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Abstract. We study the infinitesimal action of sp(2n, R) on the degenerate principal series repre-
sentations of Sp(2n, R) associated with a maximal parabolic subgroup. We then deduce the module
structure and unitarity of these representations.
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1. Introduction

Bargmann’s calculation of the infinitesimal action of st(2, R) on the principal series
representations of SL(2, R) ([2]) is probably the most straightforward example in
the study of infinite dimensional representations of semisimple Lie groups. How-
ever his ideas have not been extended to more complicated groups until recently
when Howe and Tan ([8]) apply them to study some degenerate principal series
representations of O(p, q), U(p, q) and Sp(p, q). Bargmann’s ideas are also applica-
ble to the study of another degenerate series of U(n, n). This has been done in the
author’s dissertation ([11]). The calculations involved in these examples are ele-
mentary and the results show that the enveloping algebra transforms the K-types
according to some very simple scalar expressions involving the parameters of the
representation spaces. With this information the module structure and unitarity of
the representations become transparent. Moreover these calculations require no
special technology. It is therefore desirable to extend this technique as widely as
possible. In this paper, we shall use this method to study a degenerate series of
Sp(2n, R). The degenerate series of GL(n, R) and GL(n, C) will be studied in a
upcoming joint paper with R. Howe ([7]).
We shall study the following degenerate series representations of Sp(2n, R).

Let P be the maximal parabolic subgroup of Sp(2n, R) with a Levi decomposition
P = MN where
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For convenience, we shall denote the elements C Ô a y t J and 1§ b 1 ) in P
by ma and nb respectively. For each a E C, we let Xâ : P - CX be the characters
given by

We shall study the corresponding induced representations I (a). The representa-
tion spaces for I+ (a) are respectively

(ô is the modular function of P) and on which Sp(2n, R) acts by right translation,
i.e.

We shall briefly describe our methods. We first identify the representations
I+ (a) with some function spaces sae (X °). Let K EÉ U(n) be a maximal compact
subgroup of Sp(2n, R) and let t be its Lie algebra. Let sp(2n, R) = e E9 p be the
corresponding Cartan decomposition. For a K-type V,, of sa,:!: (XO), we shall
calculate explicitly the images of the K highest weight vectors in V, 0 pc under
the map v @ p 2013 p.v (p e pc, v e V03BC). With this information, we are able to
determine (1) the reducibility of I:!:(a), (2) the complementary series, (3) all the
irreducible constituents of I ( a) when it is reducible and determine which of them
are unitarizable, and (4) the socle series and the module diagrams of I:L (o,).

THEOREM 4.3. If n is even and - 2  Q  1, then I-- (03C3) is unitarizable.

The irreducible constituents and the socle series of I+ ( a) at the points of reducibil-
ity are described in Theorems 5.2, 5.4, 5.5 and 5.6. The module diagrams of 1+ (a)
for several typical cases are given in Fig. 6, 7, 12 and 13. These diagrams greatly
enhance our understanding of the general results.
We are hardly the first to study these representations and some of our results are

already in the literature. Kudla and Rallis have studied the degenerate series of the
metaplectic group in [10] in relation to local theta correspondence. These repre-
sentations are also among the examples studied by Johnson ([9]), Sahi ([12],[13])
and Zhang ([16]). Our methods are elementary and are considerably different from
all of the above. In particular both Sahi and Zhang use Jordan algebra techniques,
but our methods do not depend on the Jordan algebra structure associated to such
spaces. They are thus potentially more general. For instance, they are applicable to
the degenerate series of GL(n, R) and GL(n, C) (c.f. [7]).
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This paper is arranged as follows. In section 2, we shall identify each of these
representations with a function space SI,+ (X °) or SI,- (X °) . We then give an
explicit description for the highest weight vectors in the K-types of these modules.
In section 3, we shall determine how the enveloping algebra of sp(2n, C) transforms
these highest weight vectors in the K-types. In section 4, we discuss the reducibility
of I:: (03C3,) and determine the complementary series. Finally in section 5, we describe
the subquotients of I+ (a) and determine which of them are unitarizable. Module
diagrams for several typical cases are also given.

2. The modules sa,:!: (X °) and their K-types

In this section we shall first identify the representations I:: (03C3) with the function
spaces Sa,(X°) in which the action by the Lie algebra of Sp(2n, R) can be
explicitly described. We then decompose sa,:!:(xo) into a sum of K-types and
give an explicit description of a highest weight vector in each K-type. As Sp(2, R)
is just SL(2, R), we shall assume that n &#x3E; 2 throughout this paper.

