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Abstract. In this paper, it is shown that if F is a binary form with complex coefficients having
degree n  3 and discriminant DF ~ 0, and if AF is the area of the region |F(x, y)l  1 in the real
affine plane, then |DF|1/n(n-1)AF  3B(t 1 3), where B(1 3, 1 3) denotes the Beta function with arguments
of 1/3. Consequently, if F is a form with integer coefficients having non-zero discriminant and
degree at least three, then AF  3B(1 3, 1 3). The value 3B(1 3, -1 , which numerically approximates to
15.8997, is attained in both inequalities for certain classes of cubic forms.
These inequalities are derived by demonstrating that the sequence {Mn} defined by

Mn = max |DF|1/n(n-1)AF, where the maximum is taken over all forms of degree n with DF i= 0, is
decreasing, and then by showing that M3 = 3B(-! 3). It is conjectured that the limiting value of the
sequence {Mn} is 2n.

Conlpositio Mathematica 92: 115-131, 1994.
C 1994 Kluwer Academic Publishers. Printed in the Netherlands.

1. Introduction

A binary form is a homogeneous polynomial in two variables, that is, a

bivariate polynomial of the form

where the coefficients ao, al, ... , an belong to some ring. If the coefficients are
complex numbers, then the equation

defines an algebraic curve which does not intersect itself. For, on converting to
polar coordinates with the substitution
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this equation becomes

Hence, the region

has a well-defined area which will be denoted by AF8 The subject of this paper
is the estimation of AF over the class of forms with complex coefficients.
The problem of estimating the quantity AF arises in the study of Thue

equations. A Thue equation is a Diophantine equation of the form

where F is a binary form with rational integer coefficients which is irreducible
and has degree n  3, and h is a non-zero integer. In 1909, Thue [17] showed
that the number of integer solutions of such an equation is finite.

In 1933, Mahler [11] gave an estimate for the number, ZF(h), of solutions
of the Thue inequality

in terms of the area, AF(h), of the plane region IF(x, y)l  h, (x, y) E R2. To be
specific, he showed that if F is a binary form with rational integer coefficients
which is irreducible and has degree n  3, then

where c is a number which depends only on F. Notice, by the homogeneity of
F, that

The number c and the quantity AF were left unspecified by Mahler. However,
he did show that AF is finite when F is an irreducible binary form with integer
coefficients and degree at least three.
More recently, Mueller and Schmidt [12] have given estimates for ZF(h)

which depend only on h and the number of non-zero terms occurring in F.
Estimates for AF also appear in their work. In particular, they show that if F
is an irreducible binary form with s + 1 non-zero coefficients, then

provided that n  4s. From this, they deduce that AF is bounded when

n  s log s. Notice that the conditions n  4s and n  s log s qualitatively mean
that F has few coefficients.
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Even more recently, Mueller and Schmidt [13] have shown that if F is a

binary form with integer coefficients, exactly s + 1 of which are nonvanishing,
such that aoan =1= 0 and n &#x3E; 2s, then

where H is the maximum of the absolute values of the coefficients of F (often
called the height of F) and t = max(q, n - q) with q chosen such that H = |aq|.
The condition n &#x3E; 2s turns out to be essential. Their result shows, in particular,
that AF is quite small for forms F having few coefficients and height which is
sufficiently large in terms of the degree.

Mueller and Schmidt considered the Newton polygon of the polynomial
F(x, 1) associated with the binary form F. One disadvantage of this approach
is that it fails to capture the invariance of AF under linear transformations of
the form. For example, the quantity AF is invariant under rotations of the
region IF(x, y)1 ::s; 1 but the form F and hence the polynomial F(x, 1) are not.
It is also worth noting that while the estimation of AF has been restricted to
forms having integer coefficients, a more natural class of forms over which AF
ought to be estimated is the class of forms with real coefficients.

In this paper, 1 will consider the slightly more general class of forms with
complex coefficients and non-zero discriminant. It is a consequence of my
results that if F is such a form having integer coefficients and degree at least
three, then AF  3B(1 3, 1 3), where B() denotes the Beta function with argu-
ments of 1/3. It will soon become apparent that this bound is optimal.

