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Introduction

Let f E C[[X, Y]] be a reduced formal series over the complex field C (i.e.
f = II i f where the fis are irreducible and fi *fj if i -# j), and let

h E C[[X, Y]] be a regular parameter (i.e. h defines a nonsingular plane
algebroid curve). The polar of f with respect to h, P( f, h), is the algebroid
curve defined by:

Examples by Pham show that the topological type of P( f , h) depends on the
analytic type of C, the curve defined by f = 0, and not only on its topological
type, even for h transversal to f However we may wonder what information
of P( f, h) depends on the topological type of C. Roughly speaking:

Assuming the topological type of C fixed,
What can we say about the topological type of P(f, h)

The best results about this question have been obtained by Lê, Michel and
Weber ([LMW], [LMW2]) for the case in which h is transversal to f, by using
topological methods: let n : X H e2 be the canonical resolution of the germ C,
E the exceptional divisor of n. Then, P, the strict transform of P( f, h), does not
meet the strict transform of C, and one can determine (not completely) the
components of E which meet P. As a consequence, they also compute the set
of polar quotients, that is, the set
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where ( f, cp) denotes the intersection multiplicity of f with 9 and m(g) is

the multiplicity of 9. Polar quotients were introduced by Teissier and
depend on the topological type of C only ([T]). Similar computations have
been made by Kuo and Lu in [KL] and by Steenbrink and Zucker in [SZ].
When f is irreducible, the first methods used to study the problem above

were of arithmetical nature. Merle in [M] proves that if h is transversal to

f, then J(f, h) can be factorized as r 1 r 9’ where g is the number of

Puiseux pairs of f and each ri is a product of branches with constant polar
quotient. The polar quotient corresponding to branches of ri and the
multiplicity of ri can be explicitly computed in terms of the minimal set of
generators of the semigroup of values of f (the factorization Theorem is
also proved using the arithmetical properties of this semigroup). The i-th
polar quotient, corresponding to a branch in ri, is equal to the coefficients
of contact, ( f, Ç)/m(Ç), for a curve 03A8 of genus i - 1, having maximal contact
with f, that is, tf¡ has the maximal possible intersection multiplicity with f
among the curves with i - 1 Puiseux pairs. From this, one finds the set of
free infinitely near singular points that a branch of Fi and the curve f have
in common and, as consequence, one obtains the results in [LMW2] in a
more precise form. Notice that the first i - 1 Puiseux pairs of a branch of
Fi are equal to the corresponding ones for f Ephraim in [E] extends
Merle’s result to any regular h, by using the ( f, h)-sequence instead of the
minimal set of generators. Finally, both results are generalized by Granja
([G]) to a larger class of curves which includes the polars as a particular
case. We want to remark that the only data used in the results above are
the intersection multiplicities of J( f, h) with f and h, and no other

properties of polars.
The arithmetical description of the semigroup of values of a curve with

several branches given in [D], (and in [B] for the case d = 2) induces us
to try to obtain similar results for the polar of a non irreducible f using
the arithmetic of the semigroup and taking as only data the intersection
multiplicities of J( f, h) with the branches fl, ... , fd of f and h, that is

In this paper we carry out this program for the case of two branches (d = 2)
and h not necessarily transversal to f Unfortunately this is not possible for
more than two branches (d &#x3E; 3) as the example (4.12) shows. So, for d &#x3E; 3
further properties of J( f, h) are necessary in order to give a "good"
factorization or in order to refine the results in [LMW2].
The main results proved here go in parallel with the ones proved by

Merle and Ephraim. There is also an interpretation in terms of the

resolution process for the singularity of f = 0, included in section 4. Taking
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into account that the topological type of a curve singularity is an equivalent
data to the semigroup of values (or to the resolution process), the

topological type of P( f, h) has some restrictions imposed by that one of C,
as well as some "similarities" with it.
More precisely, assume for the sake of simplicity that h is transversal to

the curve with two branches C defined by f = f 1 f2 = 0 (in the paper there
is no restriction for h). Denote by S - Z2 the semigroup of values of f and
for any qJ E C[[X, Y]] let I(f, q) = (( fI’ qJ )/m( qJ), ( f2, w)/m(w)). If q is an

irreducible component of J = J( f, h) we will say that 1 ( f; ç) is a polar
multi-quotient of f Then J has a factorization

with the following properties:
The numbers s and t are the number of Puiseux pairs of the branches

