Michael A. Bean

An isoperimetric inequality for the area of plane regions defined by binary forms

Compositio Mathematica, tome 92, n° 2 (1994), p. 115-131

<http://www.numdam.org/item?id=CM_1994__92_2_115_0>
An isoperimetric inequality for the area of plane regions defined by binary forms

MICHAEL A. BEAN

Mathematical Sciences Research Institute, 1000 Centennial Drive, Berkeley, California 94720 U.S.A.

Received 26 March 1993; accepted in final form 21 May 1993

Abstract. In this paper, it is shown that if F is a binary form with complex coefficients having degree $n \geq 3$ and discriminant $D_F \neq 0$, and if A_F is the area of the region $|F(x, y)| \leq 1$ in the real affine plane, then $|D_F|^{1/(n-1)}A_F \leq 3B(1/3, 1/3)$, where $B(1/3, 1/3)$ denotes the Beta function with arguments of $1/3$. Consequently, if F is a form with integer coefficients having non-zero discriminant and degree at least three, then $A_F \leq 3B(1, 1/3)$. The value $3B(1, 1/3)$, which numerically approximates to 15.8997, is attained in both inequalities for certain classes of cubic forms.

These inequalities are derived by demonstrating that the sequence $\{M_n\}$ defined by $M_n = \max |D_F|^{1/(n-1)}A_F$, where the maximum is taken over all forms of degree n with $D_F \neq 0$, is decreasing, and then by showing that $M_3 = 3B(1, 1/3)$. It is conjectured that the limiting value of the sequence $\{M_n\}$ is 2π.

1. Introduction

A binary form is a homogeneous polynomial in two variables, that is, a bivariate polynomial of the form

$$F(x, y) = a_0x^n + a_1x^{n-1}y + \cdots + a_ny^n$$

where the coefficients a_0, a_1, \ldots, a_n belong to some ring. If the coefficients are complex numbers, then the equation

$$|F(x, y)| = 1, \quad (x, y) \in \mathbb{R}^2$$

defines an algebraic curve which does not intersect itself. For, on converting to polar coordinates with the substitution

$$x = r \cos \theta, \quad y = r \sin \theta$$

*Contains material presented as part of the author’s Ph.D. Thesis.
†Research partially supported by an NSERC Scholarship and a Queen Elizabeth II Ontario Scholarship.
this equation becomes
\[r = \frac{1}{|F(\cos \theta, \sin \theta)|^{1/n}}. \]

Hence, the region
\[|F(x, y)| \leq 1, \quad (x, y) \in \mathbb{R}^2 \]

has a well-defined area which will be denoted by \(A_F \). The subject of this paper is the estimation of \(A_F \) over the class of forms with complex coefficients.

The problem of estimating the quantity \(A_F \) arises in the study of Thue equations. A *Thue equation* is a Diophantine equation of the form
\[F(x, y) = h \]

where \(F \) is a binary form with rational integer coefficients which is irreducible and has degree \(n \geq 3 \), and \(h \) is a non-zero integer. In 1909, Thue [17] showed that the number of integer solutions of such an equation is finite.

In 1933, Mahler [11] gave an estimate for the number, \(Z_F(h) \), of solutions of the Thue inequality
\[|F(x, y)| \leq h \]
in terms of the area, \(A_F(h) \), of the plane region \(|F(x, y)| \leq h, (x, y) \in \mathbb{R}^2 \). To be specific, he showed that if \(F \) is a binary form with rational integer coefficients which is irreducible and has degree \(n \geq 3 \), then
\[|Z_F(h) - A_F(h)| \leq ch^{1/(n-1)} \]

where \(c \) is a number which depends only on \(F \). Notice, by the homogeneity of \(F \), that
\[A_F(h) = A_F(1)h^{2/n} = A_Fh^{2/n}. \]

The number \(c \) and the quantity \(A_F \) were left unspecified by Mahler. However, he did show that \(A_F \) is finite when \(F \) is an irreducible binary form with integer coefficients and degree at least three.

