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Introduction

The purpose of this paper is to study invariants called the slopes or the critical
indices associated with a module over the ring D of the germs of differential
operators at a point x along a hypersurface Y of a complex analytic manifold X.

The notion of a slope of a coherent D-module M, along a smooth hypersurface
Y, was introduced by Y. Laurent under the name of a critical index in [4]. On the
ring Ex of microdifferential operators, he considered two filtrations: the filtration
F by the order of operators and the filtration V of Malgrange-Kashiwara, along
a hypersurface A C T* X. He then considered the intermediate filtration Lr =
pF + qV for any rational number r = plq &#x3E; 0. The critical indices are the
rationals r for which the characteristic variety of M associated with Lr is not
bihomogeneous. Using 2-microdifferential operators, Y. Laurent showed that there
are only a finite number of critical indices. C. Sabbah and F. Castro, in the appendix
to [ 13], gave another proof of this result by using the notion of the local flattener of
a deformation. Z. Mebkhout introduced, in [9], the notion of a transcendental slope
of a holonomic D-module, along a hypersurface as being a jump in the Gevrey
filtration of the irregularity sheaf. Let (J be the ring of holomorphic functions on
X. The irregularity sheaf is the complex of solutions with values in the quotient
of the formal completion of 0 along Y by 0 itself. It is a perverse sheaf by [9].
Laurent and Mebkhout proved ([5], see also [10]) a comparison theorem for the
slopes of a holonomic D-module asserting that the transcendental slopes are the
same as the algebraic ones. They also defined loc. cit. the Newton polygon of a
holonomic D-module.

Our aim is to study these notions from an effective viewpoint, that is to prove
by elementary methods the finiteness of the number of slopes and then to give an
algorithm to compute these slopes effectively in the algebraic case. We consider
an ideal I of the Weyl algebra An and we prove the finiteness of the number of
slopes of the quotient An /I starting from a system of generators of I. We then
develop an algorithm for the computation of the slopes. For this purpose we use
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the technique of standard bases adapted to the Weyl algebra, and in particular we
give an algorithm for the computation of these standard bases. This algorithm, of
Lazard-Mora type (cf. [6], [11]), is in fact valid for any order on the exponents,
and thus can be adapted to computing multiplicities. Thanks to the theorem of
Laurent and Mebkhout ([5], [10]) the algorithm for the computation of the slopes
provides an effective means of testing the regularity of a holonomic D-module
along a hypersurface.

Let us summarise the structure of this paper: in the first part we begin by recalling
some general facts about the filtrations F, V and L, about privileged exponents
and about standard bases, and we explain the relationship between standard bases
and generator systems of the graded ideal grLl. We then develop an algorithm for
the computation of standard bases for any order adapted to L and compatible with
the product of operators. For this purpose we work in An[t] by homogenizing with
respect to the total order. We use a well ordering on the exponents in N2n+l, which
allows us to prove a division lemma and then to obtain standard bases as systems of

generators for which the remainders of some elementary divisions are zero modulo
(t - 1) A,, [t]. The difficulty comes from the fact that An [t] being non commutative,
the remainders of the homogeneous divisions are not necessarily homogeneous.
The actual computation of a standard basis is however possible through a technical
trick (rehomogenization of remainders and iterated division).

In the second part, we begin by proving the finiteness of the number of slopes
by means of two twin lemmas: in the neighbourhood of a form L, the graded ideals
associated with a form L’, are constant on both sides of L and respectively equal
to grF (grL (I» and to grv (grL (I». This assertion is also given by Laurent in [4].
The finiteness of the number of slopes comes then from a compactness argument.
The algorithm for the computation of the slopes, is inspired by the method used
by Assi [1] to compute the critical tropisms of Lejeune-Teissier [7] : we start from
a system of generators 0 = {.Pi,..., P, 1 of I which induces a standard basis for
grF (I) as well as for grv (grF (I» and we take the first form L for which one of
the aL (Pi) is not bihomogeneous. A finite algorithm allows us to decide whether
L is actually a slope and if it is not, to reach a first slope L (1) (or V) in a finite
number of steps. Iterating this process starting from L(l) one obtains all the slopes.
Notice that, thanks to the first part, all the algorithms are effective in the case
of the Weyl algebra. Using a well known lemma of algebraicity, the computation
of the slopes of An /I is also valid for D/DI. To conclude, in the case of a not
necessarily algebraic ideal of D, we can generalise all our results, after making
division compatible with the series case, if we admit infinite division processes.
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1. Filtrations and construction of standard bases

