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0. Introduction

Let K be a field of characteristic zero complete for a non-archimedean absolute
value, let V be the associated valuation ring and k its residue field of characteristic
p. In this article we prove (cf. Section 4) that an overconvergent isocrystal of rank
one defined on an open subscheme X of Pk has a Frobenius structure (i.e. it is an
overconvergent F-isocrystal) when it has exponents (4.4.4) in each residue class
of Z = P1kBX of the type zl(p-1 - 1), where s ~ N and z E Z ( i.e. in Zp n Q).

It is known [Ba-Ct] that in dimension one the notion of overconvergent isocrys-
tals can be translated into the notion of "convergence on the generic disk" for
classical p-adic differential equations. Using this point of view we are able to
prove the local existence of a Frobenius structure (Section 2) in each residue class
of Z = P1kBX. The problem of connecting the Frobenius structures in the different
residue classes is then solved in Section 3 using a method due to Dwork [Dw2].

1. Notation. Arithmetic properties of differential operators

Throughout this article K will denote a field of characteristic 0, complete under
a non-archimedean absolute value - 1; V denotes its valuation ring and M ~ V
the maximal ideal, we indicate by k the residue field of finite characteristic p,
which we suppose to be perfect. Moreover, the absolute value is normalized by
| p | = p-1.

In this paragraph we will deal with arithmetic properties of the coefficients
of a linear differential operator whose solutions converge on the generic disk of
D(0,1-).

1.1. Consider a first order differential operator L



78

where f (x) E K(x) has 0 as the only pole in D(0,1-). By Mittag-Leffler decom-
position we may write:

where ai E K and f+(x) E K(x) has no poles in D(0,1-).
1.2. We will say that (1.1.2) has the property of convergence on the generic disk of
(or converges on the generic disk of) D(0,1-) if its solution at the generic point t
converges in the whole open disk D(t,1-).
1.3. Let K[x] be the ring of polynomials in K in the indeterminate x. We consider
R C R’ two K-algebras which contain K[x] and are endowed with a derivative
d dx which extends â of K[x]. We indicate DR = R[d dx]. Every element of DR acts
on R’ and, of course, R. We will say that two elements L, L’ E DR are equivalent
over R’ if there exists M ~ R’  ( invertible elements of R’), such that

1.4. For an operator as in (1.1), under the hypothesis of convergence on the generic
disk of D(0,1-), we are interested in the arithmetic properties of the coefficients
of the singular part of f (x) at 0, i.e. in the notation (1.1.3): f (x) - f+(x).
We denote by O(D (0, 1-)) the K -algebra of the analytic functions on D(0,1-).

And O(D(0, 1-))[1 x] denotes the K-algebraof analytic functions on D(0,1-)B{0}
with meromorphic pole at 0. We then have

LEMMA 1.4.1 (cf. [Rol, Lemme 5.3]). Consider a differential operator L as in
(1.1):

which converges on the generic disk of D(0,1-). Then L is equivalent on
O(D(0,1-))[1 x] to L’ where

In particular L’ has the property of convergence at the generic disk of D (0,1-).
We then obtain

PROPOSITION 1.4.2. Consider

ai E K and suppose it has the property of convergence on the generic disk of
D(0,1-), then
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Proof. The first assertion is an easy consequence of Dwork-Frobenius theorem
[Ch1, 4.8.1]. For the second, see for example [Ro1, Lemme 5.4]. Q.E.D.

OBSERVATION 1.4.3. Consider L as in the previous proposition, then also

has the property of convergence on the generic disk of D (0, 1 -).
Proof By 1.4.2, a, ~ Zp. We have that (x - t)al converges in D(t, 1 -) [Ro2],

[Ch2]. Q.E.D.

