
divisor Ky + By, where

f - 1(Bi) are strict transforms of Bi, Ej are exceptional divisors of the

morphism f.
Here the coefficients bi and Pj can be chosen in different ways. Two standard

choices are:

terminal/canonical all b, = 0, i.e. B = 0and all Pj = 0.

log terminal/log canonical 0  bi  1 and Pj = 1 for any i, j.

1.5. DEFINITION. Let f : Y ~ X be a good resolution of singularities, i.e. Y
is nonsigular and the strict transforms of Bi and Ej are nonsingular and cross
normally. We have the usual formula for the pull back of the log divisor

The coefficients yj are called discrepancies (resp. log discrepancies).
The divisor K + B is terminal (resp. canonical) and the pair X has terminal

(resp. canonical) singularities if yj &#x3E; 0 (resp. 03B3j  0) for any j with the choice of
coefficients and Pi as in the terminal/canonical version.
The divisor K + B is log terminal (resp. log canonical) and the pair (X, B)

has log terminal (resp. log canonical) singularities if yj &#x3E; 0 (resp. 03B3j  0) for any
j with the choice of coefficients b, and fli as in the log terminal/log canonical
version.

Obviously, K + B terminal or canonical implies log terminal.

1.6. REMARK. In the terminal/canonical or in the log terminal/log canonical
version under the additional assumption that all b,  1, these definitions do not

depend on the choice of the good resolution f.

1.7. REMARK. In the case when some bi equal 1 the definition of log
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canonical K + B also does not depend on a choice of f, but one has two
different definitions of log terminal: 
K + B is said to be log terminal if there is at least one good resolution with

03B3j &#x3E; 0;
K + B is said to be Kawamata log terminal if all yj &#x3E; 0 for any good

resolution;
Also in this case some of the basic theorems do not hold without some extra

conditions. The options include assuming that X is Q-factorial or that B is
LSEPD (locally supports an effective principal divisor), see [Sh3] for further
details.

The Cone Theorem states that if a divisor K + B is terminal/canonical or log
terminal/log canonical + extra conditions then the part of Kleiman-Mori cone
of curves

is locally finitely generated. The 1-dimensional faces of this part of the cone are
called extremal rays. Hence, if K + B is not nef, one has at least one extremal
ray.
The Contraction Theorem states that under the above same assumptions

every extremal ray R gives a contraction morphism contR: X ~ Z and one of
the following holds:

(i) (Mori fiber space, see Definition 2.1) dim Z  dim X and the restriction

of -(KX + B) to the general fiber is ample;
(ii) (divisorial type) contR: X ~ Z is a contraction of a single prime divisor;
(iii) (flipping type) the exceptional set of contR has codimension  2.

Flip conjecture I. In the situation (iii) there is a birational map, called a flip,

such that the exceptional set of f+ has codimension 2, 03C1(X+/Z) =
p(X/Z) = 1 and Kx + B+ is f +-ample, where B+ is the image of B.

Flip conjecture II. A sequence of flips terminates.

Given that the definitions and theorems appropriate to the chosen category
are established, the Minimal Model Program (MMP) works as follows:

Minimal model program. Start with X and K + B which is terminal/canoni-
cal or log terminal/log canonical + extra assumptions. Or, if K + B is neither
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of those, first find a good resolution and start with Ky + By.
If K + B is not nef, find an extremal ray and the corresponding contraction

morphism. If contR is of type (iii), make the flip. Proceed until you get either a
variety with K + B nef (a minimal model) or a contraction of type (i), i.e. a (log)
Mori fiber space.

In either case of a divisorial contraction or a flip one stays in the chosen
category. This follows from the Negativity of Contractions ([Sh3], 1.1) and
from the Increasing of Discrepancies under a Flip ([Sh2], [KMM] 5-1-11).

Q-factoriality. The variety X is O-factorial if for any Weil divisor D, some
multiple ND is a Cartier divisor, i.e. on X all Q-divisors are Q-Cartier divisors.
If we start with a Q-factorial variety then all the constructions preserve this
property.