1.1. FILTRATIONS

We denote by ’ the ring of linear dif-
ferential operators with coefficients in

, we write,

with i

DEFINITION 1.1.l We call the set t (a, 0) E N" Ip.,,e 54 0} the Newton diagram
of P (and we denote it by N(P)).

Let Y be the hypersurface defined by x, = 0. Given a linear form L(a, b) =
pa + qb (with p, q non negative, relatively prime integers) we define the L-order
along Y of P = P (x, 8), denoted ordL (P), as the maximal value of L(I,81 ,,81 -al)
over elements (a,,8) of the Newton diagram of P.
We denote by FL,.(Vn) (resp. FL,.(An) the filtration induced by the L-order

on Dn (resp. A,,) i.e. FL,k is the set of operators P with ordl (P)  k. We denote
by F (resp. by V) the filtration corresponding to the form L(a, b) = a (resp.
L(a, b) = b). By extension we also write F (resp. V) for the corresponding linear
forms. If L -# F, V then the graded ring associated with this filtration

is isomorphic to the commutative graded ring CfX2, - - - X,,I [XI, ... , çn] (resp.
to C[x, ç] = C[Xl,’ .. , xn, fli , ... , fln] ) in which the degree of a monomial xaç,B
i’q f-,nllql tn TJ( 1 AI - A1 - ",)-

If L = F, the filtration FL,. is the same as the filtration by the order of operators.
The graded ring grv (Dn ) (resp. grv (,4,,,» is isomorphic to C fX2, - - - , X,, 1

(x 1, al , ... , an] (resp. to the Weyl algebra An = C[x, 9]) in which the degree of a
monomial xl,9,3 is 81 - Ofi.

Given an idéal 7 in Vn (resp. An), we denote by grl(j) the graded ideal
associated with the filtration induced by FL,, on I. The ideal grL(I) is generated
by the family {aL (P) 1 P E l} where UL (p) is the principal symbol of P with
respect to L. If L : V,
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If L is the form V, the symbol of P with respect to V is the differential operator

We have the following algebraicity result.

LEMMA 1.1.2 Let I be an ideal in An and let l’ be the ideal Dn I. Then grL (I’) =
grL(Vn)grL(l). More precisely, if F = {PI"’" Pr ) is a system of generators
of I such that 9 = {aL(Pi)}i=1 generates grL(l), then 9 generates grL(I’) over
grL(Vn).

Remark 1.1.3 We shall see later that such a family :F can be computed effectively
starting from a system of generators of the ideal 7.

1.1.0.1. Proof In this proof we write a for QL and ord for ordL. We denote
by J’ the idéal grL(Vn) . grL(l). Only the second statement needs to be proved.
Such a system:F exists because grL (An) is noetherian. Let P e l’and let us write
P = i=1 QiPi + P’ with Qi e Dn, P’ E l’and ord(P’)  ord(P) or P’ = 0.
We set d = maxi{ord(QiPi)}, 8 = ord(P) and di = ord(Pi)’ We can suppose
that d is minimal. If J = d then a(P) = i=laf-di (Qi)a(Pi) e J’, where
ad-di (Qi) = a( Qi) if ord( Qi) = d - di and ad-di (Qi) = 0 if ord(Qi)  d - di. If
J  d then we have a relation £§°=i ad-d; (Qj ) a(Pj ) = 0. The ring grL(Vn) being
flat over grL (An) (resp. in the case L = V because of the flatness of C{ x} over
C [x]), we can write