1.5. We dénote by 7r the element which, in case, belongs to an opportune extension
of K such that 7rp-l = -p, hence 17rl | = p-(1/p-1). We now give a first estimate
result for the coefficients

PROPOSITION 1.5.1. Let

be a differential operator, with ai e li (an ~ 0), which has the property of
convergence on the generic disk qyj9(0,1"). Then |an|  l?rl. In particular if
n fl 1, mod p, then also

has the property of convergence on the generic disk of D(0, 1-).
Proof. One may consider the solution of L at the generic point t:

which has value 1 at t. We can also develop the Taylor series of the argument of
the exp in the neighborhood of t, using x = y + t

Now we can take the expansion of exp, we obtain a series:
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where

By hypothesis we know that (1.5.1.1) converges for 1 y  1. The degree of AN, as
polynomial in t , is exactly nN : the coefficient of the highest power is

The fact that t is the generic point and the fact that (1.5.1.1) converges for 1 y |  1
allow us to write

for each c  1. We deduce | an |  |03C0|.
If n 0 1 mod p, then one may consider:

and write the expansion at t of the solution (n  2)

Apply the previous method to (1.5.1.3). It turns out that the Taylor expansion at t
is

which is convergent for |y|  1: in fact |an n-1|  |03C0|. Finally L’ has the property
of convergence on the generic disk: in fact its solution at the generic point t is the
quotient of the solutions of (1.5.1.2) (i.e. (1.5.1.3)) and of L which converged in
D(t,1-). Q.E.D.

REMARK 1.5.1.4. Using the same methods, if in the statement of the previous
theorem the hypothesis of convergence on the generic disk of D(0,1-) had been
replaced by the hypothesis that the solution converges in the closed disk D(0,1+)
then the conclusion would be |an1  |03C0|.

For the case n =- 1, modp, we have a similar result under further assump-
tions.



81

PROPOSITION 1.5.2. Suppose that L is the linear differential operator

a e K, has the property of convergence on the generic disk of D(0,1-), then

Proof. Consider as usual the solution at the generic point t:

One may then consider x = y + t and the expansion of the argument of exp

By developing exp we have the series 03A3N1 ANyN with

As in the Proposition 1.5.1 one may then conclude that |a|  |03C0|. Consider now the
coefficient AN with N = ps for s E N, s =1 0,1. In this case Aps is a polynomial in
t given by monomials of degrees which range from p + ps to psp + ps = p2 S + ps.
Let us consider the coefficient in Aps of 1 tps+ps : it may be written as (up to sign)

where J* is the set of s-uples, (ij) e N* S such that i1 +... + is = ps but excluding
the case (p,..., p); 03B1(ij) e Z and it depends on (ij). We notice then that for each
1 e N: 

if 10- 0 mod p. We then have
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In particular, t being a generic element, we have:

for each c  1. We conclude that |a p|  |03C0|.

REMARK 1.5.3. The same proposition holds in the cas

r E N, r  2. In particular the argument now involves the monomial of degree prs
in place of that of degree ps.

REMARK 1.5.4. The previous results can be easily generalized to the case of
systems (i.e. when the ai e Mn(K), n ~ N): we will get information on the
eigenvalues of the associated matrices.

2. Convergence on the generic disk and overconvergent Frobenius

2.1. Consider now the following differential operator

ai e K. It may be seen as an operator in Px with its only singularity at x = 0. In
particular one may take, x,,., the coordinate at oo and re-write (2.1.1) by means of
this coordinate:

Then L has the property of convergence on the generic disk of D(0,1-) if and
only if it has the same property for the generic disk of Dx~ (0, 1 -). If this is the
case the fact that L has no singularities in Dxoo(O, 1-) allows us to conclude by
transfer [Dwl] that the solution of L at x~ = 0 converges in the whole open disk
Dx~(0,1-).
REMARK 2.1.3. Of course dividing (2.1.2) by x2~ does not change its properties,
and for the purposes of this paper, it is equivalent to refer to the operator L at o0
after division by x2~ i.e. to the operator

which we will once again indicate by L.
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2.2. By a Frobenius automorphism of the field K, with perfect residue field k, we
mean a continuous automorphism (hence isometric) ff : K - K which lifts the
usual Frobenius automorphism of k. In particular for each x E V we have

We will denote by QS the s-iterated map. Connected to u we have also an auto-
morphism of the field K(x). For f (x) E K(x) we will indicate fa(x) E K(x) the
element obtained applying u to the coefficients of f (x). On K(x) we then define
the map ~ : K(x) ~ K(x), as ~(f(x)) = f03C3(xp) (i.e. we substitute xP to x in
f03C3(x)) and we call it Frobenius. We may also iterate w

By continuity we extend the map ~ and its iterates to the field E of analytic
elements [Ch1] (the completion under the Gauss norm of K(x)), and also to the
ring of "functions" W = W(0, 1),

[Ch3], by setting for

In particular the Frobenius automorphism of W stabilizes Wo(0,1),

Note that E C W (cf. [Ch3, Section 5]).