Relative MMP. The whole construction works in the same way if all the
varieties and morphisms are defined over a fixed scheme S/k, k = 0.
For example, if K + B on X has arbitrary singularities, then applying MMP

over X one gets a minimal model f : Y - X, i.e. Ky + By is f-nef and has (log)
terminal singularities. In a non Q-factorial case the situation is a little more
subtle. In fact, sometimes one needs flips even in the case of a divisorial type
contraction.

(Log) canonical model. If K + B is nef, big and is terminal/canonical or log
terminal/log canonical + B is LSEPD, then by the Base Point Free theorem
([Sh2], [KMM] 3-1-1) some multiple of K + B gives a morphism to a variety
Z with Kz + Bz (relatively) ample and (log) canonical.
For example, applying the relative M M P over X one gets g : Z - X such that

Kz + Bz is g-ample and has (log) canonical singularities.

What is proved about MMP. In the terminal/canonical version the Flip
conjecture 1 is proved only in dimension 3 and the Flip conjecture II in

dimension  4. In the log terminal/log canonical version the Flip conjecture 1
is proved only in dimension 3 and the Flip conjecture II is still an open

question. (Since this paper was written, Y. Kawamata proved termination in
the log terminal case.)

Generalizations (compare the remark on the definition of By in [Sh3], after
1.1). We can choose coefficients bi and fij in different ways. Three conditions
should be satisfied:

(a) After a divisorial contraction, one should stay in the same category. If
we define bi and fij in some uniform way, then by the Negativity of Contrac-
tions ([Sh3], 1.1) the sufficient condition for this is

for the component Bi which is contracted.
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(b) After a flip, one should stay in the same category. If we define bi and Pj
in some uniform way, this again follows from the Increasing of Discrepancies
under a Flip ([Sh2], [KMM], 5-1-11).

(c) In the "ideal" case when X is smooth and all Bi are smooth and cross
normally we should certainly have that K + B is (log) terminal, otherwise we
do not have enough good resolutions of singularities. This gives a condition
bi  1. Moreover, it would be even better to have all bi  1, otherwise we need
several definitions of log terminality and some extra conditions, see Remark
1.7.

For example, one can choose

where c  1 is some constant.

One might also experiment with some "nonuniform" choices of bi and Pj.
1.8. Now we are ready to introduce two categories, to which we apply the
Minimal Model Program.
The inequalities bi  03B2i in (a) above might suggest that it is impossible to

work at the same time with varieties with terminal/canonical singularities and
nonempty B. Nevertheless, this is exactly what we do.

Instead of working with K + B, where B = E Bi is Q-divisor, we work with
K + L, L = E 1;L;, where Li are movable linear systems. For a birational
morphism f: Y ~ X we define Ky + Ly, where LY = 03A3lif-1Li (where
0  li  + oo), i.e. we set all Pj in Definition 1.4. to zero.

1.9. We say that KX + L is terminal (resp. canonical) if for any fixed good
resolution f : Y - X of singularities (this means that X is nonsingular and all
Li are free), in the formula

one has yj &#x3E; 0 (resp. 03B3j  0) for general members Bi ~ Li of the linear systems.
Note that this condition does not depend on the choice of the resolution f.
The meaning of this definition is that on any fixed resolution divisors "do

not see" the "log part" of Kx + B, because the Li are movable. We also does
not need to check the condition 03B2j  bj because in our case none of the
components of Bi is contractible.

1.10. Finally, we introduce the categories

(QLSt) Q-factorial varieties such that K + L = K + E 1;L; (where
0  li  + oo) is terminal.
(QLSc) Q-factorial varieties such that K + L = K + E liLi (where

0  li  + oo) is canonical, and K is terminal.
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1. 11. The connection with the terminallcanonical category

Obviously, if K + L is terminal then so is K. Hence all varieties in QLSt and
QLSc have Q-factorial terminal singularities.

If R is an extremal ray with (K + L) - R  0 and R is not of flipping type,
then obviously L · R  0, so K · R  0 and contR is also a contraction in the
terminal/canonical category. Hence the only new transformations in QLSt and
QLSc are new flips. For the terminal/canonical category they could be flips,
flops or antiflips.