where (Fj, 1, ..., Fj,,) is a relation, in grL (An), between the u (Pj ) and A; E grL (Vn)
(resp. with orde (Od- di (Qi» &#x3E;, orde (Aj Fj,i).) We denote by Aj (resp. Fj,j) a pre-
image in Dn (resp. An ) of A; (resp. Fj,i). We denote by Gj = £§J_ Fj,iPi E I. By
construction, we have ord(Gj)  d - ord(Aj). The family g being a system of
generators of grL (I ), we can write £§J_ 1 Fj,i Pi = Gj = E’ Rj,lPl + G, where the
Ri,, are in An, G’ E I, ord(Rj,l)  d - dl - ord(Aj) and ord(G’)  ô - ord(Aj).
Thus we have GJ = £§J= 1 (Fj,i - R;,j)Pj and

If we denote Q§ = Qz 2013 E" Fj,i - Rj,j) we have obtained a new decompo-
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sition for P with maxilord(QPi)l strictly smaller than d, which contradicts the
choice of d. 0

1.2. PRIVILEGED EXPONENTS

Let  be a well ordering, compatible with the sum, in N2n (i.e. a well ordering
such that (a + a", 0 + ,8/1)  (a’ + a/l,,8’ + ,8/1) if and only if (a, (3)  (a’, fl’ ) ) .

DEFINITION 1.2.1. Let L be a linear form with non negative integer coefficients.
We define on N2n the total ordering (denoted L) by

Remark 1.2.2 Note that for any d E Z, the restriction of L to the set {( a,,8) s.t.
L(jol ,81 - al) = d} is a well ordering.

DEFINITION 1.2.3 Let L be a linear form with non-negative coefficients. We call
the element of N2, max L (M (P ) ) (where Af (P) is the Newton diagram of P) the
privileged L-exponent of P E An (and we denote it by eXPL(P)’ We write exp(P)
when no confusion is possible.

Remark 1.2.4 The previous definition does not define exp(P) for every operator
P e D,, B A,,.

DEFINITION 1.2.5 Let P = a,,BPa,,Bxaa,B be an element of An. We call the
monomial p,,Ox’aO where (a, /3) = expL(P) the L-initial monomial of P (and
we it by denote InL(P).) The complex number p,,,3 is called the initial coefficient
of P with respect to L and is denoted cL(P). We denote In(P) and c(P) when no
confusion is possible.

LEMMA 1.2.6 Let Q, P be elements of An. Then we have
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1.3. STANDARD BASES

If I is an ideal of An we denote the set t EXPL (p) 1 p e Il by EL (I) (or simply E(I)
when no confusion is possible). By 1.2.6, EL(I) + N 2n = EL(I).

DEFINITION 1.3.1 Let I be an ideal of An. A family f Pl, .... Pl of elements
of I is called a standard basis (relative to the order L, or an L-standard base) of
i if

Remark 1.3.2 A standard basis of an ideal I of An is not necessarily a set of
generators of I. It is enough to consider the ideal I = A,,. Let L be the linear form
L(i, j) = j. Let P = 1 + xi. Then {P} is a standard basis of I and P does not
generate I.

LEMMA 1.3.3 Let F = {Pl, ... , Pr } be a system of generators of an ideal I of
An. If 0 is an L-standard basis of I then

1.3 .0.2 Proof. (1) Let J be the ideal generated by {aL(Pi) }i=l’ We set ci = c(Pi ) .
Let 0 -# P E I. We define a family of elements p(s) of I, for all s ,&#x3E;, 0, such that

Thus, by the Remark 1.2.2, there is an s such that ord,
Let s be the smallest integer having this property. Then

(2) The proof is the same as in 1. We only have to replace F by f oL (pl) @ ...
aL (Pr )} and I by grL (j). ~

1.4. HOMOGENISATION. ORDERS IN N2n+l

We set An[t) = An 0c C[t]. If P = E,,,,Op,,,,exao9fl is an element of A,, we call
the integer maxl 1 cË + 10 11 p,,o :, 01 the total order of P (and we denote it by
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ordT(P).) As in case of A,,,, we can define the notion of Newton diagram of an
operator in An [t].