More recently, Mueller and Schmidt [12] have given estimates for \(Z_F(h) \) which depend only on \(h \) and the number of non-zero terms occurring in \(F \). Estimates for \(A_F \) also appear in their work. In particular, they show that if \(F \) is an irreducible binary form with \(s + 1 \) non-zero coefficients, then
\[A_F = O((ns^2)2s/n) \]

provided that \(n \geq 4s \). From this, they deduce that \(A_F \) is bounded when \(n \geq s \log s \). Notice that the conditions \(n \geq 4s \) and \(n \geq s \log s \) qualitatively mean that \(F \) has few coefficients.
Even more recently, Mueller and Schmidt [13] have shown that if F is a binary form with integer coefficients, exactly $s + 1$ of which are nonvanishing, such that $a_0a_n \neq 0$ and $n > 2s$, then

$$A_F \leq \begin{cases} 60n^2s^2H^{-1/t} & \text{if } t \neq \frac{n}{2} \\ 60n^2s^2H^{-1/t}(1 + \frac{n}{2}\log H) & \text{if } t = \frac{n}{2} \end{cases}$$

where H is the maximum of the absolute values of the coefficients of F (often called the height of F) and $t = \max(q, n - q)$ with q chosen such that $H = |a_q|$. The condition $n > 2s$ turns out to be essential. Their result shows, in particular, that A_F is quite small for forms F having few coefficients and height which is sufficiently large in terms of the degree.

Mueller and Schmidt considered the Newton polygon of the polynomial $F(x, 1)$ associated with the binary form F. One disadvantage of this approach is that it fails to capture the invariance of A_F under linear transformations of the form. For example, the quantity A_F is invariant under rotations of the region $|F(x, y)| \leq 1$ but the form F and hence the polynomial $F(x, 1)$ are not. It is also worth noting that while the estimation of A_F has been restricted to forms having integer coefficients, a more natural class of forms over which A_F ought to be estimated is the class of forms with real coefficients.

In this paper, I will consider the slightly more general class of forms with complex coefficients and non-zero discriminant. It is a consequence of my results that if F is such a form having integer coefficients and degree at least three, then $A_F \leq 3B(\frac{1}{3}, \frac{1}{3})$, where $B(\frac{1}{3}, \frac{1}{3})$ denotes the Beta function with arguments of $1/3$. It will soon become apparent that this bound is optimal.

2. Statement of Results

The general binary form $F(x, y) = a_0x^n + a_1x^{n-1}y + \cdots + a_ny^n$ (with complex coefficients) has a factorization

$$F(x, y) = \prod_{i=1}^{n} (\alpha_i x - \beta_i y)$$

where each of the linear forms $\alpha_i x - \beta_i y$ has complex coefficients. Such a factorization need not be unique; however, the lines $\alpha_i x - \beta_i y = 0$ are uniquely determined by F. For a given factorization, the discriminant of F is the quantity

$$D_F = \prod_{i < j} (\alpha_i \beta_j - \alpha_j \beta_i)^2.$$
ly, if \(a_0 \neq 0 \) and \(F \) has the factorization
\[
F(x, y) = a_0 \prod_{i=1}^{n} (x - \gamma_i y)
\]
then the \(\gamma_i \) are uniquely determined and
\[
D_F = a_0^{2n-2} \prod_{i < j} (\gamma_j - \gamma_i)^2.
\]

Let \(GL_2(\mathbb{R}) \) denote the group of \(2 \times 2 \) real invertible matrices. For each \(T = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{R}) \), let \(F_T \) denote the binary form given by
\[
F_T(x, y) = F(ax + by, cx + dy).
\]

Two forms \(F \) and \(G \) are said to be equivalent under \(GL_2(\mathbb{R}) \) if \(G = F_T \) for some \(T \in GL_2(\mathbb{R}) \). Similarly, let \(GL_2(\mathbb{Z}) \) denote the group of \(2 \times 2 \) invertible matrices having integer coefficients, that is,
\[
GL_2(\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{Z}, ad - bc = \pm 1 \right\}.
\]

Then, the forms \(F \) and \(G \) are equivalent under \(GL_2(\mathbb{Z}) \) if \(G = F_T \) for some \(T \in GL_2(\mathbb{Z}) \).

