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Abstract. We generalize Grothendieck’s semicontinuity theorem for F-isocrystals over a base scheme
of characteristic p to F-isocrystals with G-structure, where G is a connected reductive algebraic
group over Qp .
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Introduction

Let k be a perfect field of characteristic p &#x3E; 0 and let K be the fraction field of
its Witt ring W(k). Let Q be the Frobenius automorphism of K. An F-isocrystal
over k is a finite-dimensional K-vector space V, together with a Q-linear bijection

The notion is due to Dieudonné who classified these objects in the 1950’s in
case k is algebraically closed. He showed that an F-isocrystal over an algebraically
closed field is determined up to isomorphism by its Newton polygon or, equivalent-
ly, its slopes. In the 1960’s Grothendieck introduced the notion of an F-isocrystal
over a general base scheme S of characteristic p which makes precise the heuristic
idea of a family of F-isocrystals over perfect fields parametrized by the points
of S. Grothendieck ([G], appendix; comp. also [Ka]) proved the basic theorem
that the Newton polygon rises under specialization s - s’ and that its end point
remains constant. Katz [Ka] subsequently investigated the question whether the
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constancy of the Newton polygon under specialization implies the constancy of the
F-isocrystal.

The theory took a new tum with the injection of algebraic groups into the theory
by Kottwitz [K]. His starting point is the observation that the isomorphism classes
of F-isocrystals (V, &#x26;) of height h = dim V are in bijective correspondence with
the Q-conjugacy classes in GLh(K). He investigated the set B(G) of Q-conjugacy
classes in G(K) where G is any connected reductive group over Qp, in case k
is algebraically closed. (In fact, Kottwitz considers the case where Qp is replaced
by a finite extension, but in this introduction we will disregard this). Kottwitz
introduces the subset B( G)basic of basic elements of B(G), characterized by the
fact that the slope homomorphism of any representative in G(K) factors through
the center of G, and gives a complete description of B (G)basic. Furthermore, he is
able to describe all of B(G) in the case when G is quasi-split (thereby generalizing
Dieudonné’s results) by taking the basic sets of the various Levi subgroups as
building blocks.

To explain our results consider the Newton map

which generalizes the Newton polygon associated to an F-isocrystal. Here T is
a maximal torus of G with Weyl group S2. The map associates to b e B(G) the
conjugacy class of the slope homomorphism of any representative in G(K). The
fibres of this map are principal homogeneous spaces under finite abelian groups
of the form Hl (Qp, J), where J is a Levi subgroup of a quasi-split inner form of
G (depending on the image point). In the case of G = GLh, these cohomology
groups are trivial and we recover Dieudonné’s results.

Our purpose in the present paper is to generalize Grothendieck’s specialization
theorems. To this end we introduce on the target space of the Newton map a

partial ordering which generalizes the (reverse of the) usual partial ordering on
Newton polygons with same end points. We define the notion of an F-isocrystal
with G-structure over a base scheme S and associate to such an object a function
s H b(s) E B(G). The generalization of Grothendieck’s theorem is that the
Newton point of b(s) decreases under specialization. The proof is by reduction
to Grothendieck’s theorem. Furthermore, we prove that if S is connected and the
Newton point of b(s) is constant, then so is b(s). For G = GLh, this last statement
is vacuous since in this case the Newton point determines the F-isocrystal up
to isomorphism. For the proof we use the result of Katz mentioned above. The
constancy of the end point of the Newton polygon in Grothendieck’s theorem
also has a counterpart in the general situation, but it has then a somewhat subtle
cohomological meaning.
We now give a brief description of the various Sections. In Section 1 we give

an account of most of the results of [K] with two noteworthy modifications. First,
we use the algebraic fundamental group of Borovoi [B] instead of the center of the
Langlands dual group used by Kottwitz. The gain is that the results are obviously
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functorial. Second, as mentioned above, we reformulate some of his results in terms
of the Newton map which enables us to say something even about the non-basic
part of B(G) for any connected reductive group and not only for quasisplit ones as
in Kottwitz. This Section is largely expository and contains almost no proofs.