2. Statement of Results

The general binary form F(x, y) = aoxn + a1xn-1y + ··· + anyn (with complex
coefficients) has a factorization

where each of the linear forms a;x - 03B2iy has complex coefficients. Such a
factorization need not be unique; however, the lines (J.iX - 03B2iy = 0 are uniquely
determined by F. For a given factorization, the discriminant of F is the quantity

The discriminant is independent of the factorization chosen for F. Alternative-
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ly, if ao =1= 0 and F has the factorization

then the yi are uniquely determined and

Let GL2(R) denote the group of 2 x 2 real invertible matrices. For each

T = ~GL2(R), let F T denote the binary form given by

Two forms F and G are said to be equivalent under GL2(R) if G = FT for some
T E GL2(R). Similarly, let GL2(Z) denote the group of 2 x 2 invertible matrices
having integer coefficients, that is,

Then, the forms F and Gare equivalent under GL2(Z) if G = FT for some
T ~ GL2(Z).

Let B(x, y) denote the Beta function of x and y. The Beta function may be
defined in terms of the Gamma function by the relation

and has the integral representation

for x &#x3E; 0 and y &#x3E; 0 (see Abramowitz and Stegun [1]).
1 will prove the following result.

THEOREM 1. Let F be a binary form with complex coefficients having degree
n  3 and discriminant D F =1= 0. Then
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This bound is attained precisely when F is a cubic form which, up to multiplication
by a complex number, is equivalent under GL2(R) to the form xy(x - y).

Since the discriminant of a form with integer coefficients is an integer, Theorem 1

immediately provides the following estimate for AF.

COROLLARY 1. If F is a binary form with integer coefficients having non-zero
discriminant and degree at least three, then

This bound is attained for forms with integer coefficients which are equivalent
under GL2(Z) to xy(x - y).

The approximate numerical value of 3B() is 15.8997. Notice that

Theorem 1 cannot be extended to quadratic forms since IDFI 1/2 AF is infinite for
the form F(x, y) = x2 - y2. In fact, if F is a quadratic form with real

coefficient, then |DF|1/2AF is infinite when DF &#x3E; 0 but equals 2n when DF  0.

Notice further, that the condition DF =1= 0 in Theorem 1 is required to exclude
pathological examples where DF = 0 and AF is infinite.
The quantity |DF|1/n(n-1)AF is natural to consider since it is absolutely

invariant with respect to GL2(R) (while the quantity AF is not). Indeed, if

T =  c- GL2(R), then

and

hence

for all T E GL2(R). The quantity |DF|1/n(n-1)AF is also invariant with respect to
replacing F by kF for any complex number k since
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On the other hand, |DF|1/n(n-1)AF is not invariant with respect to GL2(C) since,
for example, the forms X2 + y2 and x2 - y2 are equivalent under GL2(C) but
the area of the region IX2 + y2|  1 is finite while the area of the region
IX2 _ y2|  1 is infinite.
The proof of Theorem 1 relies on reducing the estimation of |DF|1/n(n-1)AF

for a general form to the estimation of |DF|1/6AF over cubic forms and on
demonstrating that the quantity |DF|1/6AF is maximized over the cubic forms
by a form F for which the polynomial F(x, 1) has three distinct real roots. It
is straightforward to show that, up to multiplication by a complex number, any
such form is equivalent under GL2(R) to xy(x - y). The inequality

then follows from a routine area calculation.

The principal ideas can be generalized to give the proof a more inductive
flavour and to provide more insight into the nature of |DF|1/n(n-1)AF. This is
the content of Theorem 2 and Theorem 3 below.

THEOREM 2. Suppose that

for all forms F of degree n - 1 with D F =1= 0. Then

for all forms F of degree n with D F =1= 0. Hence, if

where the maximum is taken over all forms F of degree n with D F =1= 0, then

THEOREM 3. The quantity IDFI1/n(n-l)AF is maximized over the class of forms
of degree n with complex coefficients and non-zero discriminant by a form F with
real coefficients for which the polynomial F(x, 1) has n distinct real roots. In fact,
if F is a form of degree n for which the polynomial F(x, 1) has at least one
non-reàl root, then
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where Mn is as defined in the statement of Theorem 2.

It is convenient to adopt the convention that if F is a form which has y as a
factor, then the polynomial F(x, 1) has a root at infinity (denoted 00); similarly,
if F has x as a factor, then F(l, y) has a root at infinity. Throughout this paper,
a root at infinity will be considered a real root. With this convention, the slopes
of the asymptotes of the curve IF(x, y)l = 1 are the real roots of the polynomial
F(l, y).

