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0. Introduction

The "restricted" Chow variety C À (X) of a projective algebraic variety X is
the space consisting of all effective cycles with a given homology class 03BB.

This space is a subvariety of the usual Chow variety and has the advantage
of not depending on the projective embedding of X. The main purpose of
this paper is to calculate the Euler characteristic of C03BB(X), when X admits
a linear action of an algebraic torus, for which there are only finitely many
irreducible invariant subvarieties. An important class of such varieties are
the projective toric varieties.
When X = P" and = d[PP] then

where p,d(Pn) is the Chow variety of effective cycles of dimension p and
degree d in Pn. Very little is known about Wp,d(X)’ In [LY87] H. B. Lawson
and S. S. Yau posed the problem of computing the Euler characteristic
~(03BB) of 03BB. They introduced a formal power series which satisfies, for
X = P", the following equality

This shows that the formal power series on the left is rational and solves
the problem of computing the Euler characteristic of p,d(Pn). They also
computed the case X = P" x Pm .
When we try to generalize the above series in order to compute X(W.) we

face some problems. If a basis for the integral homology group (modulo
torsion) of X is fixed, and we write it as a multiplicative group in the
canonical way, we arrive at a series where some of the powers could be

negative integers. In others words, we do not obtain a formal power series,
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and the concept of rationality is not defined a priori. In the author’s thesis
[Eli92] an "ad hoc" definition of rationality was given and it was proved
that for any smooth projective toric variety the corresponding series is

rational. In this paper we follow an intrinsic formulation suggested by E.
Bifet [Bif92] in order to reinterpret the results in [Eli92] and prove them
for any projective algebraic variety with a finite number of invariant

subvarieties under an algebraic torus action. The definition of the monoid
C, rationality and Lemma 1.2 are taken from him.
The main results can be stated in the following way. Let C be the monoid

of homology classes of effective p-cycles, and let Z[[C]] be the ring of
Z-valued functions (with respect to the convolution product) over C.
Denote by Z[C] the ring of functions with finite support on C. We say that
an element of Z[[C]] is rational if it is the quotient of two elements in
Z[C]. We define the Euler series of X by

This generalizes the series in Eq. (1). Let X be a projective algebraic variety
and Vl, ... , VN be its p-dimensional invariant irreducible subvarieties under
the action of the algebraic torus. Denote by e[Vi] E Z[C] the characteristic
function of the set {[Vi]}. Theorem 2.1 says,

If X is a smooth projective toric variety we define CT to be the monoid of
equivariant cohomology classes of invariant effective p-cycles. Denote by
Z[[CT]] and by Z[CT] the ring of functions and the ring of functions with
finite support on CT respectively. An element of Z[[CT]] is rational if it is the
quotient of two elements of Z[CT]. In section three the equivariant Euler series
ET is defined and it is proved in Theorem 3.4 that ETp is rational. In fact an
explicit formula for ET is obtained. Furthermore, a ring homomorphism

is defined and we recover formula (3) from the following equality
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1. The Euler series

In [LY87] B. Lawson and S. S. Yau introduced a series associated to the
Chow monoid of a projective variety that becomes a formal power series
when a basis for homology is fixed. They proved it is a rational function for
the cases of P" and P" x P’". In this section we define a more general series
and state the problem of its rationality in intrinsic terms for any projective
algebraic variety. We follow an approach suggested by E. Bifet [Bif92]. The
definition of the monoid C, rationality and Lemma 1.2 are taken from him.
We start with some basic definitions and some of their properties.
Throughout this section any projective algebraic variety X comes with a

fixed embedding X 4 P". An effective p-cycle c on X is a finite (formal) sum
c = E ns YS where each ns is a positive integer and each Vs is an irreducible
p-dimensional subvariety of X. From now on, we shall use the term cycle
for effective cycle. For any projective algebraic variety X i P" we denote
by p,d(X) the Chow variety of X of all cycles of dimension p and degree
d in P" with support on X. By convention, we write p,0(X) = {}. Lest À
be an element in H2p(X, Z) and denote by 03BB(X) the space of all cycles on
X whose homology class is 03BB. Note that 03BB(X) is contained in p,d(X),
where j*03BB = d[Pp].

LEMMA 1.1. Let 03BB be an element of H2p(X, Z), then 03BB(X) is a projective
algebraic variety.

Proof. Since f6’p,d(X) is a projective variety (see [Sam55], [Cv37]) we can
write p,d(X) = UM 1 ip,d(X), where ip,d(X) are its irreducible compo-
nents. Suppose 03BB(X) n (X) ~ 0. Any two cycles in  are algebrai-
cally equivalent, hence they represent the same element in homology.
Therefore  for some À. Consequently 03BB(X)= u =1 ijp,d(X),
where 03BB(X) n ijp,d(X) ~ QS for j = 1,..., l. D

For an effective p-cycle c = 03A3niVi, we denote by [c] its homology class
in H2p(X, Z). Now, let C be the monoid of homology classes of effective
p-cycles in H 2P(X, Z), and let Z[[C]] be the set of all integer valued
functions on C. We shall write the elements of Z[[C]] as

The following lemma allows us to prove that Z[[C]] is a ring,

LEMMA 1.2. Let C be the monoid of homology classes of effective p-cycles
on X. Then
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has finite fibers.
Proof. If X = P" the result is obvious since C is isomorphic to N. Let

be the homomorphism induced by the embedding X à P". Denote by
C’ ~ N the monoid of homology classes of p-cycles on P". It follows from
the proof of Lemma 1.1 that

has finite fibers. Finally, the lemma follows from the commutative diagram
below

Directly from this Lemma we obtain:

PROPOSITION 1.3. Let C and Z[[C]] be defined as above. Then Z[[C]] is a
ring under the convolution product, i.e.

We are ready for the following definition.

DEFINITION 1.4. Let X be a projective algebraic variety. The Euler series of
X, in dimension p, is the element

where WÀ(X) is the space of all effective cycles on X with homology class À,
and X(rc¡(X» is the Euler characteristic of rc¡.

By convention, if C03BB is the empty set then its Euler characteristic is zero.
Let Z[C] be the monoid-ring of C over Z. This ring consists of all elements
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of Z[[C]] with finite support. Observe that the multiplicative identity is the
function which is 1 on the class 0 E C c H2p(X, Z) and 0 elsewhere. We arrive
at the following definition,

DEFINITION 1.5. An element of Z[[C]] is rational if it is the quotient of two
elements of Z[C].

REMARK 1.6. Denote by H the homology group H2p(X, Z) together with a
fixed basis A. Consider H as a multiplicative group in the standard way and
suppose that C is isomorphic to the monoid Nk where N is the natural numbers
and k is a positive integer. Then it is easy to see that Z[[C]] is isomorphic to
the ring of formal power series in k variables. Therefore Z[C] is the ring of
polynomials in k variables and the last definition just says when a formal
power series is a rational function.

We are interested in the following problem.

PROBLEM. When is the Euler séries rational in the sense of the last

definition?

Let X be a path-connected projective algebraic variety. We know that, for
any basis, the homology group H = Ho(X, Z) is isomorphic to the integers Z,
and C to the monoid of natural numbers N. Let us consider H as a

multiplicative group. Then Z[[C]] is isomorphic to the ring of formal power
series in the variable t. We obtain directly from the computation in [Mac62]
that

The present article, in particular, recovers the results for both cases X = Pn and
X = Pn x Pm which were worked out in [LY87].

2. Varieties with a torus action

Throughout this section X is a projective algebraic variety, on which an
algebraic torus T acts linearly having only a finite number of invariant
irreducible subvarieties of dimension p. In particular, we will see that the
result is true for any projective toric variety. Let us denote by H the
homology group H2p(X, Z).
The action of T on X induces an action on the Chow variety Ctp,d(X).

Let À be an element in H and denote by WÂ’ the fixed point set of c03BB(X)
under the action of T. Then its Euler characteristic ~(CT03BB) is equal to the
number of invariant subvarieties of X with homology class 03BB. We have
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where the first equality is just the definition of Ep and the last one is proved
in [LY87]. The following theorem tells us that Ep is rational.

THEOREM 2.1. Let Ep be the Euler series of X. Denote by Vl, ... , VN the
p-dimensional invariant irreducible subvarities of X. Let e[Vi] ~ Z[C] be the
characteristic function of the subset {[Vi]} of C. Then

Proof. For each Vi define £ in Z[[C]] by

It is easy to see from Eqs. (4) and (6) that Ep can be written as

The theorem follows because of the equality

Observe that if we fix a basis for H modulo torsion and consider H

multiplicatively as in Remark 1.6, then the elements of Z[C] can be
identified with Laurent polynomials. Under this identification any rational
element of Z[[C]] is a rational function.
The next lemma tells us that the result is true for any projective toric

variety.

LEMMA 2.2. Let X be a projective (perhaps singular) toric variety. Then
any irreducible subvariety V of X which is invariant under the torus action
is the closure of an orbit. Therefore, any invariant cycle has the form

where each ni is a nonnegative integer and each mi is the closure of the
orbit Oi.

Proof. The fan à associated to X is finite because X is compact. Hence
there is a finite number of cones, therefore a finite number of orbits. Let V

be an invariant irreducible subvariety of X. We can express V as the closure
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of the union of orbits. Since there is a finite number of them we must have

that

where i9-, is the closure of an orbit. Finally since V is irreducible, there must
be io such that V = (9i. - D

3. Smooth toric varieties

In this section we give an equivariant version of the Euler series and find
a relation between the equivariant and non-equivariant Euler series. The
use of equivariant cohomology allows us to analize the Euler series from a
geometrical point of view. This approach might help to understand other
cases. Throughout this section, unless otherwise stated, X is a smooth
projective toric variety of dimension n, and we use cohomology instead of
homology by applying Poincaré duality.

Let H and HT be the cohomology group H2(n-p) (X, Z) and the

equivariant cohomology group H2(n-p)T(X, Z) of X, respectively. Denote by
à the fan associated with X and by O1,... ,19N the p-codimensional orbits
closures. Let CtI and W. be the spaces of all p-dimensional effective

invariant cycles and p-dimensional effective cycles on X with cohomology
class À. It is proved in [LY87] that

The next lemma is crucial for the following results,

LEMMA 3.1. Let À be an element in H. Then T03BB is a finite set.
Proof. By Lemma 2.2 we know that any invariant effective cycle c in CT03BB

has the form c = 03A3Ni=103B2iOi with Pi EN. Hence, we obtain that CT03BB has a
countable number of elements. We know that le, is a projective algebraic
variety (see Lemma 1.1), and since CtI is Zariski closed in W., we have that
CT03BB is a finite set. D

Our next step is to define the equivariant Euler series for X.

Let i9’ be an irreducible invariant cycle in a smooth toric variety (Lemma
2.2). Since i9- c X is smooth, we have an equivariant Thom-Gysin sequence

and we define [’9]T as the image of 1 under
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Let {D1,...,DK} be the set of T invariant divisors on X. To each Di we
associate the variable ti in the polynomial ring Z[t1,...,tK]. Let Y be the
ideal generated by the (square free) monomials {ti1, ... til|Di1 + ... + Dil~0394}.
It is proved in [BDP90] that

The arguments given there also prove the following.

PROPOSITION 3.2. For any T-orbit (0 in a smooth projective toric variety
X, one has

Furthermore if O and O’ are distinct orbits, then

It is natural to define the cohomology class for any effective invariant cycle
V = 03A3miOi as [V]T = 03A3imi[Oi]T where Oi ~ Oj if i ~ j. In a similar form
as we define C, Z[[C]] and Z[C], we denote by CT the monoid of
equivariant cohomology classes of invariant effective cycles of dimension p,
by Z[[CT]] the set of functions on CT, and by Z[CT] the set of functions
with finite support on CT. Since CT ~ NN where N is the number of orbits
of dimension p, we obtain that

has finite fibers. Observe that if 03C0: HT ~ H denotes the standard surjection,
we obtain from Lemma 3.1 that

is onto with finite fibers. We arrive at the following definition:

DEFINITION 3.3. Let X be a smooth projective toric variety and let
HT(X) be the equivariant cohomology of X. Let us denote by W4T the space
of all invariant effective cycles on X whose equivariant cohomology class
is 03BE. The equivariant Euler séries of X is the element
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where the sum is over CT.

Let us define the ring homomorphism

by

where 03BE = 1. app. This is well defined since 7r has finite fibers.

THEOREM 3.4. Let X be a smooth projective toric variety. Denote by Ep,
Ep and J the Euler series, the equivariant Euler series and the ring
homomorphism defined above. Then J(E’) = Ep. Furthermore,

and therefore

Proof. We define for each orbit (9j an element fiT ~ Z[[CT]] by

and denote by e, the characteristic function of {03BE}. It follows from both
Definition (3.3) and Eq. (10) that

and

Therefore the equivariant Euler series is rational and
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For each % we defined (see Eq. 6) a function £ in Z[[C]] by

And we know from Theorem 2.1 that

Now, the result follows since n(1’9i]T) = [Oi] and J is a ring homomor-
phism satisfying

4. Some examples

(I) The projective space P"

Let X = P" be the complex projective space of dimension n. Let {e1,..., en}
be the standard basis for R". Consider A = (ei , ... , en+1} a set of generators
of the fan A where en+1 = - En=1 ei. We have the following equality

where 7 is the id,eal generated by

and

where e*i~(Rn)* is the element dual to ei .
However (ii) says that ti ~ tj for.all i and j. Therefore

Consequently, any two cones of dimension n - p represent the same
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element in cohomology, and Theorem 3.4 implies that

(II) P" x Pi

Denote by X(0) the toric variety associated to the fan A, and recall that
X(A x 0394’) ~ X(0) x X(0’ ). Using the same notation as in Example I, we
have that a set of generators of 0 x A’ is given by

where en+m+1 = - 03A3ni=1ei, en+m+2 = - 03A3n+mi=n+1 ei and {e1,...,en+m} a

basis for Rn+m. Then

where 1 is the ideal generated by

and

From (ii) we obtain,

The number of cones of dimensions (n+ m) - p is equal to 03A3k+l=p
(n + 1 )(m + 1 ) (n + 1 )(m + 1 )

Denote by tk,l = tkn+m+1tln+m+2. Then
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(III) Blow up of P" at a point

The fan 0 associated to the blow up P" of the projective space at the
fixed point given by the cone R+e2+ ··· + R+en+1 is generated by
{e1,...,en+1,en+2} where en+2 = -e1. Denote by Di the 1-dimensional

cone R+ei and by si its class in cohomology where

and I is the ideal generated by

and

However (ii) is equivalent to

Note that a p-dimensional cone cannot contain both Dn+2 and D 1. The
reason is that Dn+2 is generated by - el and D 1 by el, but by definition, a
cone does not contain a subspace of dimension greater than 0. We would
like to find a basis for H*(Pn) and write any monomial of degree p in terms
of it. Consider the monomial si1 ··· Sip. There are three possible situations:

(1) Si) is different from both Sn+2 and s" + 1. In this situation we have from
(ii) that si1 ··· sip = spn+1.

(2) sn+2 is equal to Si) for some j = 1,..., p. Then from (ii) we obtain that
Si1 ··· sip = sp-1n+1sn+2.

(3) s1 is equal to Si) for some j = 1,..., p. Then from (ii) we obtain
si1 ··· sip = (sn+1 + sn+2)sp+1n+1 = spn+1 + sn+2sp-1n+1 which is thé sum of
(1) and (2).

We conclude that spn+1 and sn+2sp-1n+1 form a basis for H2p if p  n. If p = n
then spn+1 = 0 and the only generator is sn+2sp-1n+1. Let us call s" + 1 by t 1 and
sn+2sp-1n+1 by t2. The Euler series for P" is:
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(IV) Hirzebruch surfaces

A set of generators for the fan A that represents the Hirzebruch surface

X(0) is given by {e1,...,e4} with {e1, e2} the standard basis for R2, and
e3 = - el + ae2, and e4 = - e2. With the same notation as in the last
examples, we have

where 7 is generated by

and

from (ii) we have the following conditions for the ti’s in H*(X)

A basis for H* (X) is given by {{0}, t3, t4, t4t1} (see [Dan78], [Ful93]). The
Euler series for each dimension is:

(1) Dimension 0. There are four orbits (four cones of Dimension 2), and
all of them are equivalent in homology. From Theorem 3.4 we obtain

(2) Dimension 1. Again, there are four orbits (four cones of Dimension
1), and the relation among them, in homology, is given by 12. From
Theorem 3.4 we obtain

(3) Dimension 2. The only orbit is the torus itself so
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