Relations with the log terminal/log canonical category

1.12. LEMMA. Suppose that a variety X and K + L = K + 1 1,L, are as in
QLSt or QLSc, Bi ~ Li are general elements and that all Ii  1. Then K + E liBi
is log terminal.

Proof. Let f: Y - X be a good resolution of singularities of X and L. It is
obviously also a good resolution of singularities for K + 03A3liBi. Then in the
categories QLSt, QLSc

In the log terminal/log canonical version the corresponding discrepancies will
be equal to 1 + 03B3j &#x3E; 0. D

Basic theorems in QLSt and QLSc for the dimension three

1.13. LEMMA. Let X and K + L be in QLSt or QLSc. We divide L into two

parts:

Then for any L,, with 1,, &#x3E; 1, the base locus of Lk

dim Bs Lk  1.

In QLSt the same is true also for all L,, with 1. = 1. In particular these Lk are
nef.

Proof. Let C ce Bs L. be a base curve of one of Lk . Then one of discrepancies
of the divisors lying over C (namely the exceptional divisor of the first blowup
of C) satisfies
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and therefore K + L is not canonical. In the case lk = 1, the same argument
shows that K + L is not terminal.

1.14. CONE THEOREM. By the previous lemma,

Now, for any a &#x3E; 0,

is locally finitely generated by Lemma 1.12 and [KMM], 4-2-1. This implies the
statement. D

1.15. CONTRACTION THEOREM. Let be an extremal ray for K + L and D
be a Cartier divisor such that D is nef and D - R = 0. Then ImDI is free for m » 0,
because mD - (K + L) is nef and big, and so is mD - (K + 03A3li  1 (lui - 8)Li) by

Lemma 1.13. Now the statement follows from Lemma 1.12 and the standard Base
Point Free theorem, [KMM], 3-1-1.

1.16. Flip conjecture 1. Suppose, that R is an extremal ray for K + L of

flipping type. Then R is also an extremal ray for K + 03A3li  1(li - e)Li by Lemma
1.13, so the flip exists by Lemma 1.12 and [Sh3]. D

1.17. Flip conjecture Il. The proof is actually the original Shokurov’s proof for
the category terminal/canonical, [Sh2], with minor changes, as in [Kol].

First, it is easy to see that in Definition 1.9 the number of discrepancies for
K + L with 0  03B3j  1 is finite and does not depend on the good resolution
f: Y - X. The proof is the same as in the terminal/canonical category because
discrepancies "do not see" free linear systems.
We now define the difhculty dSH(K + L) to be the finite nonnegative integer

After a flip, corresponding discrepancies by the Increasing of Discrepancies
under a Flip (Sh], [KMM], 5-11-11) satisfy y/ a 03B3j; and for divisors that lie
over the exceptional curves of f+ : Y+ ~ X, we have the strict inequality
03B3+j &#x3E; 03B3j. But the variety Y+ has terminal singularities, and hence is nonsingular



99

in codimension two, so that one of these discrepancies is

Therefore dsH(K+ + L+)  dSH(K + L), and the sequence of flips in QLSt or
QLSc terminates. Q

1.18. Canonical model over X. If f : Y -+ X is a relative terminal model, then
Ky + LY is f-nef and

is f-nef and big by Lemma 1.13; so by the Base Point Free Theorem ([Sh2],
[KMM], 3-1-1), Ky + Ly is f-free and gives a birational morphism to the
canonical model over X.

Now we can use the Minimal Model Program for QLSt and QLSc.

1.19. REMARK. In 1.10 we can give the definition, not requiring Q-factorial-
ity. In this case we get the same difficulties with the coefficients 1, = 1 as in
Remark 1.7.

1.20. Let X be a variety with terminal singularities, and suppose that L is a
linear system such that locally, in the neighborhood of any fixed point of L, we
have L - - Kx and a g.e. S E L is irreducible.

Let f : Y ~ X be a good resolution of singularities of the variety X and of
the linear system L. Write

Where aj and rj ~ Q.

1.21. LEMMA. The following are equivalent:

(i) a g.e. S E L is a normal surface with Du Val singularities;
(ii) rj  aj for all j ;

(iii) rj  aj + 1 for all j ;
(iii) for a g.e. S, the divisor K + S is canonical;
(iv) for a g.e. S, the divisor K + S is log terminal.