DEFINITION 2.2.2. A linear differential operator of the type

ai ~ K has a strong overconvergent Frobenius structure if it is equivalent for a
certain s E N to

on the J( -algebra of the analytic functions on
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REMARK 2.2.5. To have a strong overconvergent Frobenius structure for a dif-
ferential operator L as in (2.2.3) is equivalent to the assertion that (cf. (2.1 ))

is equivalent to

on the ring of analytic functions on

REMARK 2.2.6. Suppose that a linear differential operator of the type

ai E K, has a strong overconvergent Frobenius structure. Then

also has a strong overconvergent Frobenius structure if and only if a = z ps-1 for
z e Z, s E N [Bel], [Ro2].

2.3. Using the definition and remarks in 2.2 we can prove

THEOREM 2.3.1. Consider the operator of the type

where ai E Il . Suppose it has the property of convergence on the generic disk of
D(0, 1-). Then L has an overconvergent strong Frobenius structure.

Proof. Using 2.1 and Remark 2.2.5 we can study the problem from the point
of view of the coordinate at infinity. In this setting, we have to prove that if an
operator of the type

has the property of convergence on the generic disk of D(0,1-) then it is equivalent
for a certain s E N to the differential operator

on the ring of analytic functions on {P E AK | |x(P)|  1 03BB}, for À E R, À  1.
Notice that ~s(L) (2.3.1.2) has the property of convergence on the generic disk of
D(0,1-) [Ch1, 4.7.2].
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Consider now a solution, g, of L as in (2.3.1.1): by the fact that such an
operator has no singularities on D(0,1-) and by the property of convergence on
the generic disk we conclude that g(x) E 0 (D (0, 1 -» (transfer principle [Dwl]).
But, actually, g(x) E WO(O,I) C W (2.2.1), [Chl, 4.3.7 and 5.1.7]. We then
obtain that L has a strong overconvergent Frobenius structure if and only if there
exists s e N such that the quotient

defines an analytic function on {P E A1K | |x(P)|  1 03BB} where À e R, À  1.

(The fact that (2.2.1.3) is invertible is then a consequence of the fact that it satisfies
a differential operator without singularities in f P E A1K | |x(P)|  1 03BB}).

Formally one has

on the other hand (h E N)

and if we choose such that

for i = 2,..., n, then g(X)ph converges in a closed disk D(0, 1 03BB’+), A’  1. In

particular g(x)ph belongs to E, the field of analytic elements. We then conclude
that g(x) e W is actually algebraic over E.
We now strictly follow the articles [Ch3] and [Ch4]. The fact that E[g(x)] C W

is a finite extension field of E implies that the Frobenius stabilizes E[g(x)], in
fact

[Ch3, Theorem 5.2]. We then apply [Ch3, Proposition 7.1] and argue that E[g(x)]
is a semisimple object in the abelian category, MC(E), whose objects are pairs
(M, ~) where M is a finite dimensional E-vector space and ~ is a connection i.e.
a K-linear map from Der(E) = E[d dx] to EndK(M).

Exactly as in ([Ch3], end of Sect. 7) we conclude that the sub-E-vector spaces
of E[g(x)] generated by the various ~h(g(x)), h e N
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are sub-objects of E[g(x)] in MC(E): hence they are in finite number (up to
isomorphism). There will exist h, h’ E N such that

i.e. there exists a E E* such that ~h(g(x)) = a~h’(g(x)). From the "faithful"
action of the Frobenius [Ch5, 10.1] we conclude that for s = h - h’| E N we have
[Ch4]

In particular one may notice that q(x) is an analytic element in D(0,1-) (it is a
quotient of two invertible elements of O(D(0, 1-))) and

To conclude the proof of the theorem one needs only prove the following
PROPOSITION 2.3.2. If q(x) E E is analytic in D(0, 1-) and

then q(x) is analytic in D(0, 1 03BB) with À E R and A  1.