defined by fl and f2 respectively. Each factor is a product of branches of
J with constant polar multi-quotient. The polar multi-quotient correspond-
ing to one of the factors, r, its multiplicity and the value in S of I-’ that
is, the ordered pair of natural numbers ((r, f 1 ), (r, f2)) - can be explicitly
computed in terms of certain set of elements of S, called the set of values
of the maximal contact. This set plays a role similar to that of the minimal
set of generators in the case of an irreducible f (notice that the semigroup
of values of a curve with several branches is not finitely generated, but can
be "determined" by a finite number of elements, see [D]).
Given 9 c- F i a q + 1, the first coordinate of I(f, 9), (fl,cP)/m(ep) is the

i-th polar quotient of the branch f1 (the second one can be easily
determined in terms of the first one and ( fl, f2)), so we can determine in a
precise form the set of free infinitely near singular points in common for 9
and fl. Similar results are true for the irreducible components of h2,
i a q + 1. The irreducible components, ep, of the first q factors, Fi
(1  i x q), satisfy

and this rational number is equal to the i-th polar quotient of f, (or f2) so
we can make a similar interpretation in terms of the infinitely near singular
points. Finally, D corresponds, in general, to the irreducible factors of J
which have in common with f the set of common infinitely near singular
points of fi and f2. In other words, the branches ç of D become transversal
to f’ exactly in the same step of the resolution procedure in which f, and
f2 become transversal. There are some cases in which the existence of such
a D cannot be guaranteed because its components are, from the point of
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view of arithmetic, undistinguishable from the components of rq or Fq’+ i,*
see Theorems (3.11), (3.12) and (4.9) for a precise statement taking into
account all the possible cases.
Now, let n : X --&#x3E; e2 be the minimal embedded resolution for the germ C,

C’ the total transform of C and E the exceptional divisor. We can translate
the results above in these terms, obtaining the components of E appearing
in the resolution procedure for P = P( f, h) (not completely, because only
the free infinitely near singular points are determined) or, in other words,
the irreducible components Ei of E such that Ei n P =1= 0, P being the strict
transform of P by n. Moreover, as a consequence, the polar multi-quotients
are in 1-1 correspondence with the "rupture divisors" of E (that means
irreducible components F of E such that #F n (C’ - F) &#x3E;, 3). In fact, the
set of polar multi-quotients can be realized as the set {I(f, n(çF))}’ where F
belongs to the set of "rupture divisors" and ÇF is the germ of a smooth
curve in X with normal crossings with E at a point of F.

Notice that the point of view of this paper is rather different to the one
of Casas in [Ca]. He proves that if f is a "general" element in the set of
curves with a prefixed topological type, then the equisingularity type of the
generic polar can be completely determined.

Briefly, the contents of the different sections are as follows:
In section 1 we fix the notation and prove some results involving the

coefficient of contact (in the sense of Hironaka) of two branches f and g
with respect to h, that is, the rational number ( f, g)l(g, h). The main

arithmetical properties needed in the following sections are stated.
In section 2 we prove a factorization theorem for curves g such that ( f; g)

(for f irreducible) belongs to an enlarged Apery basis of f with respect to
h (see (2.2) for the definition of such enlarged Apery basis). These results
are needed in order to prove a factorization theorem (at the beginning of
the third section) for the polar of a curve with d branches in a very special
case named here diagonal case (d branches with the same equisingularity
type and high intersection multiplicity between pairs of branches), and also
provides an important tool for the proof of the factorization in the two
branch case.

Section 3 is devoted to proving the main results, namely the factorization
of J( f, h), for a curve f with two branches, into packages with constant

polar multi-quotient.
Finally, the last part is devoted to the comparison with the results in

[LMW2] when h is transversal to f and to extend these geometrical
interpretations to arbitrary h. At the end of this part we include a

counterexample of the factorization theorems when one takes d = 3 instead
of d = 2.
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1. Preliminary facts

Throughout all this paper k will denote an algebraically closed field and
h E k[[X, Y]] an irreducible regular parameter, that is, h defines a nonsin-
gular plane algebroid curve over the ground field k.

(1.1) Let C be an irreducible algebroid plane curve defined by an irreduc-
ible formal series f E k[[X, Y]]. Denote by S(C), S( f ), or simply S if

confusion is not possible, the semigroup of values of C, that is, the set

( f, g) denoting the intersection multiplicity between f and g, and v the
normalized valuation corresponding to C, that is, the valuation associated
to the valuation ring t9, normalization of U in its field of fractions.