DEFINITION 1.4.1 Let We call the differential operator

the homogenisation of P.
We denote by 7r: N2n+l -+ N2n the projection defined by 7r(k, a,,8) = (a, ,8).

We consider on N2n+l the total order denoted -L, thus defined

This order on N2n+ is a well ordering compatible with the sum.

DEFINITION 1.4.2 If H = Ek,a,,Bhk,a,,Btkxaa,B is an element of An[t] we call
the greatest element, with respect to the total order -L, of the Newton diagram of
H the privileged exponent of H relatively to « L (and we denote it by exp-L (H)).
The monomial of H whose exponent is equal to the privileged exponent is called
the initial monomial of H and we denote it by In-L (H). The coefficient of the
initial monomial of H is called the initial coefficient of H and we denote it by
c (H). We write exp(H), In(H) and c(H) when no confusion is possible. It is
useful to use the following notation: H = H - In(H).

LEMMA 1.4.4 For all Hi in An [t], P and Q in An, the following relations hold
(where exp denotes the exponent either for « L or for L)

1.5. PARTITIONS OF N2n+l. DIVISION IN 4n[t]
Given an element ({LI, ..., ,4r) of (N2n+l)r, a panition (Ai , Ar, A) of N2n+ 1
is associated with it in the following way
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THEOREM 1.5.1 Let (Pi.... Pr) be in An. We denote by (A i , ... , Or, A) the
partition ofN2n+l, associated with (exp(h(Pi ) ) , ... , exp(h(Pr))). Then, for any
H E An [t] there exists a unique element (Qi , ... , Qr , R) in An[t]r+l such that

The proof is classical and left to the reader (see [3]).

Remark 1.5.2 Let (a,,8) E N2n. We say that N(H) is dominated by (a,,8)
if for any exponent (k’, a’, 0’) in N(H) we have (a’, 0’) $ L (a, 0). If in the
statement of the division theorem N(H) is dominated by (a,,8) the same is true
for N(R) and for N (Q i h (Pi» with i = l, ... , r.

1.6. SEMISYZYGIES

Let G1, G2 be two non-zero elements in An[t]. We denote {ti z = exp-,, (Gi) and
N, = lcm(Ecl, {t2). Let us write m = vI + {LI = v2 + {L2. We consider the operator
S (G 1, G2) = Mi G 1 - M2G2 where Mi is the monomial with exponent vi and
with coefficient llc(Gi). We call it the semisyzygy relative to (G1, G2). One can
give a similar definition for operators in Dn or An.

PROPOSITION 1.6.1 Let F = {PI, ..., P, 1 be a system of generators of the ideal
lof An such that, for any (i, j), the remainderofthedivisionofS(h(Pi), h (Pj» by
(h(Pl),’ ... , h(Pr)) is equal to zero, modulo (t - l)An[t]. Then F is a L-standard
basis of I.

1.6.0.3 Proof. We denote A = Ui=a (exp(Pi) + N"). It is enough to prove that
EL(I) C A. Let P E I. We write P = Z_lQiPi. We set,
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Let {zo?. " i s} be the set of indices where (a,,8) is reached. If s = 0 then

exp(P) = exp(Qi.Pi,,) e A. Suppose, therefore, that s &#x3E; 1. We write

Thus we have

where Mi, is a monomial in A,, [t] such that

Let us denote d’ = d -lal-B,8I. We have (d’,a,,8) = exp(td-dilh(QilPil)) for
l = 0,...,s and thus (d’, a, (3) = v + {L for some v e N2n+l. Let M be the
unitary monomial such that exp(M) = v. Thus we have exp(td-d ik h(Qik» =
exp (MMik) = v + pik for k = 0, 1. Let us denote by Ck the unique scalar such
that

for k = 0, 1. We have
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all these equalities being considered modulo (t - I) A,, [t]. Thus we can write

where

with

Thus if we set Qi = Hi,,=, we get P = E 1 QPi with max, f EXPL (Q.pi) i =
1, ....r 5 L (a, 0) and eXPL (QZo PZO ) L (a,,8) after 1.5.2. This proves the propo-
sition by induction on s and on (a, 0), since on the other hand ordT(QiPi) remains
bounded by d. 0