Proof. By [Mo, Proposition 1], we know that, actually, q(x) is an analytic
function in the closed disk D(0,1+). We write

with bi E K. We may cancel in P(x) the bi’s such that

In fact, in this case, exp(-bi i+1 xi+1) is then analytic in D(0, r-) for some r &#x3E; 1,
and we can replace q(x) by

If, after this simplification, P(x) is zero, then

with c e K*, and |bi i+1|  |03C0| for each i, is convergent in D (0, 1 03BB’) with À’ E R and
03BB’  1. If after simplification P(x) is not zero, consider the term of highest degree
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bm. By the fact that the solution converges in the closed disk D(0,1+) we know
that |bm|  |03C0| (cf. 1.5.1.4). But our hypothesis about P(x) implies that

we conclude that m + 1 must be divisible by p. In [Rol, 10.8], Robba introduced
the following functions for each h e N

where belong to a spherically complete extension of K [Chl, 1.9.7] and

and such that fh(x) converges in D(0,1-). We may then write m = lph - 1 for a
l, h E N, (l, p) = 1. Consider 03B2 e K such that

and the function fh(03B2xl), h E N. This function converges in D(0, 1!3I-t): but
Ibml  |03C0| hence |03B2|  1 and

We may replace q(x) by q(x)fh(03B2xl) and get rid of the term bm of highest degree
of P(x). We apply this method by induction and we conclude that q(x) E E is
actually convergent in D(0,1 03BB) with À E R and À  1.

This concludes the proof of the Proposition 2.3.2 and, hence, of Theorem
2.3.1. Q.E.D.

REMARK 2.3.3. Recently it has been proved that the 03B3i’s, which appear in the
proof of the previous proposition, can be chosen to be algebraic over Q ([MA],
unpublished and partial answers to the problem have been given by B. Dwork and
D. Chinellato) .

3. Frobenius structure

In this paragraph we will connect Frobenius structures with respect to different local
coordinates: we will apply the results of this Section in Section 4. The problem in
the large is the following: consider a series f (x - a) where a e 03BDBM. One would
like to have information about the convergence set of the ratio
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where ~(f(x - a)) is the Frobenius transform of f(x - a), that is, ~(f(x - a)) =
JO" (xP - a03C3). The idea is to change the variable x - a to x and to study f(x) and
f03C3 (xp) = ~(f(x)). But the information that we then obtain from f03C3(xp) is related
to fol «x - a)P) not to f03C3(xp - ae). Elaborating an idea of Dwork (cf. [Dw2]), we
have

PROPOSITION 3.1. Consider a E VBM and suppose that the differential opera-
tor

satisfies the property of convergence on the generic disk of D(0, 1 -) ( which is the
same as that of D(a, 1 - ». Then there exists s E N such that

is equivalent to L on the ring of analytic functions on

for a 03BB ~ R, 03BB  1.
Proof. As usual we can study the problem at "oo" and must check whether

is equivalent to

on the analytic functions on {P E A1K | |x(P) - a |  â } for a À E R, À  1.

We denote the solution of (3.1.2) by u(x - a). Then by the hypothesis of
convergence on the generic disk, we conclude that u(x - a) e W°(a, 1) [Chl,
4.3.7, 5.1.7]. (The definition of Wo(a, 1) is analogous to that of Wo(0,1) in (2.2),
x is replaced by x - a [Chl].) We define the Frobenius action, cp, on W°(a, 1)
in the usual way: if v(x - a) e W°(a, 1) then cp(v(x - a)) = vO"(xP - a03C3). So
~s(u(x - a)) = uO"s (xPS - a03C3s) is a solution of (3.1.3). We must show that there
exists s E N such that

converges for {P e A1K | |x(P) - al  1 03BB} for a À E R, À  1.
First of all we change the variable x to x - a in (3.1.2), then obtaining
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The operator (3.1.4) satisfies the property of convergence on the generic disk. It
follows from Theorem 2.3.1 that there exists s E N such that

converges for Let us write

The first term on the right hand side is nothing but (3.1.5) after we have replaced x
by x - a. Hence it converges for {P E A1K | 11 x (P) - a|  1 03BB’} for some À’ e R,
AI  1. To prove the theorem we need to check the assertion of overconvergence
for the last term. To this end we introduce the function of two variables