Let M2n,n (R) be the space of all 2n x n real matrices. We consider the action
of Sp(2n, R) on M2n,n (R) given by

Let On and In be the n x n zero matrix and n x n identity matrix respectively. Let

x ° = On and let XI be the Sp(2n, R)-orbit of Xo in M2n,n (R). If we regard
zo as a map from Rn to R2n, then its range is totally isotropic with respect to the
standard symplectic form defining Sp(2n, R). Hence each element of XI has the
property that its range is totally isotropic with respect to this form.

For each a E C, we consider the function spaces

and let Sp(2n, R) act on them by

Let pn = nt 1 . Then the modular function of P is given by

Now as Sp(2n, R)-modules, we have
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In fact, for each

Hence the map f - f is an isomorphism for

We now let 0(g) = (g-I)t, g E Sp(2n, R). Then 0 is a Cartan involution on
Sp(2n, R) and

is a maximal compact subgroup of Sp(2n, R). It is isomorphic to U(n). In fact, the
map 0: K - U(n) given by

is an isomorphism. We also note that

and X-,aPnK = 1, and that x-a I pnK = detO(n). Here 1 denotes the trivial

character and deto(n) is the determinant character of O(n). It follows that as

representations of K,

Here ’Ind’ denotes unnormalized induction. Now it is easy to deduce the K-

structure of Sa, (X ° ) . Let 039B+ denote the set of all dominant weights of U(n). A+
can be identified with the set of all n-tuples À = (À 1, ..., 03BBn) of integers satisfying

Thus for k

À e A+, Va shall denote a copy of the irreducible representation of U(n) with
highest weight À. It is well known that ([3])

On the other hand, since
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We shall give an explicit description of the K highest weight vectors in the K-types
later.

The Lie algebra of Sp(2n, R) is

It has a Cartan décomposition

where

and

e is the Lie algebra of K. The map 0: t - u(n) given by

is an isomorphism of Lie algebras and it extends naturally to an isomorphism
0: ec ---&#x3E; g(n (C) for the complexified Lie algebras. For 1  k, l  n, let ekl be the

element of g(n (C) with 1 at its (k, l) position and 0 elsewhere. Then one can check
that

Now p is invariant under the adjoint action by K. Thus its complexification

is a K-module. Let

Then p+ and p- are submodules of pc. Let 1,-I, ... 1 -n 1 be the standard basis of Cn
and te*, - - ., e* 1 the corresponding dual basis in Cn*. For 1  I, j  n, let Ekj
and -*.i denote the images Of Ek 0 -j and -* @ é; under the canonical projections

respectively. We now observe



128

that as K-modules, p+ s2(Cn) and p- S2(Cn*). In fact, the linear maps

are K-module isomorphisms.
For 1  p  2n and 1  q  n, Epq shall denote the matrix in M2n,n (R) with

1 at its (p, q)th entry and 0 elsewhere. For 1  k, j  n, let Xkj and Ykj be linear
functional on M2n,n (R) specified by

We then set zk j = Xkj + iykj and zk, j = Xkj - iykj - Hence we can identify a point
p E M2n,n(R) with a point z = (Zkj) E Mn,n(C) where Zjk = Xkj(P) + iykl (P) -
In particular we can regard X° as a subset of Mn,n (C). We shall frequently make
this identification without comment.

Now the action (2.1) induces an action of Sp(2n, R) on the polynomial alge-
bra P(M2n,n ,(C)) ’= P(C 0 M2n,n(R)). Direct calculations show that cp-l(ekl),
-’(,Fk,l) and (’ljJ-)-l(ék,l) act on P(M2n,n(C)) by the following differential
operators 

From now on we shall abuse notations and simply write ekl, Ekl and epl for

For each 1  j  n - 1, let
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For convenience, we write zi = (Zl1, ..., Zln), and -21 = (Zl1, ..., Zln), so that
,j = det(zl, ...,Zj,Zj+l, ...,zn). We also set -yo = det(z1, ...,zn) and -yn =
det(z1, . - -, Zn) - It is clear from eq. (2.5) that each -yj is a highest weight vector
in P(M2n,n(C)) for K and it has weight

Moreover each qj is an eigenvector for GL(n, R) : for z C M2n,n (R) and a E
GL(n, R) we have -yj (za) = (det a) -yj (z). Now the elements of P(Mn,n (C) ) can
be regarded as complex functions on M2n,n(R). The assignment f -- f Xo is

clearly a K-module map from P(Mn,n(C)) - C°°(X°). For 0  j  n, one
can check that ,j Ixo =1 0. Consequently, the restriction of each qj to XI is also
a highest weight vector in C°°(X°). For convenience, we shall also denote yj 1 xo.
by -yj.