Let \(B(x, y) \) denote the Beta function of \(x \) and \(y \). The Beta function may be defined in terms of the Gamma function by the relation
\[
B(x, y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x + y)}
\]
and has the integral representation
\[
B(x, y) = \int_0^1 t^{x-1}(1 - t)^{y-1} \, dt
\]
for \(x > 0 \) and \(y > 0 \) (see Abramowitz and Stegun [1]).

I will prove the following result.

THEOREM 1. Let \(F \) be a binary form with complex coefficients having degree \(n \geq 3 \) and discriminant \(D_F \neq 0 \). Then
\[
|D_F|^{1/(n-1)} A_F \leq 3B \left(\frac{1}{3}, \frac{1}{3} \right).
\]
This bound is attained precisely when F is a cubic form which, up to multiplication by a complex number, is equivalent under $GL_2(\mathbb{R})$ to the form $xy(x - y)$.

Since the discriminant of a form with integer coefficients is an integer, Theorem 1 immediately provides the following estimate for A_F.

COROLLARY 1. If F is a binary form with integer coefficients having non-zero discriminant and degree at least three, then

$$A_F \leq 3B \left(\frac{1}{3}, \frac{1}{3} \right).$$

This bound is attained for forms with integer coefficients which are equivalent under $GL_2(\mathbb{Z})$ to $xy(x - y)$.

The approximate numerical value of $3B(\frac{1}{3}, \frac{1}{3})$ is 15.8997. Notice that Theorem 1 cannot be extended to quadratic forms since $|D_F|^{1/2}A_F$ is infinite for the form $F(x, y) = x^2 - y^2$. In fact, if F is a quadratic form with real coefficients, then $|D_F|^{1/2}A_F$ is infinite when $D_F > 0$ but equals 2π when $D_F < 0$. Notice further, that the condition $D_F \neq 0$ in Theorem 1 is required to exclude pathological examples where $D_F = 0$ and A_F is infinite.

The quantity $|D_F|^{1/(n-1)}A_F$ is natural to consider since it is absolutely invariant with respect to $GL_2(\mathbb{R})$ (while the quantity A_F is not). Indeed, if $T = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{R})$, then

$$A_F = \iint_{|F(x, y)| \leq 1} dx \, dy$$

$$= \iint_{|F(ax + by, cu + dv)| \leq 1} |\det T| \, du \, dv$$

$$= |\det T| A_{F_T}$$

and

$$D_{F_T} = (\det T)^{n(n-1)}D_F;$$

hence

$$|D_{F_T}|^{1/(n(n-1))}A_{F_T} = |D_F|^{1/(n(n-1))}A_F$$

for all $T \in GL_2(\mathbb{R})$. The quantity $|D_F|^{1/(n(n-1))}A_F$ is also invariant with respect to replacing F by kF for any complex number k since

$$|D_{kF}| = |k|^{2(n-1)}|D_F| \quad \text{and} \quad A_{kF} = \frac{1}{|k|^{2/n}}A_F.$$
On the other hand, $|D_F|^{1/n(n-1)}A_F$ is not invariant with respect to $GL_2(\mathbb{C})$ since, for example, the forms $x^2 + y^2$ and $x^2 - y^2$ are equivalent under $GL_2(\mathbb{C})$ but the area of the region $|x^2 + y^2| \leq 1$ is finite while the area of the region $|x^2 - y^2| \leq 1$ is infinite.

The proof of Theorem 1 relies on reducing the estimation of $|D_F|^{1/n(n-1)}A_F$ for a general form to the estimation of $|D_F|^{1/6}A_F$ over cubic forms and on demonstrating that the quantity $|D_F|^{1/6}A_F$ is maximized over the cubic forms by a form F for which the polynomial $F(x, 1)$ has three distinct real roots. It is straightforward to show that, up to multiplication by a complex number, any such form is equivalent under $GL_2(\mathbb{R})$ to $xy(x - y)$. The inequality

$$|D_F|^{1/n(n-1)}A_F \leq 3B \left(\frac{1}{3}, \frac{1}{3} \right)$$

then follows from a routine area calculation.