Proof. By (1.20.1) we have the following numerical equality:
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Let 03C9X be any rational differential form of top degree over the function field
k(X). Then the Weil divisor Kx is the divisor of zeros and poles of cox. The
divisor Ky is the divisor of zeros and poles of cox if considered as a differential
form over k(Y) = k(X). This shows that there is (a linear!) equality

where nj are integers. By Lemma 1.1 of [Sh3] (Negativity of Contractions) we
have ni = rj 

- 

aj.
Therefore (ii) and (iii) are equivalent, because (rj - aj) are integers.
From 1.20.1,

so (ii) is equivalent to (iv) and (iii) to (v) by definition.
(ii), (iii) ~ (i). By [Sh3], Lemma 3.6, S is normal. Now f: Sy - S is a

resolution of singularities, and by the adjunction formula

so if ai - rj  0, then (i) holds by the definition of Du Val singularities.
(i) ~ (iii). For exceptional divisors Ei with dim f(Ej) = 1 the inequality

rj  aj + 1 can be easily proved by induction. The case dim f(Ej) = 0 is proved
in [Kaw2], Lemma 8.8. n

1.22. LEMMA. Suppose that K + L is terminal, with L any movable linear
system. Then L has at most isolated nonsingular base points Pi such that

multpi L = 1.
Proof. Indeed, let P be a base point of Ly and suppose that P is a singular

point of X of index m, g: Y - X be a resolution of singularities and, as usual,

Then by [Kaw3] there is a coefficient aj = 1/m. Since all rj  1/m this implies
that there is a discrepancy yj = aj - rj  0 and K + L is not terminal.

Also, K + L also has no base curves or surfaces, again by the condition

aj - rj = 1 - rj &#x3E; 0.
Therefore the set-theoretic base locus of L is a finite set {Pi} of nonsingular

points of X and rj = multjl = 1 by aj - rj = 2 - rj &#x3E; 0. Q
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1.23. LEMMA. Suppose that X has only terminal singularities and K + L is
canonical. Then in the neighborhood of any base point P of L we have L - - Kx.

Proof. We only have to consider singular points of X. Let P be one of these
points. As in the previous proof there is a divisor Ei with minimal coefficients
ai = 1/m, where m is the index of P. In order L to be canonical one should have

ri = 1/m, and since the local class group ClPX ~ Z/m generated by Kx, one
gets L = - KX. ~

2. Basic results on the anticanonical system

In this chapter we recall some known facts about terminal singularities and
Q-Fanos and prove several basic results on the linear system | - KX + x*(d)1
for Q-Fano 3-folds and Del Pezzo fibrations.

2.1. DEFINITION. A (strict) Mori fiber space is a variety X with a morphism
03C0: X - S such that

(i) K is terminal;
(ii) X is Q-factorial ;

(iii) 03C0 = contR for some extremal ray R for K (in particular P(XIS) = 1) and
dim S  dim X;

(iv) - K is 03C0-ample.

In the case dim S = 0, 1 or 2 respectively we call 03C0: X - S a (strict) Q-
Fano, a (strict) Del Pezzo fibration or a (strict) conic bundle respectively.

The most important numerical information about the coherent cohomology
of a variety is often contained in the Riemann-Roch formula. In our case one
has the following: 

2.2. RIEMANN-ROCH FORMULA (Barlow-Reid-Fletcher, [R2, §9]). Let X
be a 3-dimensional variety with Q-factorial canonical singularities and D be a
Weil divisor on X. Then

where
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if the singular point Q is a cyclic quotient singularity and the divisor D has
type i(l/r(a, -a, 1» at this point, b satisfies ab --- 1 mod rand - denotes the
residue modulo r. Every noncyclic corresponds to a basket of cyclic points.

2.3. PROPOSITION (Kawamata, [Kawl]). For a Q-Fano one has cic2 =

- Kc2 &#x3E; 0.

2.4. COROLLARY (Kawamata, [Kawl]). For a Q-Fano one has

and, in particular, all r  24.