In Section 2 we introduce the partial order mentioned above. Our specialization
result for Newton points is completely analogous to the specialization result for
the Harder-Narasimhan polygons of vector bundles resp. G-bundles on a Riemann
surface of Atiyah and Bott [AB]. However, perhaps surprisingly, their result is
the exact opposite of ours. In this context the partial ordering had already been
introduced in [AB]. We therefore content ourselves with quoting their results.

In Section 3 we prove the specialization results alluded to above. We also
mention here the generalization (3.13) of Grothendieck’s conjecture on the converse
to his specialization theorem.

Section 4 is an afterthought to the proof in Section 3. In it we generalize Mazur’s
theorem that the Hodge polygon of an F-crystal over an algebraically closed field
lies below the Newton polygon of the corresponding F-isocrystal and that both
have the same end points.

1. The structure of B(G)
In this Section we give a presentation of some results of Kottwitz, [K], [K2].

1.1 - In this Section we will use the following notations, comp. [K].

k - an algebraically closed field of characteristic p.
K - the fraction field of the Witt ring W (k).
K - an algebraic closure of K.
F - a finite extension of Qp in K.
L - the compositum of K and F in K.
Q - the Frobenius automorphism of L/F.
W (K/F) - the Weil group, i.e. the group of continuous automorphisms

of K which fix the elements of F and induce on the residue
field k of K an integral power of the Frobenius auto-

morphism.
F - the Galois group of F/F.

1.2 - Let G be a connected reductive group over F. Let

where the equivalence relation is 03C3-conjugacy, i.e.
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The fact that k does not appear in this notation is justified by the following
lemma (for F = Qp, this is proved in [RZ], (1.16); the general case is the same).

LEMMA 1.3 Let k’ C k be an algebraically closed subfield and let L’, 0", B’ (G)
be the corresponding objects for k’ instead of k. The obvious map

is a bijection.

1.4 - There is an exact sequence of topological groups

where (Q) denotes the infinite cyclic (discrete) group generated by a. By Steinberg’s
theorem the induced map

is a bijection. On the other hand, the restriction homomorphism W(K/F) -
Gal(F/F) and the inclusion G(F) C G(K) define an injective map ([K], 1.8.3)

1.5 - Let 1 - G 1 -t G2 - G3 - 1 be an exact sequence of connected reductive

groups over F. Then there is an exact sequence of pointed sets ([K], Sect. 1)

1.6 - Let F’ be a finite extension of F contained in K. Let G’ be a connected
reductive group over F’ and let B’ (G’ ) be the corresponding set for G’, L’, 0".
Then there is a Shapiro isomorphism ([K], Sect. 1).

1.7 - Let D be the pro-algebraic torus with character group Q. For a connected
reductive group G over F we put

(set of 03C3-invariants in the set of conjugacy classes of homomorphisms D L - GL).
For instance, if G = T is a torus, then

More generally, if T C G is a maximal toms with Weyl group Q, then
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THEOREM 1.8 ([K], Sect. 4) Let b E G(L). Then there exists a unique element
v E HomL(D, G) for which there exists an integer s &#x3E; 0, an element c E G(L)
and a uniformizing element 1f of F such that

(i) sv E HomL(Gm, G).
(Here Hom(Gm, G) C Hom(D, G) via the homomorphism D -- Gm induced
by the inclusion of character modules Z C Q).

(ii) Int(c) o sv is defined over the fixed field of QS in L.
(iii)

The element v is called the slope homomorphism associated to b.

Furthermore, the map b F--+ v = vb = VG,b has thefollowing properties.

(a)
(b)
(c)
(d) vb is trivial if and only if b is in the image of the map (cf. (1.4)) H1 (F, G) -

B(G).
1.9 - From (b) and (d) of the previous theorem it follows that the map b H vb

induces a natural transformation of set-valued functors on the category of connected
reductive algebraic groups

Here, denoting by a bar the 03C3-conjugacy class resp. the conjugacy class

The map V-G is called the Newton map of the group G.