The principal ideas can be generalized to give the proof a more inductive flavour and to provide more insight into the nature of $|D_F|^{1/n(n-1)}A_F$. This is the content of Theorem 2 and Theorem 3 below.

THEOREM 2. Suppose that

$$|D_F|^{1/(n-1)(n-2)}A_F \leq C$$

for all forms F of degree $n - 1$ with $D_F \neq 0$. Then

$$|D_F|^{1/n(n-1)}A_F < C$$

for all forms F of degree n with $D_F \neq 0$. Hence, if

$$M_n = \max |D_F|^{1/n(n-1)}A_F$$

where the maximum is taken over all forms F of degree n with $D_F \neq 0$, then

$$M_3 > M_4 > M_5 > \cdots$$

THEOREM 3. The quantity $|D_F|^{1/n(n-1)}A_F$ is maximized over the class of forms of degree n with complex coefficients and non-zero discriminant by a form F with real coefficients for which the polynomial $F(x, 1)$ has n distinct real roots. In fact, if F is a form of degree n for which the polynomial $F(x, 1)$ has at least one non-real root, then

$$|D_F|^{1/n(n-1)}A_F < M_n$$
where M_n is as defined in the statement of Theorem 2.

It is convenient to adopt the convention that if F is a form which has y as a factor, then the polynomial $F(x, 1)$ has a root at infinity (denoted ∞); similarly, if F has x as a factor, then $F(1, y)$ has a root at infinity. Throughout this paper, a root at infinity will be considered a real root. With this convention, the slopes of the asymptotes of the curve $|F(x, y)| = 1$ are the real roots of the polynomial $F(1, y)$.

I originally established the monotonicity of the sequence $\{M_n\}$ by applying the generalized form of Hölder’s inequality to a certain integral representation of A_F. Enrico Bombieri has since suggested to me that this result may be established in a slightly simpler way by appealing to the inequality between arithmetic and geometric means. The details of both approaches will be given in Section 4.

Theorem 3 will be established in Section 5 by considering the quantity $|D_F|^{1/(n-1)}A_F$ as a function of n complex variables and then appealing to an appropriate maximum principle. I am very grateful to Professor Bombieri for suggesting this approach.

In light of Theorem 3, it is natural to wonder whether the assumption in Theorem 1 that F have complex coefficients is an unnecessary complication. However, it will soon become apparent that this assumption is required for the induction in Theorem 2 to work.

In a subsequent paper, I will examine more closely the nature of the sequence $\{M_n\}$. Based on that work, I believe that the following is true.

CONJECTURE 1. The sequence $\{M_n\}$ defined by

$$M_n = \max |D_F|^{1/(n-1)}A_F$$

where the maximum is taken over all forms of degree n with complex coefficients and discriminant $D_F \neq 0$, decreases monotonically to the value 2π.

Coincidentally, the conjectured limiting value of this sequence is equal to the value of $|D_F|^{1/2}A_F$ when F is a quadratic form with real coefficients and negative discriminant.

3. An integral representation for A_F

As mentioned in the Introduction, the curve $|F(x, y)| = 1$ may be expressed in polar form as

$$r = \frac{1}{|F(\cos \theta, \sin \theta)|^{1/n}}.$$
Hence, from Calculus,

\[A_F = \int_0^{2\pi} \frac{1}{2} r^2 \, d\theta \]

\[= \frac{1}{2} \int_0^{2\pi} \frac{d\theta}{|F(\cos \theta, \sin \theta)|^{2/n}}. \]

Now the curve \(|F(x, y)| = 1\) is symmetric about the origin, and so using an appropriate substitution we have

\[A_F = \int_{-\pi/2}^{\pi/2} \frac{d\theta}{|F(\cos \theta, \sin \theta)|^{2/n}} \]

\[= \int_{-\pi/2}^{\pi/2} \frac{d\theta}{\left(\cos^2 \theta + \sin^2 \theta \right)^{2/n}} \]

\[= \int_{-\pi/2}^{\pi/2} \frac{d\theta}{|F(1, \tan \theta)|^{2/n}} \]

\[= \int_{-\infty}^{\infty} \frac{dv}{|F(1, v)|^{2/n}}. \]