2.5. COROLLARY. For a Q-Fano one has

2.6. THEOREM (Kawamata, [Kawl]). There is an absolute constant N such
that c31  N for all Q-Fanos. This fact together with Corollary 2.4 implies that
the family of all Q- F anos is bounded.

2.7. VANISHING THEOREM (Kawamata-Fiehweg, [KMM], 1-2-5). Let X
be a normal variety and n: X ~ S be a proper morphism. Suppose that a log
canonical divisor K + B = Kx + 03A3biBi with 0  bi  1 is weakly log terminal
and that D is a 0-Cartier Weil divisor. If D - (K + B) is n-nef and n-big, then

2.8. COROLLARY (simple vanishing). Let X be a 0-factorial variety with
terminal singularities and D be a Weil divisor. If D - K is ample, then

We are going to draw some conclusion from these results. But Riemann-
Roch formula 2.2 seems to be quite inconvenient to work with directly. In
order to simplify it we make the following definition:

2.9. DEFINITION. For a given function f(t) and four arguments of the form
a, a - e, b, b - e, the double difference is defined by the formula
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2.10. EXAMPLE. It is easy to see that

2.11. EXAMPLE. For the regular part of the Riemann-Roch formula

one has

A kind of surprise is the following

2.12. LEMMA. For the part of Riemann-Roch formula 2.2, arising from singu-
larities one has

for any E. Here K denotes, as usual, the canonical class.
Proof. We have to check that for every r with 0  a  r and 0  i  r

Let us denote x(r - x)/2r by F(x). Then this inequality is equivalent to the
following

It is easy to verify the second inequality, using the fact that the function
F(z + bi) - F(z) obviously has a maximum at the point z = 0. 0
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2.13. LEMMA. Let X be a Q-Fano variety. Then

(i) hO(Ox( -Kx» &#x3E; 2 JC3 1 1;
(ii) if moreover, the basket of cyclic singulariaties does not contain a point with

r = 2 then h’(Ox(- Kx» &#x3E; 1 2c31.

2.14. COROLLARY. (i) If the degree of a Q-Fano variety d = c31  2 then the
anticanonical system 1 - KI is not empty;

(ii) If moreover, the basket of cyclic singularities does not contain a point with
r = 2 then this system is not empty without any conditions on the degree.

Proof of Lemma 2.13. From the vanishing theorem and the Riemann-Roch
formula we have

and for all singular points i(llr(a, -a, 1», i = r-1. From Proposition 2.3

CIC2 &#x3E; 0, and we need only to estimate 03A3QcQ(D).

Here

The number b is coprime to r, therefore if all r ~ 2 then (1/2r)b(r - b)  (1/
8r)r’ - 1 and

so case (ii) is done. For r = 2
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so, at least we always have

2.15. REMARK. Something like Lemma 2.13 is necessary because of the

following example due to A. R. Fletcher.

2.16. EXAMPLE (Fletcher, [Fll], [F12]). A general weighted complete inter-
section X12,14 in P(2, 3, 4, 5, 6, 7) is a Q-Fano with h0(-KX) = 0. This variety
has the following isolated singularities: 1 of type 1 5(4, 1, 2), 2 of type 1 3(2, 1, 1),
and 7 of type 1 2(1, 1, 1). The degree d = (-KX)3 = 1

2.17. LEMMA. Let 7n X - S be a Del Pezzo fibration. Then 1 - Kx + n*(d)1 is
nonempty for a sufficiently ample d E Div(S).

Proof. Indeed, if X0 is a general fiber (a smooth Del Pezzo surface), then for
sufficiently ample d one has

and the group on the right is not trivial.

2.18. THEOREM. Let X be a strict Q-Fano. Then a g.e. of 1 -KI is irreducible
and reduced. If we further assume that h0(-KX)  3 then the linear system
I - Kx | does not have base components and is not composed of a pencil.

Proof. Assume the opposite, that either

(a) - KI has a base component E ~ - K, or
(b) |-K| is composed of a pencil, |-K| = |nE| and n  2.

In either case there is an effective divisor E such that

Since rk Pic(X) = 1, all higher cohomologies of these sheaves vanish by
Corollary 2.8 and all h° coincide with x, so the following double différence
vanishes:

For the regular part, by Example 2.11, we have