EXAMPLE 1.10 Let G = GL(V), where V is a finite-dimensional F-vector
space. Then B(G) classifies the isomorphism classes of Q - L-spaces of height
h = dim V. To b e G(L) we associate the Q - L-space (i.e. a finite-dimensional
L-vector space with a Q-linear bijective endomorphism)

There exist uniquely determined rational numbers

and a uniquely determined decomposition
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into &#x26;-stable subspaces for which there exist OL-lattices Mi c Y with

where di = Ai - h2 e Z. The subspace Vi is called the isotypical component of slope
Ài. The associated homomorphism vb is equal to

Here Ai - idv2 denotes the composition

In this case the map

is injective, as follows from the Dieudonné classification of 03C3 - L-spaces [K],
Section 3. It is customary to use the slopes ( 03BB1, ... , Àr) and their multiplicities
( h 1, ... , hr ) to form the Newton polygon of the 03C3 - L-space (VL, (03A6), which
explains the name we have given to the map in general.

1.11 - Let b e G(L). We consider the following group-valued functor on the
category of F-algebras. To an F-algebra R it associates the group

Then ([RZ], (1.12)) this functor is representable by a connected reductive group
Jb over F. Let b’ = h- 1 b03C3, (h). Then Int h-1 induces an F-isomorphism

Let b E B (G) and let b E b be an element such that svb factors through Gm.,2 and
is defined over the fixed field Fs of 03C3s in L and such that

for a suitable integer s &#x3E; 0 and a uniformizer 7r in F, cf. (1.8). Then ([RZ], (1.14))
Jb ®F Fs is the Levi subgroup of G 0F Fs which centralizes the 1-parameter
subgroup svb,

Let h be such that b = hb03C3,(h)- 1. Then h E Jb (F) . Therefore the F-
isomorphism in (1) is unique up to inner automorphisms by elements in Jb (F).
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PROPOSITION 1.12 ([K], Sect. 5). Let b E G(L). The following conditions are
equivalent.

(i) The homomorphism vb factors through the center of G.
(ii) The a-conjugacy class of b contains an element contained in an elliptic torus

of G.
(iii) The group Jb is an inner form of G.
(iv) (in case G = GL(V), as in example (1.10)). The slope decomposition has

only one factor.

In this case the element b resp. its a-conjugacy class b is called basic. We denote
by B (G)basic the set of basic a-conjugacy classes.

1.13 - In order to state the next results we introduce the algebraic fundamental
group of a connected reductive group G over F ([B], comp. also lM]). Let T C
B c Gp be a maximal torus and a Borel subgroup defined over F. We have an
action of r on X* (T ) defined by

where g E G(F) satisfies g(T(T, B))g-1 = (T, B). We obtain an induced action
ofron

which is independent of the choice of B. Here 03A6 (G, T) denotes the set of roots of
T and for a e 03A6(G, T) we denote by a v the corresponding coroot.

If T’ = gTg-1, g E G(F), then Int(g) induces a r-equivariant isomorphism

which is independent of the choice of g. We therefore may define xi (G) as the
common value of these r-modules. It is called the algebraic fundamental group
of G. The functor xi is an exact functor from the category of connected reductive
groups over F to the category of finitely generated discrete r-modules, ([B], (1.5)).
If G’ is an inner form of G, there is a canonical isomorphism

1.14 - Kottwitz [K] formulates his results in terms of the center Z(G) of
the Langlands dual group, which a priori is functorial only for morphisms with
image a normal subgroup. We prefer to formulate his results in terms of the
algebraic fundamental group since this is functorial for all morphisms. To make
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the connection we point out that there is a canonical isomorphism of r-modules
([B], (1.10))

In particular

(coinvariants resp. torsion subgroup in coinvariants).
We also point out that

- for a torus T,

- for a semi-simple group G, with simply connected covering o : Gsc - G,

- if the derived group of the connected reductive group G is simply connected,

Here, as in the rest of the paper, Gab denotes the factor group of G by its derived
group.

THEOREM 1.15 ([K2], Sect. 6), [K]) (i) There exists a unique natural transfor-
mation

of set-valued functors on the category of connected reductive groups over F such
that the following diagram is commutative.