Similarly,

\[A_F = \int_{-\infty}^{\infty} \frac{du}{|F(u, 1)|^{2/n}}. \]

This representation for \(A_F\) reveals several of the difficulties to be overcome when estimating the quantity \(|D_F|^{1/n(n-1)}A_F\). To see this, suppose that

\[F(x, y) = (\alpha_1 x - y) \cdots (\alpha_n x - y) \]

where \(\alpha_1, \ldots, \alpha_n\) are distinct real numbers, and consider

\[A_F = \int_{-\infty}^{\infty} \frac{dv}{|(v - \alpha_1) \cdots (v - \alpha_n)|^{2/n}}. \]

Notice that this integral has singularities at \(\alpha_1, \ldots, \alpha_n\) corresponding to the asymptotes

\[y - \alpha_1 x = 0, \ldots, y - \alpha_n x = 0 \]

of the curve \(|F(x, y)| = 1\). The behaviour of \(A_F\) depends on the relative separation of the roots \(\alpha_1, \ldots, \alpha_n\). For example, if all the \(\alpha\)'s were close to zero, then the resulting integral would be close to
and so A_F would become arbitrarily large. In fact, if at least half the roots cluster to a point, the resulting integral has an accumulated singularity with exponent at least one, and hence is divergent. Notice, however, that when the α's are close together, the quantity

$$|D_F|^{1/n(n-1)} = \prod_{i < j} (\alpha_j - \alpha_i)^{2/|D_F|^{1/n(n-1)}}$$

is close to zero (as must be the case if $|D_F|^{1/n(n-1)}A_F$ is to remain bounded). On the other hand, the squares of the differences $(\alpha_j - \alpha_i)^2$ could be quite large resulting in an arbitrarily large discriminant (and an arbitrarily small A_F, although this is not immediately obvious).

4. Proof of Theorem 2

In view of the integral representation for A_F given in the previous section and the invariance of $|D_F|^{1/n(n-1)}A_F$ with respect to $GL_2(\mathbb{R})$ and with respect to replacing F by kF for any complex number k, it is apparent that the analysis of $|D_F|^{1/n(n-1)}A_F$ over the class of forms of degree n with complex coefficients and non-zero discriminant is equivalent to the analysis of the quantity

$$\prod_{i > j} |\alpha_j - \alpha_i|^{2/n(n-1)} \int_{-\infty}^{\infty} \frac{dv}{|v - \alpha_1| \cdots |v - \alpha_n|^{2/n}}$$

over all n-tuples $(\alpha_1, \ldots, \alpha_n)$ of distinct complex numbers. In this section, I will demonstrate that the sequence $\{M_n\}$ defined by

$$M_n = \max |D_F|^{1/n(n-1)}A_F,$$

where the maximum is taken over all forms of degree n with $D_F \neq 0$, is decreasing, by applying Hölder's inequality to the integral

$$\int_{-\infty}^{\infty} \frac{dv}{|v - \alpha_1| \cdots (v - \alpha_n)^{2/n}}.$$
Put
\[f(z) = (z - \alpha_1) \cdots (z - \alpha_n), \]
\[f_i(z) = \frac{f(z)}{z - \alpha_i}, \]
and let \(D_f \) and \(D_{f_i} \) denote the discriminants of \(f \) and \(f_i \) respectively. Notice that
\[\prod_{i=1}^{n} f_i(z) = f(z)^{n-1} \]
and
\[\prod_{i=1}^{n} |D_{f_i}| = |D_f|^{n-2}. \]

Hence
\[\int_{-\infty}^{\infty} \frac{dv}{|f(v)|^{2/n}} = \int_{-\infty}^{\infty} \frac{dv}{\prod_{i=1}^{n} |f_i(v)|^{2/n(n-1)}}. \]

Applying the generalized form of Hölder’s inequality to the latter integral, with each exponent equal to \(n \), we have
\[\int_{-\infty}^{\infty} \frac{dz}{\prod_{i=1}^{n} |f_i(z)|^{2/n(n-1)}} < \prod_{i=1}^{n} \left(\int_{-\infty}^{\infty} \frac{dz}{|f_i(z)|^{2/(n-1)}} \right)^{1/n}. \]

This inequality is strict since for \(i \neq j \), there is no constant \(k \) for which \(|f_i(v)| = k|f_j(v)| \) for almost all \(v \).