1.7. CONSTRUCTION OF A STANDARD BASIS

The notations are those of 1.4. In particular we recall that L is a linear form with
non-negative integer coefficients and that the total ordering (denoted L) is defined
on N2n by

We also recall that we consider on N2n+l the total order denoted -L, defined by:

This order on N2n+1 1 is a well ordering compatible with the sum. Let Pl , ... , Pr
be operators in An. The aim of this section is to build a standard basis for the ideal
I, in Dn, generated by Pl , ... , Pr . Given P’ E An[t] and P’ = i 1 QZh (Pi ) + R
a division (see 1.5) in An[tJ, we have by construction
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If P’ = h(P) with P E I we have in addition Rlt=l E I. But h(Rt-1 ) may have
a privileged exponent different from exp(R) and it is therefore even possible
that 7r(exp(h(Rlt==I))) -# 7r(exp(R)) (see 1.4). Thus, in particular, we can have
exp( h (Rlt== )) e A . situation, a non-zero remainder does not necessarily produce a
new privileged exponent in EL(I). In order to overcome this difficulty we use the
following algorithm

PROPOSITION 1.7.1 Let PEAn[t]. Let R(p),for p E N, be the sequence of
operators in An [t], defined as follows

. R(l) is the remainder of the division of P by (h(P1), ... , h(Pr)).
e For p &#x3E; 2, R(P) is the remainder ofthe division ofh (R(P - 1) | t= 1 ) by (h(Pl ), ... ,

h (Pr ) ) .
Then there is a unique s such that

Furthermore, for any p we can write

where

we have

1.7.0.4 Proof. By 1.5 we can write

We write also in a unique way, R(l) = h (R(l) 1 t= 1) + (t - 1) W(l). We write in the
same way
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and R(p) = h(R(P)lt=,)+(t-I)W(P).LetAfpbe the Newton diagram of h(R(P)lt=,)
and Yp- = NP B A. For any p such that A p- : 0, let (kp, ap, ,8P) = max-L Yp- and
dp = kP + 1 ceP + I,8PI . Let (k’, a’, 0’) E N(R(p)). By 1.5.2 we have: k’ + la’i +
lo’l  dp-l and one of the two following conditions

A point (k", ce’, 0’) in the Newton diagram of h(R(p)lt==I), comes necessarily
from a point (k, a’, ,8’) in the Newton diagram of R(P) and in the first case, the
degree condition implies k/l  k’ hence (k", a’, ,8’) E A. From this we deduce:
(kp, ap , OP) -L (kp-1, aP-l , ,8p-l ). Since -L is a well ordering, there is a unique s
such that TV,--l 0 and À§ = 0. By division (see 1.5) we get R(") = h(R(s) It.1)
for any s’ &#x3E; s. It remains only to write

DEFINITION 1.7.2 We call R( s) the remainder of the iterated division with reho-
mogenisation of the intermediate remainders (or simply the iterated remainder).
We denote it by

PROPOSITION 1.7.3 Let:F = {PI, ..., Pr} C An be a system of generators of
the ideal I of An such that for any (i, j), the iterated remainder of the division
of S(h(Pi), h (Pj» by (h(Pl), ... , h(Pr)) is equal to zero, modulo (t - 1) An [t] -
Then F is a L-standard basis of I.

1.7.0.5 Proof. The proof is similar to the proof of 1.6.1, using the properties of
quotients and remainders in the iterated division. 0

1.8. ALGORITHM

Let Pl,..., Pr be elements of An . We show here how to build a standard basis
(relative to a form L) of the ideal I generated by the Pi. If for any (i, j), i  j, we
have
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then by 1.7.3, {Pl, ... , Pr } is a standard basis (relative to L) of I. If there exists
(i, j ) with i  j such that

we set

and we repeat this process with (Pi , ..., Pr, Pr+ l} as a system of generators of I.
In this way we build a family f Pl, ..., Pr, Pr+1, ..., Pr+s, ... ) in I such that, if
Pr+j+l 1 -# 0 then

This process stops because N2n+l is noetherian.