Here the valuation on L is normalized by ordL(1rL) = 1 for a uniformizer 1rL.
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Furthermore, the induced maps

and

are bijections for all G. This puts the structure of abelian groups on B( G)basic
and on Hl (F, G) in a functorial way. The action of the subgroup Hl (F, G) on
B (G)basic by translations preserves the fibres of (the restriction to B (G)basic of)
the Newton map and is simply transitive on each fibre ofvGIB(G)basic.

(ii) Let G = T be a torus, in which case B (T ) = B(T)basic and 03C01 (T ) = X* (T).
Then the structure of abelian group on B (T) defined in (i) is the natural structure.
Let iT be the composition

Let E be a finite extension of F contained in K such that T splits over E and
let Eo = En L be the maximal subfield of E unramified over F. Let 7rE be a prime
element in E. Then

The following diagram is commutative, if E is a finite Galois extension of F.

Here TN denotes the Tate-Nakayama isomorphism (cup product with the fun-
damental class in H2(E / F, EX)).

(iii) For any connected reductive group G over F, the natural homomorphism
G - Gab induces an isomorphism of vector spaces

The functor 1rl ( . )r 0398 Q is an exact functor from the category of connected
reductive groups over F to the category of finite-dimensional Q-vector spaces.

There is a unique natural transformation of functors on the category of con-
nected reductive groups
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such that for a torus T this is the natural identification (cf. (1.7))

The following diagram is functorial with exact rows (in the sense of pointed
sets).

Here the arrow in the right lower corner is given as

We often write à(b) = 8c(b) instead of ô o v(b), for b E B(G).

1.16 - The statement (i) in the previous theorem gives a complete description
of the basic subset of B(G). We now want to describe the fibres of the Newton
map through an arbitrary element b E B(G) which is not necessarily basic.

PROPOSITION 1.17 Let b E B(G) and let F be the fibre of the Newton map
through b,

Let b E G(L) be a representative of b, with associated group Jb, cf. (1.11).
Then there is a natural identification

This identification is induced from the map which associates to a representative
b’ of b’ E F the Jb-torsor whose values in a F-algebra R are given by

Furthermore, the resulting action of the finite abelian group Hl (F, Jb) on F
(cf. (1.15), (i)) is independent of the choice of b and b in the following sense. If b’ is
a representative of another element of F, then Jb, is an inner form of Jb and hence
H1 (F, Jb’) is canonically isomorphic to H1 (F, Jb), cf. (1.13).
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Proof. We first prove that Jbl,b is a torsor, i.e. is non-empty. Replacing b by a
a-conjugate we may assume that vb = vb, and that we have identities for a suitable
integer s &#x3E; 0,

Then sv is defined over the fixed field Fs of ol in L and b, b’ e G(Fs)
(comp. [RZ], (1.9)). The above identity implies that we have equality of norms,
Nmps/p(b) = Nmps/p(b’). But then it follows ([K5], 5.2) that there exists

g e G(F, 0 F) with b’ = gb03C3(g)-1. The image of g in G(L 0 F) is a point
in Jb’,b(F).
We next prove the surjectivity of the map. Let c E H1 (F, Jb). By the theorem

of Steinberg there exists a finite unramified extension F’ of F contained in L
trivializing c. We may represent c by a cocycle also denoted by c of Gal (F’/F)
with values in Jb(F’). However, it is obvious that under the natural injection

there exists g e G(L ~F F’) such that

Putting b’ = gb03C3, (g) - 1, we have b’ E G(L) and [Jb’,b] = c E H1 (F, Jb), hence
b’ maps to c.

To prove the injectivity of the map we remark that Jb’,b is a (Jb" Jb ) -bitorsor
(with Jb acting from the right and Jb’ acting from the left). Using the customary
notation for contraction we have for any b, b’, b" an identification of (Jb, Jb,,)-
bitorsors,

Hence if b’ and b" define the same cohomology class in H1 (F, Jb) it follows

that the Jb,, -torsor Jb" ,b’ is trivial. Any element in Jb" ,b’ (F) a-conjugates b’ into
b", which proves the injectivity.