(1.2) The maximal contact values of C, flo, ... , 1 fi,, (see [Z], [C]) can be
defined as the minimal set of generators of S in the following way:

and for i &#x3E; 1,

It is well known (see [Z], [C]) that, if {f3o,.", f3g,} denotes the set of
characteristic exponents of C, then g = g’,
ei = gcd(f3 0’ ... , f3J = gcd(fJo, ... , Bi),

These equalities provide the equivalence between the two different sets of
exponents.
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(1.2.1) REMARK. Recall that in characteristic 0 the set of characteristic
exponents can be easily defined in terms of a Puiseux expansion for f :
Assume that x is transversal to f, denote by n the multiplicity of f and let
y = li&#x3E; 0 aix’ln a Puiseux expansion for f Then {30 = n and, recursively, {3i
is the minimum integer k such that ak :0 0 and

gcd({3o, ... , {3i - l’ k)  gcd(p 0, ... , Pi ). The integer g is usually called the
"genus" of the curve singularity given by f and 3i is the highest possible
contact of f with an irreducible curve of genus i - 1. In particular el is the
highest possible contact of f with a smooth curve,

fil = max{Ct:g) IgEk[[X, YJJ regular}. When the characteristic of k is

positive, same properties hold, now in terms of Hamburger-Noether
expansions instead of Puiseux expansions (see Campillo [C]).

(1.3) Let m be the intersection multiplicity between f and h: m = v(h) =
( f, h) E S. Then (30  m  B1, and the m-sequence, vo, ..., v,, of S is defined
as follows (see [A], [E], [P]):

and for i &#x3E; 1

This procedure stops when we find sEN such that ds = 1. So,
vo, ... , vs} c S and do &#x3E; d, &#x3E;... &#x3E; ds = 1. Note that the flo-sequence (ob-
tained taking h transversal to f ) is exactly the set of values of the maximal
contact. The m-sequence can be seen as a system of generators for S with

respect to m (or h). Associated with the m-sequence vo, ... , Vs we define the
natural numbers

(1.4) Depending on the different possibilities for m, namely, m = kpo
(1 , k  [111/110]) or m = 31, the relationship between the m-sequence and
the minimal set of generators of S are as follows:

(a) If m = vo = 30 (w 1 &#x3E; vo), then s = g and vi _ 31 for i = 1, ... , g.
(b) If vo = m = kPo for some integer k &#x3E; 1 (=&#x3E;dl 1 - v 1 ) then s = g + 1,

v 1 = flo and vi = Pi - for i = 2, ... , g + 1. Note that, as consequence,
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The minimal set of generators of the semigroup of a plane curve,

( Bo, ... , P,,I, satisfies some well-known and important properties. The main
ones for our purposes are

These properties characterize the subsemigroups of N which are the

semigroup of values for some plane algebroid curve. The first one is related
to the property of complete intersection for a monomial curve, see Azevedo
[Az], Herzog [He] and Angermüller [An].
Similar properties can be easily proved, using computations above, for

m-sequences, namely:

(1.5) The contact pair, (f g), for two irreducible branches f and g, is

defined in [D, (3.3)] in terms of the Hamburger-Noether expansions of f
and g. This pair of integers, ( f  g) = (q, c), can be also characterized in the
following way:

Denote by 11’0,..., B 9 eô, ... , e’, 9 the numbers defined in (1.2) for the

curve g and let t be the minimum integer such that
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(Note that this integer always exists, setting JJg+ 1 = JJgf + 1 = oo if it is

necessary.) Denote by lt (resp. lt) the integer part of (Pt + 1 - NtJJt)/et (resp.
of ( fl§ + i - N§ fl§)le§). Then,
- If (1, g)  p(t), there exists an integer c, 0  c  min(i, 1§), such that

In this case q = t and ( f g) _ (t, c).
- If ( f, g) = p(t) and e; Pt + 1 #- et P; + 1 then (q, c) = (t, (0). (In [D] this

case appears as (t, min {Zt + 1, lt + 1})). Recall that, if ç =

e; Pt + 1  et P; + 1 then lt  It and if lt  lt then ç = e; Pt + 1  et P; + 1
([D]).

- Finally, if (1: g) = p(t) and e;pt+l = etp;+I, (q, c) = (t + 1, 0).