Remark. 1.8.1 The algorithm presented above is valid for any ordering N2n
compatible with the sum. It allows us for example to compute the multiplicity at a
point of the characteristic variety.

2. The finiteness of the number of slopes. Computing the slopes

respect to F and another with respect to V.

DEFINITION 2.1.1 Let I be an ideal of An (or Dn) and let L -# F, V be a
linear form. We say that L is a slope of An /I (or of VnlVnl) if grL(l) is not
bihomogeneous with respect to the filtrations F and V.

DEFINITION 2.1.2 Let P be an operator of Dn . We call the convex hull of the set

where Y (P) is the Newton diagram of P (see 1.1.1 ), the Newton polygon of P
and we denote it by P(P).

Remark 2.1.3 If P is an operator in Dn then the slopes of Dn /DnP are the
slopes of the Newton polygon of P.

2.2. TWO TWIN LEMMAS

In this section L, L’, L", L(I), L(2) , ... are linear forms with non negative coeffi-
cients (non necessarily rationnals). The notation L  L’ means slope(L) 
slope(L’).



120

LEMMA 2.2.1 Let I be an ideal of An and let L -# V be a linear form. There exists
a linearform L(I) with L(I) &#x3E; L such thatforanyform L’, such that L(I) &#x3E; L’ &#x3E; L,
we have

2.2.0.6. Proof. In the following proof we use a linear form L with eventually
irrational slope, and the existence of a standard basis for any L. Let t Pi,... , P, 1
be a family of elements of I such that

Let L(l) be a form such that L(l) &#x3E; L and such that 0,L(l) (Pi) = aV (aL(Pi)) for
i = 1,..., r. In particular, for any form L’ such that L (1) &#x3E; L’ &#x3E; L we also have

aL’ (Pi) = 0,V (aL(Pi))’ Thus, by Lemma 1.3.3 we have grV (grL(l)) C grL’ (j).
Let us consider the opposite inclusion. After having increased, if necessary, the
family f Pl, ... , Pr }, we can suppose that the homogenized elements built from the
operators aL (Pi) constitute a standard basis of the homogenized ideal h (grL (l) )
with respect to the ordering -L’, Let P E I. We have QL (P) = r ÀiaL (Pi), with
ordL’(AiO’ L (p,»  ordL,(aL(p)). We set P) = P - Z-lAiPi where Ai e A,,,
is the obvious preimage of Ài. We have

· Since we carried out a division with respect to -LI, OrdL’ (P) &#x3E;1 ordL’ (lliPi ) .
If ordL, (p(I))  ordL, (P) then

where d = ordL, (P) and di = ordL, (Pi) - If ordL, (p(I)) = ordL, (P) we do the
same with P(l). Thus we build a sequence P(’), s &#x3E;, 1, such that

If L is rational, and since the sequence ordL (p( s)) strictly decreases, there is an
integer s such that ordL, (p(s+I))  ordL, (p(s)) whence
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We set (ai, (3i) = eXPL(Pi). If L is irrationnal, the only point ofP(Pi) on the lines
L(a,b) = L(I,8il,,81 - ai) andL’(a,b) = L’(I,8il,,Bi - al) is (l,Bil ,,Bi -ai) .
Hence, P(Pi), without its vertex, is included in the sector {L( a, b)  L( 10’ 1 ,,8i -
a,) In IL’(a,b)  L’ ( I,C3z I of -ai) l. This proves that we only have to deal with
a finite number of points of P(P) to obtain ordl’ (P(’+ 1»  OrdL’ (P(’» - CI

LEMMA 2.2.2 Let I be an ideal of An and let L f= F be a linear form. Then there
is a linear form L (2) with L (2)  L such that for any form L’ with L (2)  L’  L

we have

2.2.0.7 Proof. The proof is the same as in 2.2.1, provided that we write F instead
of V. D

2.3. FINITENESS OF THE NUMBER OF SLOPES

PROPOSITION 2.3.1 Let I be an ideal of An. Then the number of slopes of the
module Ani l (or of the module VnlVnl) is finite.