It is obvious that Jb’ is an inner form of Jb. By what we have proved already,
the last assertion is equivalent to the statement that the map

induces a translation on Hl (F, Jb) = H1 (F, Jb’ ). To prove this we may assume
that the derived group of G is simply connected which implies the same fact about
Jb and Jb’. But then

Since the identity (3) above shows that the map induced on H1 (F, Jb,ab) is a

translation, this concludes the proof. D
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Remark 1.18 In order to have a complete description of B (G) by this method
one would need to describe the image of the Newton map F.,G : B(G)-- N(G).
We do not know how to do this in the most general case. In the case when G is
quasi-split the following description of the image follows from [K], Section 6. Let
M be a Levi subgroup of G and denote by p M the composition of the following
obvious maps

Here ZM denotes the center of M. The image of vG is equal to

where M ranges through all Levi subgroups of G.

EXAMPLE 1.19 (= example (1.10) continued). In case G = GL(V), an element
v E N(G) is given by a sequence of rational numbers

and multiplicities (positive integers) h 1, ... , hr such that

The condition that v be the Newton point of an isocrystal is that the break points
of the Newton polygon associated to v occur at integer points, i.e.

This is equivalent to the condition appearing in remark (1.19). Indeed, if this
condition is satisfied put

Then

The element v- is the image of

The converse is also easy to see.
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2. A partial ordering on the set of Newton points

2.1 - Let G be a connected reductive group over an algebraically closed field of
characteristic zero, with associated root datum

We fix a basis A of the set of roots and denote by ~v the corresponding basis
of the set of coroots. Let

be the corresponding closed Weyl chamber resp. obtuse Weyl chamber. Hence C
is a fundamental domain for the action of the Weyl group Q on X*(T) R . On the
other hand, C’ C X* (Tder)R, where Tder = T n Gder. For the following lemma we
refer to [AB], Section 12, and the references quoted there (in loc.cit. this lemma
is stated in the context of compact groups but the proofs carry over to the present
set-up.)

LEMMA 2.2 Let x, x’ e X*(T ) R. The following conditions are equivalent.

(i) x lies in the convex hull of the finite set

(ii) Let x resp. x’ be the representatives in C of x resp. x’ for the action of Ç2.
Then

(iii) Let x’ be the representative o, f x’ in C. Then

Let us write x - x’ if these equivalent conditions are satisfied. Then this
condition only depends on the orbits under S2 of x resp. x’.

(iv) For any representation o: G ---&#x3E; GL(V), denoting by T’ c GL(V) a maximal
torus containing o(T) we have

Let our algebraically closed field be the algebraic closure of a subfield F and
assume that G is defined over F. Let r be the Galois group of F and assume
that x, x’ E (X*(T)R/O)r. Then it suffices to check condition (iv) on F-rational
representations o: G -&#x3E; GL (V). Indeed, this follows from the proof of loc. cit.

by the following two observations. First, since x’ - x is r-invariant it suffices to
check (x’ - x, A) j 0 for any r-invariant dominant integral weight À. Second, a
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positive multiple of a r-invariant dominant integral weight is the highest weight of
an F-rational representation.

2.3 - We now retum to the set-up of Section 1. A point FI E N(G) gives a
well-defined orbit 03A9.v under the Weyl group in X*(T)R, where T is a maximal
torus in G over F. The Definition (2.2) therefore defines a partial order on N(G)
resp. B(G)

PROPOSITION 2.4 Recall the map

(iv) Let G = GL(V), as in (1.10). Let b, b’ E B(G). Then b - b’ {::} the Newton
polygon of b lies above the Newton polygon of b’ and has the same end point.

Proof. (i) holds because C’ c X* (Tder )R. We next prove (iv). By (i), if b - b’
we have b(b) = 8(b’), i.e. (1.15 (iii)) the Newton polygons of b and b’ have the
same end points. Let

be the slopes with multiplicities of b resp. b’.FBy the above remark we may assume
that

Using the form of the simple coroots for PGLh (i.e. cxi = e2 - ei +1, 1  i 
h - 1, in terms of the standard cocharacters of the diagonal torus), we see that

- 

The condition on the right is precisely the condition on the Newton polygons of
b and b’ appearing in the statement of (iv).
We now prove (iii). The fibres of the Newton map are finite, hence it suffices to

see that the image of Xb in N(G) is finite. Choose a faithful representation o of G,