Note that, if we set ,

the possible intersection multiplicities between two branches with the same
singularity types as f and g (that is, the same maximal contact values or
the same characteristic exponents) are the elements in the set

where ç(q, c) = e’ - 1 pq + ceq eq = e. - , fl’ + ceq eq and j(oJ) = min{ e1fp+ 1,
ep 3p + 1 1. These elements correspond one to one to the set of possible
contact pairs:

Moreover, (taking the lexicographic order in (N u { 00 } )2),

(1.5.1) REMARK. Suppose k of characteristic 0 and x transversal to f and

g, the contact pair can be characterized in terms of Puiseux expansions for

f and g as follows: Denote by n (resp. n’) the multiplicity of f (resp. of g)
and let y = li&#x3E;-Oai xi In. y’ = Y- i &#x3E;_ 0 a’x’ln ’ i be Puiseux expansions for f and g
respectively.
Assume that (f 1 g) = (q, c) with c  00. Then there exists a n’-th root of

the unit, ev, such that ai = a’iwi’ for any i such that i/n  y, where
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y (fi, + ce,)In = (f3q + ce’)In’ and, moreover, y is the greatest exponent
with these conditions. If c = oo, the same property holds with

y = min{f3q+ lin, Bq+ i/n’); in this case f3q+ lin =1= f3q+ 1 In’. These properties
permit, in the characteristic 0 case, to define the contact pair and to prove
in an easy way the properties above for it (see [Z2]). As in the Remark
(1.2.1) the positive characteristic case can be stated in a similar way using
Hamburger-Noether expansions ([D]).

(1.6) Similar statements to those obtained in (1.5) can be given taking the
m-sequences for f and g with respect to a fixed regular parameter h instead
of the sets of values of the maximal contact. Denote by vo, ... , vt,
dû, ... , dt, ... the corresponding data for g with respect to h and let r be the
minimum integer such that

Then we can define the contact pair of f and g with respect to h, (f g)h,
and also prove the following:

(1.7) LEMMA-DEFINITION. With notations as above:

such that

In this case define (f g)h = (r, d).
(3) If ( f, g) = t(r) and dr Vr+ 1 =1= dr Vr+vr 1 then Ô’r + 2 #- br+ 2, and we define

(f 9)h = (r, c)o)-
(4) If (1, g) = t(r) and d’ rVr+ d rV’r+ 11 then Mr + i Mr + 1, Ô’r + 2 = br+2

and dovr + 1 = d’ovr+ 1 1 n this case, define (f 19) h = (r + 1, 0).
(5) The relationship between (f [ g) = (q, c) and (f  g)h is as follows:

If q &#x3E;, 1, then
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Proof The proof of (1) is a simple computation taking into account the
relationship between the m-sequence and the values of the maximal contact
given in (1.4) and (1.5). For the rest of statements, note first that in the case in
which h is transversal to f and g the result is trivial, because (f g)h = ( f  g).
So, assume that h is not transversal and denote (f 1 g) = (q, c). We shall
consider three different cases, depending on q and c.

In this case, as h is non-singular, (f  h) = (g h)  (f g). Thus, there are two
possibilities. The first one is ( f, h) = k11o, (g h) = keo with 1  k  lo = l’o. In
this case one finds (f g)h = (q + 1, c) and the result is a consequence of (1.5).
In the other case, one must have (f, h) = fi,, (g, h) = fi’ and then

( f 1 g)h = (q, c), so the result is trivial, since d 0 V1 _ 1 /3o = e’o 111 = eo fi -j = v 1 d’o.

Without loss of generality we can assume that ( f, g) = e’o1Jl’ so %  l’o. The
different possibilities for h are the following:

In this case, ( f, g) = cio 3 and depending on h we have the following
possibilities:

. This is the same case as above with f and
g interchanged.
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(1.8) REMARK. Let r be as in (1.6), the minimum integer such that

( f, g)  t(r). By the Lemma above we have

and, r is the minimum integer such that the inequality above holds.
Moreover, dr divides ( f, g) except, at most, in the case ( f, g) =

dr vr + 1  dr vr + 1, that is, except when:

As Consequence,

Finally, then, since

must be r &#x3E; n and so bn+l = Ô’n+1-

(1.9) Let f, g, p E k[[X, Y]] be irreducibles, keep the notations above for the
different invariants associated to f and g and denote by Bo", .... eo, ... , the
corresponding ones for the curve defined by p. It is well-known that at least
two of the numbers

are equal, the third one being greater or equal than the repeated one ([Pl]).
In other words,