1 originally established the monotonicity of the sequence {Mn} by applying
the generalized form of Hôlder’s inequality to a certain integral representation
of AF. Enrico Bombieri has since suggested to me that this result may be
established in a slightly simpler way by appealing to the inequality between
arithmetic and geometric means. The details of both approaches will be given
in Section 4.

Theorem 3 will be established in Section 5 by considering the quantity
|DF|1/n(n-1)AF as a function of n complex variables and then appealing to an
appropriate maximum principle. 1 am very grateful to Professor Bombieri for
suggesting this approach.

In light of Theorem 3, it is natural to wonder whether the assumption in
Theorem 1 that F have complex coefficients is an unnecessary complication.
However, it will soon become apparent that this assumption is required for the
induction in Theorem 2 to work.

In a subsequent paper, 1 will examine more closely the nature of the sequence
{Mn}. Based on that work, 1 believe that the following is true.

CONJECTURE 1. The sequence {Mn} defined by

where the maximum is taken over all forms of degree n with complex
coefficients and discriminant DF ~ 0, decreases monotonically to the value 203C0.

Coincidentally, the conjectured limiting value of this sequence is equal to the
value of |DF|1/2AF when F is a quadratic form with real coefficients and

negative discriminant.

3. An integral représentation for AF

As mentioned in the Introduction, the curve IF(x, y)| = 1 may be expressed in
polar form as
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Hence, from Calculus,

Now the curve IF(x, y)l = 1 is symmetric about the origin, and so using an
appropriate substitution we have

Similarly,

This representation for AF reveals several of the difficulties to be overcome
when estimating the quantity |DF|1/n(n-1)AF. To see this, suppose that

where 03B11, ..., a" are distinct real numbers, and consider

Notice that this integral has singularities at 03B11, ..., an corresponding to the
asymptotes

of the curve IF(x, y)l = 1. The behaviour of AF depends on the relative

separation of the roots ai, ... , an. For example, if all the a’s were close to zero,
then the resulting integral would be close to
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and so AF would become arbitrarily large. In fact, if at least half the roots

cluster to a point, the resulting integral has an accumulated singularity with
exponent at least one, and hence is divergent. Notice, however, that when the
a’s are close together, the quantity

is close to zero (as must be the case if |DF|1/n(n-1)AF is to remain bounded). On
the other hand, the squares of the differences (ai - 03B1i)2 could be quite large
resulting in an arbitrarily large discriminant (and an arbitrarily small AF,
although this is not immediately obvious).

4. Proof of Theorem 2

In view of the integral representation for AF given in the previous section and
the invariance of |DF|1/n(n-1)AF with respect to GL2(R) and with respect to
replacing F by kF for any complex number k, it is apparent that the analysis
of |DF|1/n(n-1)AF over the class of forms of degree n with complex coefficients
and non-zero discriminant is equivalent to the analysis of the quantity

over all n-tuples (a 1, ..., an) of distinct complex numbers. In this section, 1 will
demonstrate that the sequence {Mn} defined by

where the maximum is taken over all forms of degree n with DF =1= 0, is

decreasing, by applying Hôlder’s inequality to the integral
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Put

and let D f and Dfi denote the discriminants of f and f respectively. Notice
that

and

Hence

Applying the generalized form of Hâlder’s inequality to the latter integral, with
each exponent equal to n, we have

This inequality is strict since for i ~ j, there is no constant k for which

Ih(v)1 = k|fj(v)| for almost all v.

Now suppose that

for i = 1, 2, ... , n. Then
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and so

Consequently,

as required.
The monotonicity of the sequence {Mn} can also be established by appealing

to the inequality between arithmetic and geometric means, in the form

Indeed, let

and put

Then
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and so

The latter inequality is strict for all but finitely many v since for i ~ j,

for at most two values of v. Hence,

and the inequality Mn  M,,-, 1 follows as before.