Now suppose that
\[\int_{-\infty}^{\infty} \frac{dz}{|f_i(z)|^{2/(n-1)}} \leq C |D_{f_i}|^{1/(n-1)(n-2)} \]
for \(i = 1, 2, \ldots, n \). Then
\[\prod_{i=1}^{n} \left\{ \int_{-\infty}^{\infty} \frac{dz}{|f(z)|^{2/(n-1)}} \right\}^{1/n} \leq \prod_{i=1}^{n} \left\{ \frac{C}{|D_{f_i}|^{1/(n-1)(n-2)}} \right\}^{1/n} \]

\[= \frac{C}{\prod_{i=1}^{n} |D_{f_i}|^{1/\left(1/(n-1)(n-2)\right)}} \]

\[= \frac{C}{|D_f|^{1/n(n-1)}} \]

and so

\[\int_{-\infty}^{\infty} \frac{dv}{|f(v)|^{2/n}} < \frac{C}{|D_f|^{1/n(n-1)}}. \]

Consequently,

\[M_3 > M_4 > M_5 \cdots \]

as required.

The monotonicity of the sequence \(\{M_n\} \) can also be established by appealing to the inequality between arithmetic and geometric means, in the form

\[x_1 x_2 \cdots x_n \leq \frac{1}{n} \left(x_1^n + x_2^n + \cdots + x_n^n \right). \]

Indeed, let

\[F(x, y) = (\alpha_1 x - y) \cdots (\alpha_n x - y) \]

and put

\[F_i(x, y) = \frac{F(x, y)}{\alpha_i x - y}. \]

Then

\[\prod_{i=1}^{n} F_i(x, y) = F(x, y)^{n-1}, \]

\[\prod_{i=1}^{n} |D_{F_i}| = |D_F|^{n-2} \]
and so

\[|D_F|^{1/n(n-1)} |F(1, v)|^{-2/n} = \prod_{i=1}^{n} |D_{F_i}|^{1/n(n-1)(n-2)} F_i(1, v)^{-2/n(n-1)} \]

\[\leq \frac{1}{n} \sum_{i=1}^{n} |D_{F_i}|^{1/(n-1)(n-2)} F_i(1, v)^{-2/(n-1)}. \]

The latter inequality is strict for all but finitely many \(v \) since for \(i \neq j \),

\[|D_{F_i}|^{1/(n-2)} F_i(1, v)|^{-2} = |D_{F_j}|^{1/(n-2)} F_j(1, v)|^{-2} \]

for at most two values of \(v \). Hence,

\[|D_F|^{1/n(n-1)} A_F < \frac{1}{n} \sum_{i=1}^{n} |D_{F_i}|^{1/(n-1)(n-2)} A_{F_i} \]

and the inequality \(M_n < M_{n-1} \) follows as before.

5. Proof of Theorem 3

As noted in the previous section, the analysis of the quantity \(|D_F|^{1/n(n-1)} A_F \) is equivalent to the analysis of the quantity

\[Q(\alpha_1, \ldots, \alpha_n) = \prod_{i < j} |\alpha_j - \alpha_i|^{2/n(n-1)} \int_{-\infty}^{\infty} \frac{dv}{|v - \alpha_1| \cdots |v - \alpha_n|^{2/n}} \]

where \(\alpha_1, \ldots, \alpha_n \) are distinct complex numbers. In this section, I will show that if at least one of the \(\alpha_i \) is non-real, then

\[Q(\alpha_1, \ldots, \alpha_n) < M_n. \]

It will then follow that \(Q \) is maximized at a point \((\alpha_1, \ldots, \alpha_n) \) for which each \(\alpha_i \)

is real (or \(\infty \)).