This fact can be easily generalized changing the multiplicities of the curves for
the intersection multiplicities with h. More precisely:
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(1.10) PROPOSITION. Let f, g, p E k[[X, Y]] be irreducibles. Assume

Then,

Proof Consider the set

By (1.9) this set has at most two elements, so we have the following
possibilities:

By hypothesis (p, h)(f, g) &#x3E; ( f, pX g, h) and hence (p, h) &#x3E; ( f, p)(g, h)
( f, g)-’ - ( f, p)e 0 1. Using (1.9) for p, h and f, we find

so, ( f, p) = ( f, h)e’ and by (1.9) again (g, p)eô = (g, h)e’e", that is

As above, by hypothesis ( p, h) &#x3E; ( f, p)(g, h)(f, g) -1 1 &#x3E; ( f, p)e ô 1, and then

As consequence,

(g, h)e’Ó(e’o) - 1 and by ( 1.9)
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Assume ( f, g)e"  ( f, p)e’o; using (1.9) for f, p and h we obtain

But in this case,

which gives a contradiction. As consequence ( , f; g)e’b &#x3E; ( f, p)e’o and ( g p)ei =
(g, p)eo. This equality, together with ( f, h)e’o = (g, h)e o leads to the result.

(1.10) REMARK. Obviously, the proposition above is equivalent to say that
in the set

there are at most two different elements, being the repeated element the

minimum of the set.

2. Apery basis and curves with contact in it

Let f E k [ [X, Y] ] be an irreducible series, h E k [ [X, Y] ] irreducible and
non-singular and m = ( f, h). We keep the notations of section 1.

(2.1) DEFINITION. The Apery basis of S with respect to m is the ordered
set

The Apery basis has been treated by several authors ([Ap], [An], [A],
[P], ... ) and some of the facts that we will use below can be found in these
references.
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Let {vo,..., vs} be the m-sequence of S, then one can compute the Apery
basis in the following way: If k is an integer with 0  k , m - 1, k can be
written in a unique way as k = Li liibi with a; integers such that

0  ai  Mi (1  i  s). Then,

(2.2) DEFINITION. Let ç ds-l Vs = 11 be a natural number. The en-
larged Apery basis of S with respect to m and ç is the ordered set Am,ç =
{aillE N}, where, if 1 = pm + k with 0  k  m we define a,:= pç + ak.

(2.3) REMARK. We have enlarged the Apery basis in such a way that the
equivalence (2.1.1 ) is conserved. In fact, if l E N, l can be written in a unique
way as l = pm + LÎ lJ.i5i with 0  oci  Mi (1 - i  s) and

In the following, we shall prove some facts for the enlarged Apery basis
which are in general, known for the Apery basis. Unless otherwise specified,
ç will be a natural number with ç r = ds _ 1 vs, and the elements a,, (1 EN),
will be the elements of the enlarged Apery basis of S with respect to m
and ç.

(2.4) LEMMA. Let l1, ... , lt be natural numbers and 1 = Ltl li. Then,
Ltl ail  ai. Moreover, if li  m for all i = 1,..., t and 1 = pm + k with

k  m then Y-’ 1 a,, , pq + a k
Proof We will use induction on t. In the case t = 1 there is nothing to

prove. So, assume t &#x3E; 1, put l’ = Li-l li = qm + v with v  m and assume

that £b ai,  qç + au (resp.  qn + au if li  m for any i).
If lt = rm + u with u  m, then

Thus, the problem is reduced to the computation of a, + au when v, u  m.

Assume u == Y-’ uibi, v == Z’ Vi5i with Ui’ Vi  Mi, (1  i  s). Then we can
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write:

where yi  Mi and ei c- {O, 11 for i = 1,..., s. We may compute u + v and

au + av:

Note that k = L Yibi, as Y- yi ôi  m and l == E yi ôi (mod m).
On the other hand:

This computation provides:

(2.5) REMARK. This lemma above generalizes the well-known fact that

a" + au C au + v if u + v  m (see the references in (2.1)). Note that we have
also proved that:

. If ç &#x3E; 1], av + au = au+v=&#x3E;Bi = 0, 1  i  s; in particular u + v  m.

If ç = 1], av + au = au + v =&#x3E; Bi = 0, 1 i  s - 1.
These facts can be easily generalized to the case of an arbitrary number,

t, of summands:


