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In this paper we introduce a notion of twisted coefficients M for a diagram of
spaces X, and define the cohomology groups H*(X, M). We prove the invariance
of this cohomology under weak homotopy equivalence of diagrams (Theorem 2.3,
Corollary 2.6), as well as a Whitehead Theorem for diagrams of spaces (Corollary
3.8). We also study induction and restriction of diagrams of spaces along a change
of indexing categories. We prove that the cohomology of the induced diagram is
isomorphic to the cohomology of the original diagram with restricted coefficients
(Corollary 3.4), and we relate the cohomology of a given diagram to that of its
restriction via a spectral sequence (Corollary 3.7). These results are of the form of
the Shapiro lemma in group cohomology (see e.g. [Bn, Ec, We]).

These results belong to the homotopy theory of diagrams of spaces, which has
recently been studied by various authors; cf. for example [D, DZ, DKI, DK2,
H]. However, our motivation for proving a Whitehead theorem and induction-
restriction theorems comes from equivariant topology. A space X with an action by
a (discrete) group G gives rise to the diagram X(-) of fixed-point spaces XH, for all
subgroups H ~ G. The Bredon cohomology of X, as defined in [Br], is isomorphic
to the cohomology of the diagram X(-). The Whitehead Theorem for diagrams of
spaces will be seen to imply an equivariant Whitehead Theorem, while induction
and restriction along a group homomorphism or along a suitable subcategory of
the orbit category explain, in a unified way, the relation of the cohomology of
fixed-point spaces and of orbit spaces to Bredon cohomology. These results on
equivariant topology are stated in a first, introductory section. Sections 2 and 3 are

* An earlier version of this paper appeared as preprint 686 (1991), Mathematical Institute, Uni-
versity of Utrecht.
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concemed with cohomology of diagrams, while Section 4 provides the proofs of
the results stated in Section 1. We wish to emphasize that some of the results in
Section 1 can also be proved in a more ad hoc way. However, our approach of using
diagrams of spaces provides a uniform treatment, and opens further possibilities by
considering other subcategories of the orbit category. In Section 5 we show, by way
of illustration, that our results on induction and restriction also relate to splitting
theorems for Bredon cohomology with coefficients in a Mackey functor. The proof
of our main technical result, the Invariance Theorem 2.3, has been deferred until
the last Section 6. There are two appendices, one providing background for the
relation between the homotopy of spaces, of simplical sets, and of small categories,
the other on cohomology of small categories.

Our methods also apply to Bredon homology and homology of diagrams. The
details for homology are completely analogous to those for cohomology, and we
have refrained from spelling them out.

1. Some results for G-spaces

The techniques used in this paper are most naturally explained in the context of
diagrams of spaces; i.e. (contravariant) functors from some small category into
a category of spaces. Our motivation, however, comes from the study of spaces
with a group action. Indeed, if a group G acts on a space X, then, up to (weak)
G-homotopy equivalence, X can be recovered from a diagram of spaces defined
over the orbit category O((G) (the category of all transitive G-sets and all G-maps
between them); for details, see e.g. [El] or §4 below. The purpose of this section is
to outline some of the consequences of our results for the special case of G-spaces.
Full proofs of these consequences will be given in §4 below.

For a G-space X, Bredon introduced the cohomology of X with coefficients
in a functor M : O(G) OP ~ Ab with values in the category Ab of abelian groups
(briefly, M is said to be an O((G)-abelian group); see [B, Br, tD2]. Such a coefficient
system M depends on the orbit category O(G) but not on X, and should be regarded
as constant, from the point of view of G-spaces. There is also a more general notion
of local or twisted coefficient system M on a G-space X, introduced in [MS] and
explicitly described in §4 below. Roughly speaking, such a local coefficient system
M is a contravariant abelian group-valued functor defined on a category built up
from O(G) together with the fundamental groupoids of all the fixed-point spaces
XH. (This is unrelated to the "local" coefficient systems occurring in Bredon’s
book.) Similar coefficients have been studied by Moller in [M0]. For such a system
M, we introduced in [MS] cohomology groups Hâ(X, M), which should be
viewed as a twisted version of Bredon cohomology. (The definition of these groups
is reviewed in §4 below.) Recall that, for G-spaces X and Y, a G-map f : Y - X
is said to be a weak G-homotopy equivalence if, for each subgroup H C G, the
map f induces an ordinary weak homotopy equivalence YH -+ XH between fixed
point sets. In case X and Y are (of the G-homotopy type of) G - CW -complexes,
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such a weak G-homotopy equivalence is automatically a G-homotopy equivalence.
As a consequence of our results for diagrams of spaces, we obtain the following
theorem. (See [MS] or §4 for the definition of the fundamental groupoid TIG(X)
of a G-space X.)

THEOREM 1.1 (Equivariant Whitehead Theorem). A G-map f : Y - X is a
weak G-homotopy equivalence iff it induces an equivalence of fundamental
groupoids 03A0G(Y) ~ TIG(X), as well as an isomorphism
Hâ(X, M) -=+ -ff’ (Y, f* M)for every local system of coefficients M on X.

The "only if" - part of this theorem is proved in [MS]. The key technical result
of this paper (Theorem 2.3) is a version of this "only if"-part for diagrams of
categories or spaces; it will be applied in our general treatment of induction and
restriction in §3 below. There we will consider general constructions on diagrams
of spaces X and coefficient systems M, and derive an isomorphism having the
form of a "Shapiro lemma",

H*(induced(X), M) ~ H*(X, restricted(M)), (1)

as well as a spectral sequence of the form

E2’q = HP(X, Rq(induce)(M)) ~ Hp+q(restricted(X), M), (2)

where Rq (induce) is the q-th derived functor of the induction functor on coeffi-
cients.

To illustrate the meaning of (1) and (2), we will now give their "translations"
in various special cases related to the context of spaces with group actions.

The simplest case is where the induction and restriction are along a homomor-
phism of groups p : G - AB For such a ~ and a G - CW-complex X, the induced
K-space will be shown to be K-homotopy equivalent to K G X. Any twisted
coefficient system M on the K-space K x G X restricts in a natural way to a similar
such system ~*(M) on the G-space X, essentially by pullback along the natural
map X - K X G X. (When M is constant, i.e., M : O(K) op ~ Ab, then ç* M is
just the composition of M with the functor O(G) ~ 0(-li7) induced by ~.) In this
case, the isomorphism (1) takes the following form:

PROPOSITION 1.2. For any G - CW-complex X and any twisted system of
coefficients M on K X G X, there is a natural isomorphism

For example, if H is a normal subgroup of G, then, for the quotient map
G ~ G / H, this proposition gives an isomorphism
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When H = G this isomorphism (3) reduces to an isomorphism

where con(A) : O(G) op ~ Ab is the constant functor with value the abelian
group A. This isomorphism (4) is known, and can be seen as a consequence of the
representability of Bredon cohomology with constant coefficients; see [B], [El].

For a group homomorphism cp : G ~ K, there is also an evident restriction
functor from K-spaces to G-spaces, and an induction functor
CP* : (O(G)-abelian groups) ~ (0(A")-abelian groups), defined as follows. For
M : O(G) op ~ Ab and any object KIL of O(K),

where the cosets G/Hi range over a decomposition of the G-set A"/Z into orbits.
This functor Cp* is exact, and the spectral sequence (2) collapses to an isomorphism
in this case. More generally, for a K-space Y the functor ~* can be lifted to twisted
coefficients, and we will prove:

PROPOSITION 1.3. Let cp : G ~ K be a group homomorphism, and let Y be a
K-space. For any twisted system of coefficients AI on y as a G-space, there is a
canonical isomorphism

Besides induction and restriction along a group homomorphism, there are many
other ways of inducing and restricting. For example, for the functor 1 ~ O(G) on
the one-point category 1 with as value an orbit G/K, our general induction and
restriction operations take the following form: the restriction of a G-space X is the
fixed-point set XK, and for any abelian group A the induced O(G)-abelian group
ind(A) is given by ind(A)(G/H) = Hom(Z[HomG(G/K, G/H)], A). In this case
the spectral sequence (2) collapses to an isomorphism

This shows that the Bredon cohomology groups "contain" the cohomology groups
of all the fixed-point sets in X. The same holds for twisted coefficients. Indeed, in
§4 we will show that if one replaces the functor 1 ~ O(G) by a suitable inclusion
of the fundamental groupoid of XK into the "equivariant" fundamental groupoid
RG(X) (defined in §4 below), one obtains the following result:

PROPOSITION 1.4. Let X be a G-space. For any subgroup K Ç G and any
twisted system of coefficients A on the fixed-point space XK, there is a natural
isomorphism



253

We will also give an explicit formula for this system ind(A) in §4 below. (Cf.
the proof of Proposition 1.4 there.)

Proposition 1.4 is a key ingredient of the proof of the "if" part of the equivariant
Whitehead Theorem (Theorem 1.1). Indeed, from Proposition 1.4 it follows that if
a G-map f : Y - X induces isomorphisms in (our) twisted Bredon cohomology,
then for any subgroup H C G the map fH : YH --+ X H between fixed-point
sets induces isomorphisms in (ordinary) twisted cohomology. The "if"-part of
Theorem 1.1 will then be seen to follow easily from the classical (non-equivariant)
Whitehead theorem; cf. the proof of Corollary 3.8 below.

For a final example of induction/restriction in this section, we also write G for
the category with one object and elements of G as morphisms, and consider the
inclusion G - O((G) sending the one object to the orbit G/1. A G-space X can be
considered as a diagram of spaces indexed by the category G, and the cohomology
of this diagram X with coefficients in a G-module A is simply Htw ( EG G X, A),
with twisting arising from the projection EG x G X - BG. We will show in
Section 4 that, when the action by G on X is free, the isomorphism (1) takes the
following form:

PROPOSITION 1.5. For any free G-space X and any O(G) -abelian group M
there is a natural isomorphism

This shows that for free G-spaces, Bredon cohomology reduces to (twisted)
Borel cohomology.

2. Twisted cohomology for diagrams of spaces

Let B be a fixed small category. A diagram of spaces, indexed by B, is a functor X :
B op ~ Top, where Top is the category of topological spaces. The purpose of this
section is to define the cohomology of such a diagram with "local" coefficients, and
state the invariance of this cohomology under suitable weak homotopy equivalences
between diagrams (Corollary 2.6 below). This Invariance Theorem, and analogous
invariance theorems for simplicial sets and for categories, play a central role in this
paper. However, the proofs of these results are somewhat technical, and will only
be given in Section 6 below.

We will make repeated use of the fact that the categories Cat, Sset and Top, of
small categories, simplicial sets and topological spaces, respectively, are all equiv-
alent from a homotopical point of view. Indeed, one can pass freely between these
categories, using functorial constructions as displayed in the following diagram:
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The functors in this diagram are all standard, and their precise definitions will
be recalled in Appendix A at the end of this paper. What is important here is that
they are mutually inverse up to weak homotopy equivalence (as proved in the
appendix).

The construction of the category f0 Z from any simplicial set Z (the upper left
functor in (1)) is a special case of the so-called Grothendieck construction, at least
if we view sets as "discrete" categories. This construction assembles a diagram of
categories F : 3 OP - Cat into one large category, denoted

The objects of this category fjl F are pairs (B.x), where B is an object of B and
x is an object of the category F(B). An arrow (B, x) ~ (B’, x’) between two
such objects of £ F is a pair (a. u), where a : B - B’ is an arrow in B while
u : x - F(03B1)(x’) is an arrow in F(B). Composition of such arrows is defined in
the evident way.

We will now use this Grothendieck construction to define twisted cohomology
of diagrams of spaces.

Recall first that for an arbitrary (small) category C , and for any contravariant
abelian group-valued functor M on C,

one can define the cohomology groups Hn(C,M) for any integer n &#x3E; 0 (see
Appendix B). In general, these cohomology groups are invariant under a weak
homotopy equivalence of categories C’ ~ C only in case the functor M is
morphism-inverting (cf. Appendix B (5)). Our main Invariance Theorem 2.3 states
that they are also invariant under weaker conditions on M, in the special case where
the map C - C is obtained by "integrating" (as in the Grothendieck construction)
a pointwise weak equivalence.

To express the conditions on the coefficients M, let F : B OP ~ Cat be a diagram
of categories as above. For any small category C, the fundamental groupoid II (C)
of C is obtained by formally inverting all the arrows in C. (This groupoid can also be
constructed as the edge-path groupoid of the simplicial set NC ; cf. [GZ, pp 10, 39].
It comes equipped with a functor C - TI( C). By applying this construction to each
of the categories F(B) in our diagram F, one obtains a diagram of groupoids 03A0(F)
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and a natural transformation of diagram s F - 03A0(F). By integration (Grothendieck
construction) one next obtains a functor f3 F ~ ~B fl(F) . We will call fli II(F)
the fundamental groupoid of the diagram F, and denote it

It should be emphasized that this category HIIF is not itself a groupoid, but an
integrated diagram of groupoids, or (in Grothendieck’s language) a fibered groupoid
over the base category B (fibré en groupoide).
We can now define local coefficients:

DEFINITION 2.1. A local (or twisted) system of coefficients on a diagram
F : B OP ~ Cat of categories is a functor M : (~B F) op ~ Ab which factors, up to
natural isomorphism, through the fundamental groupoid of F,

The cohomology of F with respect to such a system of coefficients M is defined
to be the cohomology of the category fa F:

DEFINITION 2.2. A natural transformation v : G ~ F, between two diagrams
of categories F and G : B OP ~ Cat, is said to be a weak equivalence if, for any
object B E B, the functor v(B) : G(B) ~ F( B ) is a weak homotopy equivalence
between categories (as defined in Appendix A).

A natural transformation v : G - F induces, for any local system M on F, an
evident local system v*(F) on G.

THEOREM 2.3 (Invariance Theorem). A weak equivalence v : G ~ F between
diagrams of categories induces a natural isomorphism

for any local system of coefficients M on F.

REMARK 2.4. From a diagram of categories F : B °P ~ Cat, one obtains a dia-
gram of spaces B o F : IB °p ~ Top, by pointwise applying the classifying space
functor B of (2.1). It is well-known that the classifying space B(~B F) of the
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Grothendieck construction is a model for the homotopy colimit of this diagram of
spaces. (An equivalent statement for simplicial sets is proved in [T].) In particular,
a weak equivalence v as in the theorem induces a weak equivalence of categories
~B G ~ f3 F. It follows from Appendix B (5) that v induces isomorphisms in coho-
mology for any morphism-inverting functor M : (~B F) °p ~ Ab. We emphasize
that the isomorphism in Theorem 2.3 is much more general, since a local coefficient
system M on the diagram F need not at all be morphism-inverting on the category
fa F. (For example, any functor A : fiS op ~ Ab yields, by composition, a local
system (~B F) op ~ E OP ~ Ab.) On the other hand, Theorem 2.3 need not hold
for an arbitrary coefficient system M : f3 F OP --+ Ab. Therefore we reserve the
notation H*(F, M) (as opposed to H*(~B F, M ) ) for local coefficients.

Using the functors in diagram (1), and the fact that they are mutually weakly
homotopy inverse, Theorem 2.3 immediately gives similar invariance theorems
for diagrams of simplicial sets and for diagrams of spaces. We now state these
explicitly.

Let Z be a diagram of simplicial sets, i.e., a functor Z : fiS op - Sset. Using the
functor f0394 : S set ~ Cat of (1), one obtains a diagram of categories
fo Z : E OP ~ Cat. We define the fundamental groupoid of Z, in terms of the
fundamental groupoid of a diagram of categories just considered, as

A local system of coefficients on Z is then (by definition) a local system of coeffi-
cients on the diagram of categories ~0394 Z, and we will denote the associated coho-
mology groups by H*(Z, M). (So by definition, H*(Z, M) = H*(~0394 Z, M) =
H*(~B~0394Z,M).
A natural transformation ~ : Z ~ W between two diagrams of simplicial sets

is said to be a weak equivalence if, for any object B E fiS, the map
~(B) : Z(B) ~ W(B) is a weak equivalence of simplicial sets. As explained
in Appendix A, this is equivalent to the condition that ~0394 ~ : ~0394 Z ~ ~0394 W is
a weak equivalence between diagrams of categories. Thus from Theorem 2.3 we
obtain the following corollary.

COROLLARY 2.5. A weak equivalence ~:Z ~ W between diagrams of simpli-
cial sets induces an isomorphism

for any local coefficient system M on W.

In a similar fashion, one can use the functors in (1) to derive from Theorem 2.3
an invariance theorem for diagrams of spaces. Explicitly, from a diagram of spaces
X : B OP ~ Top, one obtains a diagram AX : B OP - Cat by composing X with
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the functor A : Top ~ Cat in (1). A local system of coefficients on X is then,
by definition, such a system on this diagram of categories AX, as defined in 2.1
(see also 2.7 below). For such a local system M, we define the cohomology groups
H*(X, M) as H*(X, M) = H*(0394X,M). Now call a natural transformation
f : X - Y between two diagrams of spaces a weak equivalence if for each object
B E B, the map f(B) : X(B) ~ Y(B) is a weak homotopy equivalence of
topological spaces in the usual sense. By Appendix A, this is equivalent to the
condition that 0394f : 0394X ~ AY is a weak equivalence of diagrams of categories.
Thus from 2.3 one obtains:

COROLLARY 2.6. A weak equivalence f : X ~ Y between diagrams of spaces
induces an isomorphism

for any local coefficient system M on Y.

REMARK 2.7. For a diagram of simplicial sets Z, we defined local coefficients on
Z using the category f Z. But note that, for any simplicial set S and its fundamental
groupoid H(S), there is a natural equivalence of groupoids 03A0(~S) ~ H(S).
(One way to see this is to use the weak homotopy equivalence p : N(~S) ~
,S of Appendix A). Consequently, for a diagram Z as above, there is a natural
equivalence of diagrams of groupoids 03A0(~0394Z) ~ IIG. Thus local coefficient on
Z can equivalently be described as abelian group valued contravariant functors on
~B(03A0Z), rather than on the (equivalent but larger) category ~B 03A0(~0394 Z).
A similar remark applies to a diagram of spaces X, to the effect that local

coefficients on X are essentially abelian group-valued functors on fJJB IIX, where
IIX is the diagram of groupoids on B given by 03A0X(B) = 03A0(X(B)) = the
fundamental groupoidof X(B).
REMARK 2.8. Consider the case where the index category B is the one-object
category, so that a diagram X of spaces on B is just a single space. A local
system on X is then a twisted system of coefficients in the usual sense. The
weak homotopy equivalence B0394X ~ X of Appendix A, together with the fact
that II*(C, A) = H*tw(BC, A) for any category C and any local system A on
C (Appendix B (4)), show that our notion of cohomology with local coefficients
H*(X, A) agrees with the usual one in the case where B is the one-point category.
Corollary 2.6 reduces in this special case to the familiar invariance of twisted
cohomology under weak homotopy equivalence of spaces.

3. Induction and restriction for diagrams

In this section we will describe the general operations of induction and restriction
for diagrams of categories and of spaces. The main results of this section, Theorems
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3.2 and 3.5 (together with their corollaries 3.4, 3.7), explain how these operations
relate to twisted cohomology. We will also derive a general Whitehead Theorem
for diagrams of spaces (Corollary 3.8). The Invariance Theorem 2.3, together with
the analogous statements 2.5 and 2.6, will be seen to play an essential role.
Let (p C be a functor between small categories. Recall that a system of

abelian coefficients on C, i.e., a functor M : C op ~ Ab, induces a similar system
cp* M on D, simply by composition (so ~*(M)(D) = M(~D), for any object
D E D). In the other direction, from a functor B : D op ~ Ab one can construct a
functor ~*(N) : C OP ~ Ab, by defining, for each object C E C,

Here, for a fixed object C, ~/C is the "comma-category" with as objects the pairs
(D, a : ~(D) ~ C) and as arrows (D, a) - (D’, a’) those arrows 03B2 : D ~ D’
in D for which 03B1’ o ~(03B2) = a in C. Furthermore, 03C9C : p /C - D is the "forgetful"
functor ( D, a ) - D.

There is a similar dual comma-category C/~, with as objects the pairs
( D, a : C - ~(D)), and a similar forgetful functor which we denote again by
03C9C : C /p - D. It is this latter comma category which we use to define simi-
lar operations for diagrams of categories and of spaces. Specifically, the functor
ç : D - C yields for a diagram of categories F : C OP ~ Cat, indexed by C,
an evident diagram ~*(F) indexed by D, by composition with p (so
~*(F)(D) = F(~D)). In the other direction, we define, from a diagram
G ID OP ~ Cat, a new diagram cp! (G) : C op ---+ Cat, by setting, for each object
C ~ C,

Recall here that the integral sign refers to the Grothendieck construction, described
in Section 2. For a morphism a : C’ ~ C in C, there is an evident functor
a* : C/~ ~ C’/~ defined by composition, for which oc, o 03B1* = 03C9C. Thus such
an 03B1 induces a functor CP!(G)(Q) : ~!(G)(C) ~ ~!(G)(C’), showing that pj(G)
is indeed a contravariant functor on C.

For diagrams of spaces we define similar functors ~* and cp!, except that we use
homotopy colimits instead of the Grothendieck construction. Thus, for a diagram
of spaces X : C OP ~ Top, we denote by ~*(X) the diagram D op ~ Top obtained
by composition with ~. And for a diagram of spaces Y : D op ~ Top, we construct
a diagram ~!(Y) : C op ~ Top, by defining 

REMARK 3.1. These operations cp* and ~! respect the passage between cate-
gories and spaces in diagram (2.1). More explicitly, for any diagrams of