The following lemma gives highest weight vectors in the K-types. We omit its
proof as it can be verified directly. Note that the function (det z) (det z) on XI is
an invariant for K.

LEMMA 2.1. For each À E A, the functions on X °

are highest weight vectors in V2,B and Y2’B+1 respectively.

3. Transition of K-types

In this section, we shall first derive explicit formulas for the highest weight vectors
for K ^--’ U (n) in the tensor products Va @ S2 (Cn ) and Va @ S2 ( Cn*). We then
use these results to compute the action ofpc on the K-types.

We now recall some notations used in [ 11 ] . For 1  a, b  n, let hab = eaa - ebb ·
For 1  m  j  n, Fmj and Smj are elements in Ll (g C ( C) ) given by ( c.f. eqs.
(3.1) and (3.8) of [11])

where 1 = {il 1 i2  ...  il} in the sums runs over all subsets of {m + 1,...,
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PROPOSITION 3.1. Let A E A+ and and Va be an irreducible U(n) module of
highest weight À. Let u be a highest weight vector in Va.

(a) If Àj- i &#x3E; Aj + 2, then Vx 0 S2(Cn) has a highest weight vector of weight
À + 2ej given by

(b) If Àj &#x3E; Àj+1 + 2, then V,B @S2(Cn*) has a highest weight vector of weight
À - 2ej given by

Proof. By the second formula of Proposition 3.6 of [11],

is a highest weight vector in VA 0 Cn of weight À + ej. Let the module generated
by Xj be W. Then by the first formula of Proposition 3.6 of [ 11 ],

is a highest weight vector of weight À + 2ej in W (D CI --&#x3E; Va (D Cn 0 CI. If
03C0 : Vj ® Cn ® C’ - Vj ® S2(Cn) is the canonical projection, then

is a highest weight vector in VA 0 82 (Cn) of weight À + 2ej. The proof for (b) is
similar (use Proposition 3.10 of [11]). 0
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We shall denote the space of K-finite vector in sa,(xo) by Sa (X °)x.
For each À E A+ , let 03BC = 2,B or 2À + 1. We consider the K-module map m03BC :
VJL 0 pc - sa,(xo)K given by

Since Pc = p+ Q3 p- ^= S2 (Cn ) ® S2 (Cn* ) as a K-module, we can obtain expres-
sions for highest weight vectors in V03BC 0 pc using Proposition 3.1.
We shall first study the transition from VJL to V03BC+2ej. By Proposition 3.1,

is a highest weight vector of weight M + 2ej in Vil 0 p+. Thus

We know that m03BC (V03BC+2ej ) is a multiple of Ç,JL+2ej. In the remaining of this section we
shall compute explicitly this multiple. We shall now establish several preliminary
results.

LEMMA 3.2. Let z = (zab) E X °. Then for 1  k, r  n with k =1- r, we have

Proof. z defines a linear map T : Rn --- R2n . Since z E X°, the range of T is
totally isotropic with respect to the standard symplectic form on (.,.) on R2n This
space is spanned by the columns z(j) (1  j  n) of z. Hence

LEMMA 3.3.

(ii) For p &#x3E; j &#x3E; q, we have

Proof. (i) is clear from eq. (2.5). We now prove (ii). For p &#x3E; j &#x3E; q, we have

We let
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Then it suffices to prove dl + d2 = 0.
For 1  r  k  n, we let D(r, k) be the complementary minor of the minor
1 ,

of dl. Note that D (r, k) is also the complementary minor of the minor

of d2. Using Laplace’s expansion, we have

LEMMA 3.4. For m  k  j  n, we have

Proof. We shall omit the details of the proof as it is similar to that of Lemma
4.5 in [ 11 ] . For z E X ° with (ejm.,j-1)(Z) =1 0, we apply Cramer’s rule to the
system of linear equations in the unknowns x 1, ..., Xm-l , Xm+ 1, ..., x j, Yj, ..., Yn
given by

and use Lemma 3.3 to describe its solutions. 0

We shall now introduce a more convenient notation for the highest weight
vectors Ç2,B and 03BE203BB+1 in the K-types. We shall fix a complex number a in the rest
of this section. Let À e A+. For m = 2A or 2A + 1, we define 1(p) = (lo, il, ..., ln)
by

and
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We now set

Then one sees that y1(03BC) = Ç,JL for m = 2A or 2À + 1. For 0  j , n, 1 + Ej
shall denote the n + 1 tuple of numbers with its j-th coordinate lj ± 1 and other
coordinates the same as that of 1. For 1  j  n, q  p, q  n and p C A+, we
let (c.f. eq. (4.6)of [11])

Thus if v is a highest weight vector for g [,, (C) with weight li, then H- (j; p, q). v =
03BC(j;p,q)v.Wealsonotethat(2Â)(j;p,q) = (2A + 1) (j; p, q).

PROPOSITION
have

Proof. The proof is a calculation using Lemma 4.4 of [ 11 ] and Lemma 3.4
above. Again we omit the details as it is similar to Proposition 4.8 of [ 11 ] . a

With reasoning similar to Lemma 3.3, we also have for n &#x3E; p &#x3E; q &#x3E; k &#x3E; 1

and z E X’,

This implies

Eq. (3.8) and Cramer’s rule now imply the following identity.

LEMMA 3.6. For 1  k  m  j  n, we have

PROPOSITION 3.7. For M = 2À or 2A + 1 where À e A+, we have
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Proof. We recall that

and that 03BE03BC is of the form ,1 where 1 = 1(p) (c.f. eq. (3.7)).
By Proposition 3.5, we have
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Next for

Hence

Next we consider the transition from V03BC to V03BC-2ej. By part (b) of Proposition
3.1, the vector in V03BC 0 S2 (Cn*) given by
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is a highest weight vector of weight p - 2ej. Hence we need to compute

We first observe that the operator Sjm, which appears in the expression for w JL- 2ej
now plays the role of Fmj in VJL+2ej. Using arguments similar to Lemma 4.4 of
[ 11 ], one can shows that

Using this identity we can then carry out a parallel analysis on the transition from
V03BC to VJL-2ej. We shall omit the details and shall only give the final result.

PROPOSITION 3.8

Altematively, one can also obtain transition coefficients for the ’downward
transition’ from V03BC to V03BC-2ej by considering the ’upward transition’ from V03BC to

V03BC+2ej in the Hermitian dual.

4. Reducibility and complementary series

In this section we shall discuss the reducibility of I::(03C3) and determine the com-
plementary series.

The reducibility of I:(03C3) is first determined by Kudla and Rallis in [10].
They study the action by the enveloping algebra and determine the obstructions to
transition between an arbitrary K-type and a scalar K-type, and from which they
prove:
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THEOREM 4.1. ([10]) 1+ (a) is irreducible if and only if a + Pn ¢ Z.

We can also deduce Theorem 4.1 from our results. In Propositions 3.7 and 3.8,
we have determined the obstructions to transition between arbitrary K-types. We
shall call the scalar expressions a - pj + j - 1 and a + pj + n - j ’transition
coefficients’. It is clear that Sa,+ (XO) is irreducible if and only if all the transition
coefficients are non zero, and this occurs precisely when ce « Z. The theorem then
follows from the isomorphism (2.2) sa,:!: (XO)  I+ (a) where Q = -a - pn. In
the next section, we shall study in detail the module structure of 1+ ( a) at the points
of reducibility.

Next we shall determine which of the modules I(03C3) define unitary represen-
tations. We know from the theory of unitary induction that the module l+ (03C3) can
be given a Sp(2n, R) invariant inner product (given by integration over K) when
Re(Q) = 0. We call the set of Q such that Re(Q) = 0 the unitary axis. On the
other hand, there exists Q not on the unitary axis such that I+ (a) still can be given
a Sp(2n, R) invariant inner product. We shall call this family of unitary repre-
sentations the complementary series. We shall now determine the complementary
series.

Let

Then Aé and Ae- are the highest weights occurring in S’,+ (X °) and SI,- (X °)
respectively. Now each K-type V03BB, of Sa,+ (X °) has a K-invariant inner product
given by

Since VA is an irreducible K module, any K-invariant inner product on Va is a
multiple of (., .)03BB. Thus if (.,.) is a Sp(2n, R) invariant inner product on Sa,+ (X,9)
(respectively S",-(Xl», then there exists positive constants {c,x},xE039Be+ (respec-
tively {cÂ}03BBE039Bo+) such that 

e

Since the K-types of Sa,+ (X°) are mutually orthogonal with respect (., .), , (.,.)
is completely determined by the constants  cx 1. Using similar arguments as the
U(n, n) case (see section 9 of [11]), we obtain the following:

LEMMA 4.2. The inner product on S’,+ (X’O) (respectively sa,- (X°)) defined by
the constants {C03BB}03BBEné (respectively {CA} 03BB03B5039B) is Sp(2n, R) invariant if and only
if 

e 0

for all A E A+ (respectively À E At) and all
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We let

Then sa,+(xo) (respectively sa- (X °)) is unitarizable if and only if NA,j  0
for all A E A+ (respectively for all A E At) and for all j. 

,

We let â = a + n+1. Then

We write m = nr1 + Àj - j + 1. Then N03BB,j= (à - m)/(5 + m). Thus N03BB,j
is real for ail À and for j if and only if either Re(5) = 0 or à is real. The case
Re(5) = 0 corresponds to the unitary axis. If à is real, then

If n is odd, then m E Z. In particular for m = 0 there is no solution for a. On the
other hand, if n is even then the minimum value of m2 is (1)2 so that

These a’s give the complementary series. We now recall that Sa,+ (X°) = I+ (03C3)
where a = -a - Pn. Thus we have proved:

THEOREM 4.3. Ifn is even and - 1  a  1, then I+ (03C3) is unitarizable.

5. Subquotients of I+ (03C3) and their unitarity
In this section, we shall give a detailed description of the module structure of
I+ (a) when it is reducible. We shall describe all the irreducible constituents of
I+ (03C3) and determine which of them are unitarizable, i.e., possess a Sp(2n, R)
invariant positive definite inner product. We also describe the socle series and
module diagram of I+ (03C3). The structure of I- (03C3) is very similar and will be left
to the readers.
We recall that (c.f. eq. (2.2)) I+(03C3) - sa,+(xo) where a = -0’ -,On, and

throughout this section we shall always assume that I+(03C3) is reducible (i.e.,
Q +,Pn e Z). We find it more convenient to derive intermediate results in the
model sa,+(xo), but shall state the main theorems in the more standard model
I+(a). We now identify each of the K-types VJL of sa,+(xo) with the integral
point /-l = (/-l1, ..., fin) in R’n. Let xl, ..., xn be the standard coordinates of Rn. The
transition formulas in section 3 tell us that we should consider the hyperplanes:
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Fig. 1.

These are the ’potential barriers’ to the transition of K-types in the sense that if
a K-type V03BC lies on say Êt then the enveloping algebra U (sp( n, C) ) is unable to
transform vectors in V03BC to vectors in V03BC+2ej. However since the highest weights
of the K-types V03BC in SI,+ (X °) are the form M = 2À where A E 039B+, not all the
hyperplanes given in (5.10) affect transition. We shall consider two cases, i.e., n
even and n odd. By Theorem 4.1, if n is even, then I+ (03C3) is reducible if and only
if 03C3 e 1 + Z; and if n is odd, then I+ (03C3) is reducible if and only if 03C3 e Z.

Case: n = 2m even. We shall first assume that a is odd. Since n is even, for odd

j, only ÉÇ affects the transition of the K-types, and for even j, only Êt affects the
transitions of the K-types. Thus there is only one ’barrier’ along each coordinate
axis which is effective. This situation can be visualized as in Fig. 1.

The symbol [ means that transition of K-types from left to right is permissible
but K-types at the right side of the barrier can not move across the barrier to reach
the left side of the barrier. The symbol ] is interpreted similarly.

For 1  r  m, we define

Observe that because of the dominance condition 03BB1 03BB2 &#x3E; ... &#x3E; 03BBn on A+,
intersections of the Xrj’s and the Ykm’s other than those of the form Lpq are empty.
The set of nonempty Lpq forms a partition for A+. If Lpq # 0, we call the subspace
EXeLpq V03BB a ’constituent’ of Sa+ (X °). For convenience we shall also denote this
subspace by L’Da.

LEMMA 5 .1.
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Fig. 2.

Proof. As the proofs are elementary, we shall only prove (i).