2.3.0.8 Proof. This is a corollary of the twin lemmas, because each form L is
in an open set where there is at most one slope, namely the form L itself. Since
we included the case of a linear form L with irrational slope, we can end by a
compactness argument. ~

2.4. ALGORITHM

The effective determination of the slopes of An /I is based on the following result,
analogous to Assi’s in [ 1 ], in which he computes the critical tropisms of Lejeune-
Teissier [7].

THEOREM 2.4.1 Let L -# V and let { Pl , ... , P, 1 be a system of generators of the
ideal I inducing a standard basis of grv (grL (l) ). Then, there is a rational linear
form L" and a system of generators {P{ , ... , P:} such that

Remark 2.4.2 The proof below shows that the construction of the form L" and
of the system f Pl, ... , P;} is algorithmic starting from f Pl, .... P, 1 and from L.
On the other hand, we have proved the finiteness of the number of slopes (see 2.3. 1),
and in addition, according to 1.8, we can build a family satisfying the hypotheses
of the theorem starting from any system of generators of I. Therefore, this proof is
an algorithm to compute all the slopes of A,,II (or of D/DI), starting from F.
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2.4.0.9 Proof. Starting from a system of generators of I let us compute a family
f Pl,... , P, 1 in I such that

Let L(l) be the smallest linear form &#x3E; L such that there exists 1  i  r such
that oL(l) (Pi) is not bihomogeneous (in particular this form is rational). If none
exists we set L(l) = V and the theorem is proved. We suppose L(l) :1 V. Hence
for any form A, L(l) &#x3E; A &#x3E; L, we have 0,A(p,) = 0,1(0,L (Pi». By the Lemma
2.2.1 we have grA (l) = gr’ (grL (I». Let io be the smallest i e 11, ... , r 1 such
that aL(l) (Pio) is not bihomogeneous. We suppose io = 1. We set aL(l) (PI) =
OrV(O,L(pl»+rs. M(ak,b where M(ak, bk )is a bihomogeneous element such
that ordp(M(ak,bk)) = ak and ordv(M(ak,bk)) = bk. We set al 1 &#x3E; ... ° &#x3E; as.

We can write, using a division,

where the ,i’S and -y are bihomogeneous and expv(-yjav(o,’(Pj»)Vexpv
(M (ai, bi». We have

e If y 0 then M(al, &#x26;i) is not in grL (1) (I) hence this ideal is not bihomoge-
neous. The theorem is proved in this case.

. If y = 0 we write

where rj is the obvious preimage of -yj. Since ordL (M(al , bl ) )  ordL (Pl ) we
have oL (p(l» - 0,L (p,) and since we performed a bihomogeneous division,
we have oA (p(l» - 7V (0,L (pl» for any form A such that L(I) &#x3E; A &#x3E; L.

In this last case, if aL(l) (Pl(l)) is not bihomogeneous it can be written aL(1) (Pl(l)) =
aV(aL(Pl(l))) + EjlM(aj,bj) where M(aj,bj) is bihomogeneous with

ordp(M(aj, bj)) = aj, ordv(M(aj, bj)) = bj and aj  a i for any j. We can

then repeat this process with PI( 1) instead of Pi. This process stops since the set
{(a,b)EN x Zia  al andL(I)(a,b) = ordL(l)(PI)} is finite. Hence we can

replace Pi by Pl such that, either aL(1) (Pf ) §É grV (grL (l)) (in which case grL(l) (l)
is not bihomogeneous) or aL(l) (Pl ) is bihomogeneous. In this last case, we repeat
with {P{, P2,..., Pr}. Let us remark that
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This process stops because, for any 1  i # r, the set {( a, b) E N x Z 1 L(I) (a, b) z
ordL(l) (Pi), b &#x3E; ordv(aL(Pi)) and a  ordp(aL(Pi))} is finite. 0
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