5. Proof of Theorem 3

As noted in the previous section, the analysis of the quantity |DF|1/n(n-)AF is
equivalent to the analysis of the quantity

where 03B11, ..., an are distinct complex numbers. In this section, 1 will show that

if at least one of the ai is non-real, then

It will then follow that Q is maximized at a point (03B11, ..., an) for which each ai
is real (or oo).
Throughout this section, 1 will adopt the convention that if one of the a’s is

infinite, say a,,, then

Before discussing the details of the proof of Theorem 3, let us recall the

following terminology from the theory of functions.
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A continuous real-valued function u of a single complex variable z = x + iy
is harmonic if it has continuous partial derivatives of the second order and
satisfies Laplace’s equation

A continuous real-valued function v of a single complex variable is said to be
subharmonic if, in any region of the complex plane, v is less than or equal to
the harmonic function u which coincides with v on the boundary of the region.
A subharmonic function need not be continuous; however, this assumption
allows one to simplify the definition to some extent. There are several

equivalent definitions of subharmonicity; the one given here highlights the
property of convexity.
An important property of subharmonic functions is that they satisfy the

maximum principle. The maximum principle for subharmonic functions states
that a non-constant subharmonic function has no maximum in its region of
definition. Consequently, the maximum of a subharmonic function on a closed
bounded set is attained on the boundary of the set.
The generalizations of these concepts to functions of several complex

variables are respectively the notions of pluriharmonicity and plurisubhar-
monicity. A continuous real-valued function of several complex variables is

said to be plurisubharmonic if its restriction to any complex line is subharmonic
on that line. The function is pluriharmonic if its restriction to any complex line
is harmonic on that line. A complex line in en is a set of the form

where a, b ~ Cn. Notice that any positive linear combination of plurisubhar-
monic functions is plurisubharmonic. Further, the composition of a plurisub-
harmonic function and a monotonically increasing convex function is

plurisubharmonic (see Gunning [8] or Hormander [10]).
Now consider the quantity

as a function of the complex variables al, ... , an. This function is plurisubhar-
monic on the region
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To see this, it suffices, by linearity, to show that each of the functions qv
given by

with v a real number, is plurisubharmonic on -,2. Since the exponential function
is convex and monotonically increasing, it suffices to demonstrate this for

Now, for i =1= j, the function (03B11, ..., an) H log |03B1j - ail is plurisubharmonic on
C"; in fact, it is pluriharmonic on . Further, the

function -ail with v a real number, is pluriharmonic
except on the hyperplane  = v}. Hence, Q is plurisubhar-
monic on ,4 as claimed.

In particular, for fixed values of 03B11, ..., 03B1n-1, the quantity Q(a 1, ... , 03B1n), when
viewed as a function of an, is subharmonic in the upper and lower half planes.
Moreover, it is continuous and non-constant on C. Hence, by the maximum
principle for subharmonic functions,

for some real number rn (possibly oo). Moreover, this inequality is strict for
non-real values of an.
Now the quantity Q(03B11, ..., 03B1n-1, rn) when viewed as a function of the

complex variables 03B11, ..., 03B1n - 1 is plurisubharmonic on

Hence, arguing as before, we have

for some real number rn-1 (possibly oo) distinct from rn. Continuing in this
way, we find that
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for some n-tuple (r 1, ..., rn) of distinct real numbers (possibly including the
point at infinity). In fact, if at least one of the a’s is non-real, then this inequality
is strict.

Therefore, if F is a form of degree n for which the polynomial F(x, 1) has at
least one non-real root, then

This completes the proof of Theorem 3.

6. Proof of Theorem 1

In view of Theorem 2 and Theorem 3, it suffices to prove that every form F for
which the polynomial F(x, 1) has three distinct real roots is (up to multiplica-
tion by a complex number) equivalent under GL2(R) to xy(x - y) and that

for any such form. Since |DF|1/6AF is invariant with respect to replacing F by
kF for any complex number k, there is no loss of generality in assuming that
F has real coefficients in this case. Hence, let F be a cubic form with real
coefficients for which DF &#x3E; 0.

Notice that a linear substitution applied to F induces a fractional linear
transformation of the roots of the polynomial F(1, y). Indeed, if

T= ()~GL2(R), then the roots are transformed according to the rule

Since every fractional linear transformation with real coefficients may be given
by the rule

where the z’s and w’s are real numbers such that z1, Z2, Z3 are mapped to Wl,
W2, W3 respectively, it follows that F is equivalent under GL2(R) to the form
F,(x, y) = xy(x - y). Hence
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as required.
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