If À e Lpq, then in particular À e Xp and À E Y2 q-1 Consequently, 03BB2p_1 

Conversely suppose that p - q &#x3E; a + m + 1. We let À = (À1, ..., 03BBn ) be given
by

Then À E Lpq so that Lpq # 0.
For unitarity, we recall the definition of N03BBj given in (4.9) and that Sa,+ (Xo)

is unitarizable if and only if all 7VBj  0. Similarly Lpq is unitarizable if and only
if N03BB,j  0 for all À E Lp,q and 1  j  n such that À, À + ej E Lpq. We now
divide each axis Àj into 3 portions as shown in Fig. 2.

If À e Lpq, then for 2p - 1  j  2q - 2, Àj is confined to the range

This is to ensure that the dominance condition is met. Now N03BB,j is positive only if
it corresponds to a transition in the middle portion. Hence Lpq is unitarizable if and
only if a + 2q - 1 = -a - n + 2p - 3 because in this case there is no transition
within the middle portion of the axes Àj for 2p - 1  j  2q - 2 (see Fig. 3). This
occurs when



141

Fig. 4.

The definition of Lp,q leads to the transition relation as shown in Fig. 4. Loosely
speaking, it means that vectors in Lp,q can be transformed by the enveloping algebra
to Lp+1,q and Lp,q-1 but the converse is not. We can now arrange all the (m + 1)2
possible irreducible constituents of Sa&#x3E;+ (X° ) into a ’square’ in such a way which
is consistent with the above transition relation (see Fig. 5).

For a given a, we can use Lemma 5.1 to determine which of the constituents
Lpq are nonempty. If we remove those empty Lpq from the ’square’ in Fig. 5, then
the remaining configuration is the module diagram (see [ 1 ] or section 7 of [ 11 ] for
a precise definition) of Sa+ (X °) . We can then easily read off the socle series (and



142

Fig. 5.

hence a composition series) of Sa&#x3E;+ (X°) (and hence of I+(a)). Recall that (c.f.
[6]) the socle of a module M is the sum of all irreducible submodules of M, and
it is denoted by Soc(M). The socle series of I+ (03C3) is the ascending chain

of submodules of 1+ ( a) defined inductively by setting Soc0(I+(03C3)) = 0 and

for any nonnegative integer r. We now observe that a is odd if and only if [03C3] -
m(mod 2). Here [Q] denote the greatest integer less than or equal to Q. Thus we
obtain the following theorem.
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THEOREM 5.2. Let n = 2m be an positive even integer, and let a e 1 + Z be
such that [03C3] - m(mod 2).

where

Moreover, a constituent Lp,q of I+(a) is unitarizable if and only if p = q or

where

Moreover, a constituent Lpq of I+(03C3) is unitarizable if and only if «

Next we shall consider the case when a is even. We note that

It is easy to check that if Q is such that [03C3] =- m + 1 (mod 2), then [-Q] -
m(mod 2). Now the module structure of I+ (- 03C3) can be obtained from Theorem
5.2. On the other hand, the underlying (sp(2n, C), K) module structure of I+(a)
is contragradient to that of I+ (- 03C3). Hence the module structure of I+ (03C3) can be
derived from the module structure of I+ (- 03C3). In particular, a composition series
of I+ (03C3) can be obtained by ’reversing’ a composition series of I+ (- 0’).
We shall now use Theorem 5.2 and the above observation to construct the module

diagrams of I+(a) for some specific cases. We recall that when n is even, 1+ (0)
is irreducible, and the complementary series occurs in the range - 1  03C3 
The module I+ (03C3) is reducible at the end points of the complementary series (i.e.
Q = ± 1). The diagrams for the degenerate series of Sp(8, R) and of Sp(12, R) at
the reducibility points are given in Fig. 6 and Fig. 7, respectively. We have used a
blackened circle to denote a unitary constituent, and a unblackened circle to denote
a non-unitary constituent. The module diagrams for other cases can be worked out
similarly, by using Theorem 5.2.
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Case : n = 2m + 1 odd. Our analysis in this case will be similar to the U(n, n)
case ([11]). We need to consider two subcases: a odd and a even.

Subcase: a odd. Recall that the potential barriers l+j and fj are defined by the
equations Xj = a + j - 1 and xj = -(a + n - j) respectively. Since both a and
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Fig. 8.

n are odd, a + j - 1 and - (a + n - j ) are odd or even depends on whether j is
odd or even. For odd j, both Êt and Éi do not contain any K-types of SI,+ (X’).
Hence they play no role in the transition of the K-types. On the other hand, for
even j, both Êt and ÉÇ affect the transition of K-types.