Throughout this section, I will adopt the convention that if one of the \(\alpha \)'s is infinite, say \(\alpha_n \), then

\[Q = \prod_{1 \leq i < j \leq n-1} |\alpha_j - \alpha_i|^{2/n(n-1)} \int_{-\infty}^{\infty} \frac{dv}{|v - \alpha_1| \cdots |v - \alpha_{n-1}|^{2/n}}. \]

Before discussing the details of the proof of Theorem 3, let us recall the following terminology from the theory of functions.
A continuous real-valued function u of a single complex variable $z = x + iy$ is \emph{harmonic} if it has continuous partial derivatives of the second order and satisfies Laplace's equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0.$$

A continuous real-valued function v of a single complex variable is said to be \emph{subharmonic} if, in any region of the complex plane, v is less than or equal to the harmonic function u which coincides with v on the boundary of the region. A subharmonic function need not be continuous; however, this assumption allows one to simplify the definition to some extent. There are several equivalent definitions of subharmonicity; the one given here highlights the property of convexity.

An important property of subharmonic functions is that they satisfy the maximum principle. The \emph{maximum principle for subharmonic functions} states that a non-constant subharmonic function has no maximum in its region of definition. Consequently, the maximum of a subharmonic function on a closed bounded set is attained on the boundary of the set.

The generalizations of these concepts to functions of several complex variables are respectively the notions of pluriharmonicity and plurisubharmonicity. A continuous real-valued function of several complex variables is said to be \emph{plurisubharmonic} if its restriction to any complex line is subharmonic on that line. The function is \emph{pluriharmonic} if its restriction to any complex line is harmonic on that line. A \emph{complex line} in \mathbb{C}^n is a set of the form

$$\{a + b\zeta; \zeta \in \mathbb{C}\}$$

where $a, b \in \mathbb{C}^n$. Notice that any positive linear combination of plurisubharmonic functions is plurisubharmonic. Further, the composition of a plurisubharmonic function and a monotonically increasing convex function is plurisubharmonic (see Gunning [8] or Hormander [10]).

Now consider the quantity

$$Q(\alpha_1, \ldots, \alpha_n) = \prod_{i<j} |\alpha_j - \alpha_i|^{2/(n-1)} \int_{-\infty}^{\infty} \frac{dv}{(v - \alpha_1) \cdots (v - \alpha_n)^{2/n}}$$

as a function of the complex variables $\alpha_1, \ldots, \alpha_n$. This function is plurisubharmonic on the region

$$\mathcal{R} = \mathbb{C}^n \setminus \bigcup_{i=1}^{n} \{\alpha_1, \ldots, \alpha_n\} \in \mathbb{C}^n: \alpha_i \in \mathbb{R}\}.$$
To see this, it suffices, by linearity, to show that each of the functions \(q_v \) given by

\[
q_v(x_1, \ldots, x_n) = \frac{\prod_{l<j} |x_j - x_l|^{2/n(n-1)}}{|(v - x_1) \cdots (v - x_n)|^{2/n}}
\]

with \(v \) a real number, is plurisubharmonic on \(\mathbb{R} \). Since the exponential function is convex and monotonically increasing, it suffices to demonstrate this for

\[
\log q_v(x_1, \ldots, x_n) = \frac{2}{n(n-1)} \sum_{i<j} \log |x_j - x_i| - \frac{2}{n} \sum_{i=1}^n \log |v - x_i|.
\]

Now, for \(i \neq j \), the function \((x_1, \ldots, x_n) \mapsto \log |x_j - x_i|\) is plurisubharmonic on \(\mathbb{C}^n \); in fact, it is pluriharmonic on \(\{ (x_1, \ldots, x_n) \in \mathbb{C}^n : x_i \neq x_j \} \). Further, the function \((x_1, \ldots, x_n) \mapsto -\log |v - x_i|\) with \(v \) a real number, is pluriharmonic except on the hyperplane \(\{ (x_1, \ldots, x_n) \in \mathbb{C}^n : x_i = v \} \). Hence, \(Q \) is plurisubharmonic on \(\mathbb{R} \) as claimed.