We will exhibit the relationship between Z and Y in order to obtain convergence
for (3.1.7). We know that u03C3s(Y) satisfies the following differential operator

which has the property of convergence on the generic disk of D(0,1 ) (in the Y
coordinate) (cf. [Chl, 4.6.1]). We may expand (3.1.7) in the Taylor series:

where u03C3s(i)(Y) u03C3s(Y) is, by recurrence, a polynomial in Y of degree less than or equal to
(n - 2)1. By the hypothesis of convergence on the generic disk [Chl, 4.3.7], there
exists N E R, such that

for each l E N, where | - | is the Gauss norm i.e. the boundary norm [Chl, 2.4.7].
So, for each |Y|  r, r &#x3E; 1, by the fact that

is a polynomial of degree less than or equal to (n - 2)1, whose coefficients are
bounded by N, we obtain
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We deduce that x(Y, Z) converges for Z such that 1 Z |  1 rn-2 and 1 Y |  r. And

viceversa if 1 Z 1  À  1 then the series converges for |Y|  (03BB - 1 n-2 .
To conclude the proof it now suffices to set Y = xps - aO"s and Z = (x - a)pg -

xp g - aO"s and an easy calculation shows that there exists A e R, À  1, such that
if

4. Overconvergent F-crystals

The main result of this section is the following

THEOREM 4.1. Let X be an open k-subscheme of Pl. Then in the category of
overconvergentisocrystals

the objects, i. e. the overconvergent isocrystals, which have rank one and exponents
of the type sZ 1 for z E Z and s E N at each residue class are overconvergent
F-isocrystals.

The proof of this theorem will be given in 4.6.

4.2. Before going through the proof of the theorem we will recall some definitions
(mainly from [Be2]): we will restrict ourselves to giving them in our particular
setting (i.e dimension 1), even though they can be given in a general situation. We
will always refer to Berthelot’s notation.

Consider X, a k-open subscheme of P ) ; the projective k-line may be viewed
as a compactification of X. The open subscheme X will be of the type

where we may suppose that among the iii’s there is oo = am. Following
Berthelot’s notation we will indicate Zk = {a1,..., am}. We denote by 1v the
formal projective V-line, we then obtain the diagram

where the first map is an open immersion while the second represents P1k as a
closed subscheme of 1v. Of course the generic fiber of Ô) ( in Raynaud’s sense
[Ra]) is Pl .
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Let ai ,... , am-l be representatives in A K 1 of a1, ..., am-1: the ai’s will be
elements of V in distinct residue classes. We then consider for each A E (0,1) the
following affinoid subset of Pl :

They form a cofinal system in the set of strict neighborhood of ]X[pi v (the tube
of X in P1K) [Be2, 1.2.1], [Ba-Ct]. We have the following inclusion for each
03BB ~ (0,1)

Let E be a sheaf defined in some strict neighborhood V03BB, we may associate to it a
sheaf defined in PK as

It is then clear that if A2 &#x3E; 03BB1 and if E is a sheaf defined in VA, then

In particular one can take the structural sheaf of P1K, 0, and consider j~O. Of
course

(where Ov,, is the structural sheaf in va). The sheaf j~O is a sheaf of rings:
we may introduce the category of j~O-modules whose objects are sheaves in PK
which are j~O-modules (cf. [Be2, 2.1 ] for general statements). It is known that if
G is a coherent j t 0-module [Be2, 2.1.9], then there exists a strict neighborhood
VA and a coherent Ov À -module, î, such that

[Be2, 2.1.10]. We may also define [Be2, 2.2.2] a connection, V, (automatically
integrable: we are in dimension 1) relative to K on a coherent jto-module G
(we will then refer to (G, V) as a coherent connection j~O-module) as a K -linear
homomorphism

which satisfies the usual Leibnitz’s rule. Every coherent connection j~O-module
is also the image by j t of a coherent module endowed with a connection defined