Let

We can think of G(a) as the gap between the two barriers along a axis. Note that
in this case it is always even. We shall first consider the case when G (a) &#x3E; 0. This
occurs when a &#x3E; -m. The barriers along the even axes can be visualized as in
Fig. 8.

For each 1  r  m, we let

For a n-tuple a = ( a 1, ... , an) of integers with aj = 1, 2 or 3, we set

Let D = {a : aj = 1, 2 or 3; a 1 &#x3E; a2 &#x3E;- - - - &#x3E; am } . Then the dominance condition
on A+ forces Ra = 0 for all a fi D. Let s and t be nonnegative integers such that
s + t  n. Let a (s, t) be the n-tuple of integers given by

Thus D is the set of all such a(s, t). Now the definition of Ra leads to the transition
relation as shown in Fig. 9. Thus to understand the module structure of I+ (a) in
this case, it remains to determine which irreducible constituents are nonempty.

For a E D, let l2 (a) denote the number of entries of a which are equal to
2. Elementary arguments similar to the proof of Lemma 6.8 of [11] shows the
following.

LEMMA 5.3. Let a be an odd integer such that a &#x3E; -m.
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Fig. 9.

(a) Ra :1 0 if and only if l2 (a)  a + m + 1.
(b) Ra is unitarizable if and only if l2 (a) = a + m + 1.

In particular, if a &#x3E; 1, then Sa,+ (Xo) has no unitary constituent.

We note that a is odd if and only if Q - m (mod 2). Thus Lemma 5.3 leads to
the following theorem:

THEOREM 5.4. Let n = 2m + 1 be an odd positive integer and let u be an
negative integer such that 03C3= m (mod 2). Then

where r = min (03C3, m), and the socle series of I+(a) is given by

Moreover, a constituent Ra of I+(03C3) is unitarizable if and only if -m 03C3  - 1
and l2 (a) = lai. 

_ _

Next we consider the case when G(a) = -2. This occurs when a = -m - 1,
or equivalently a = 0. Thus this is the reducibility point on the unitary axis. In this
case, the barriers along the even axes can be visualized as in Fig. 10. Note that fir
and f2r are at a distance of 2 units apart.

It is clear from Fig. 10 that each Up is an irreducible submodule of

Hence we have proved:
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Fig. 11.

THEOREM 5.5. If n = 2m + 1 where m is an even integer, then

is a direct sum of m + 1 irreducible submodules.

If Q is a positive integer such that Q - m (mod 2), then module structure of
I+(03C3) can be deduced from that of I+ (- 03C3), which is given in Theorem 5.4.

Subcase: a even. This case is very similar to the case a odd and n odd, so we shall
only state the final results. Note that in this case, the effective barriers occur along
the odd axes instead of the even axes. This can be visualized as in Fig. 11.

For a (m + 1 ) -tuple a = ( a 1, ... , am+ 1) such that aj = 1, 2, 3 for all j and such

As before, we let Ê2 (a) be the number of entries of a which are equal to 2. We also
note that a is even if and only if Q - m + 1 (mod 2).

THEOREM 5.6. Let n = 2m + 1 be a positive odd integer.
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(i) If a is a negative integer such that 03C3 =- m + 1 (mod 2), then

where r = min (03C3, 1, m + 1), and the socle series of I+ (03C3) is given by

Moreover, a constituent Wa of I+ (03C3) is unitarizable if and only if either

(ii) If m is odd, then for 0  p  m + 1, the subspace

is an irreducible submodule of I+(0), and

As before, if Q is a positive integer such that Q - m + 1 (mod 2), then the
module structure of I+ (03C3) can be deduced from the structure of I+(-03C3), which is
given in Theorem 5.6.
We shall now use Theorem 5.4, 5.5 and 5.6 to construct the module diagram

of I+(a) for two typical cases. The following are the diagrams for the Sp(18, R)
modules I+ (03C3) with Q = 0, -1, -2, ..... If a’ is an positive integer, then the
diagram for I+ (03C3’) can be obtained by inverting the diagram of I+ (- 03C3’). Recall
that a blackened circle denote a unitary constituent and a unblackened circle denote
a non-unitary constituent.
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Fig. 12.

Finally we construct the diagrams for the Sp(22, R) modules 1+(03C3) for
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Fig. 13.
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