In particular, for fixed values of \(x_1, \ldots, x_{n-1} \), the quantity \(Q(x_1, \ldots, x_n) \), when viewed as a function of \(x_n \), is subharmonic in the upper and lower half planes. Moreover, it is continuous and non-constant on \(\mathbb{C} \). Hence, by the maximum principle for subharmonic functions,

\[
Q(x_1, \ldots, x_n) \leq Q(x_1, \ldots, x_{n-1}, r_n)
\]

for some real number \(r_n \) (possibly \(\infty \)). Moreover, this inequality is strict for non-real values of \(x_n \).

Now the quantity \(Q(x_1, \ldots, x_{n-1}, r_n) \) when viewed as a function of the complex variables \(x_1, \ldots, x_{n-1} \) is plurisubharmonic on

\[
\mathbb{C}^{n-1} \bigcup_{i=1}^{n-1} \{ (x_1, \ldots, x_{n-1}) \in \mathbb{C}^{n-1} : x_i \in \mathbb{R} \}.
\]

Hence, arguing as before, we have

\[
Q(x_1, \ldots, x_n) \leq Q(x_1, \ldots, x_{n-2}, r_{n-1}, r_n)
\]

for some real number \(r_{n-1} \) (possibly \(\infty \)) distinct from \(r_n \). Continuing in this way, we find that

\[
Q(x_1, \ldots, x_n) \leq Q(r_1, \ldots, r_n)
\]
for some \(n \)-tuple \((r_1, \ldots, r_n) \) of distinct real numbers (possibly including the point at infinity). In fact, if at least one of the \(x \)'s is non-real, then this inequality is strict.

Therefore, if \(F \) is a form of degree \(n \) for which the polynomial \(F(x, 1) \) has at least one non-real root, then

\[
|D_F|^{1/(n-1)} A_F < M_n.
\]

This completes the proof of Theorem 3.

6. Proof of Theorem 1

In view of Theorem 2 and Theorem 3, it suffices to prove that every form \(F \) for which the polynomial \(F(x, 1) \) has three distinct real roots is (up to multiplication by a complex number) equivalent under \(GL_2(\mathbb{R}) \) to \(xy(x - y) \) and that

\[
|D_F|^{1/6} A_F = 3B \left(\frac{1}{3}, \frac{1}{3} \right)
\]

for any such form. Since \(|D_F|^{1/6} A_F \) is invariant with respect to replacing \(F \) by \(kF \) for any complex number \(k \), there is no loss of generality in assuming that \(F \) has real coefficients in this case. Hence, let \(F \) be a cubic form with real coefficients for which \(D_F > 0 \).

Notice that a linear substitution applied to \(F \) induces a fractional linear transformation of the roots of the polynomial \(F(1, y) \). Indeed, if \(T = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{R}) \), then the roots are transformed according to the rule

\[
t \mapsto \frac{at - c}{d - bt}.
\]

Since every fractional linear transformation with real coefficients may be given by the rule

\[
\frac{(w - w_1)(w_3 - w_2)}{(w - w_2)(w_3 - w_1)} = \frac{(z - z_1)(z_3 - z_2)}{(z - z_2)(z_3 - z_1)}
\]

where the \(z \)'s and \(w \)'s are real numbers such that \(z_1, z_2, z_3 \) are mapped to \(w_1, w_2, w_3 \) respectively, it follows that \(F \) is equivalent under \(GL_2(\mathbb{R}) \) to the form \(F_1(x, y) = xy(x - y) \). Hence
\[|D_F|^{1/6} A_F = A_F, \]
\[= \int_{-\infty}^{\infty} \frac{dv}{|F_1(1, v)|^{2/3}} \]
\[= \int_{-\infty}^{\infty} \frac{dv}{|v(1 - v)|^{2/3}} \]
\[= 3B \left(\frac{1}{3}, \frac{1}{3} \right) \]
as required.

Acknowledgement

I would like to thank my thesis supervisor, Professor Cameron L. Stewart, and Professor Enrico Bombieri for their suggestions and comments.

References