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CONTROLS INSENSITIZING THE NORM

OF THE SOLUTION OF A SEMILINEAR HEAT

EQUATION IN UNBOUNDED DOMAINS

LUZ DE TERESA

Abstract� We consider a semilinear heat equation in an unbounded
domain � with partially known initial data� The insensitizing problem
consists in �nding a control function such that some functional of the
state is locally insensitive to the perturbations of these initial data� For
bounded domains Bodart and Fabre proved the existence of insensitiz�
ing controls of the norm of the observation of the solution in an open
subset of the domain� In this paper we prove similar results when � is
unbounded� We consider the problem in bounded domains of the form
�r � ��Br� where Br denotes the ball centered in zero of radius r� We
show that for r large enough the control proposed by Bodart and Fabre
for the problem in �r� provides an insensitizing control for our problem
in ��

�� Statement of the problem

Let � � Rn� n � � be an open unbounded set of class C� uniformly with
boundary �� �see section ��� for a precise de�nition�� Let T � 	
 � and
� be two open bounded subsets of �� We consider the following parabolic
semilinear system���� zt �
z � f�z� � � � h�� in Q � �� �	� T �

z � 	 on � � ��� �	� T �
z�x� 	� � y��x� � ��z

� in �
�����

where f is a globally Lipschitz C� function de�ned on R
 with f�	� � 	 and
with bounded second derivative�

The state equation ����� has incomplete data in the following sense�

� � and y� are given respectively in L��Q� and L�����
� z� � L���� is unknown and kz�kL���� � ��
� �� � R is unknown and small enough�
� h � h�x� t� is a control term to be determined in L�����	� T �� and �� is

the characteristic function of the set � where the control is supported�

J� L� Lions ��� has introduced the notion of insensitizing control and later
Bodart�Fabre ��� generalize it in the following way� Let � be a di�erentiable
functional de�ned on the set of solutions of ����� and let � � 	� we say that
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��� LUZ DE TERESA

the control h
 ��insensitizes ��z� if������z�x� t� h� ����

���
j����

��� � �	 �����

This de�nition means that the functional � is locally ���insensitive� to the
perturbation ��z

�� There are of course many possible choices of � but
insensitivity condition ����� is not of use unless it may be reformulated as a
more explicit control problem� This is why it seems reasonable for � to be
the square of the L� norm of the state in some observation subset � � ��
When

��z� �
�

�

Z T

�

Z
	
z��x� t�dxdt �����

it can be proved �see ��� or Appendix A� that the condition of ��insensitivity
����� is equivalent to an approximate control problem� This equivalence is
given in the following proposition� Note that the original notion of insensi�
tizing control proposed by Lions ��� �which corresponds to � � 	 in ������
can be reformulated into a exact control problem
 while the one given by
Bodart and Fabre leads to an approximate control problem�

Proposition ���� Let y and q be the solutions of the following cascade
system� ���

yt � 
y � f�y� � � � h�� in Q
y � 	 on �
y�	� 	� � y� in �

�����

��� �qt �
q � f ��y�q � y�� in Q
q � 	 on �
q�	� T � � 	 in �

�����

where �
�
is the characteristic function of the observation subset ��

Then the condition ����� of ��insensitivity is equivalent to

kq�	� 	�kL���� � �	 �����

Remark ���� Observe that equation ����� is solved backward in time� So
in ����� we are asking for a control h such that the corresponding solution of
����� enters the ball in L���� of radius � centered in zero after a time interval
of length T � This is precisely an approximate control problem� However
 the
control h acts indirectly in the equation of q through the variable y� This
makes this approximate controllability problem technically more di�cult�
For classical approximate controllability in bounded domains we refer to ����
The case of unbounded domains has been studied in ����

When � is a bounded set
 Bodart and Fabre ��� proved the following
result�

Theorem ���� Assume that � is bounded� If � � � �� 	 and the function
f is of class C� and globally Lipschitz	 then for every � � 	 there exists
h � L��� � �	� T �� ��insensitizing the functional ���
��
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In order to prove Theorem ��� Bodart and Fabre �rst show the approxi�
mate controllability of the double linear system with potentials����


t �

 � a�x� t�
 � h�� in Q

 � 	 on �

�	� 	� � 	 in �

�����

��� ��t � 
� � b�x� t�� � 
�� in Q
� � 	 on �
��	� T � � 	 in �

�����

with a�x� t�� b�x� t� � L��Q�� Then
 by a �xed point method they obtain
the ��insensitizing condition for the cascade system ������������ This �xed
point technique
 based on Schauder s Theorem
 uses the boundedness of �
and the compactness of Sobolev s embeddings�

In this paper we prove the following results for unbounded sets ��

Theorem ���� Let � � Rn be an open and unbounded set with boundary of
class C� uniformly� Assume that � � � �� 		 the function f is of class C�	
globally Lipschitz and with bounded second derivative	 f�	� � 	� Suppose
that the data � � L��Q� and y� � L���� have compact support	 then for
every � � 		 there exists a control h � L��� � �	� T ��	 ��insensitizing the
functional ���
��

In this theorem we assume
 in particular
 the data � and y� to have
compact support� This condition can be eliminated in space dimensions
� � n � � �

Theorem ���� Suppose that � � n � �� Assume that �	 ��� and f satisfy
the assumptions of Theorem ���� Then for every � � 		 � � L��Q� and
y� � L���� there exists a control h � L��� � �	� T ��	 ��insensitizing the
functional ���
��

Furthermore	 if n � �� the same holds for data � � L��	� T �L���� �
Ln������ and y� � L���� � Ln�����	

To prove Theorem ��� we use an approximation technique introduced in
���� For data � and y� with compact support we consider the problem in
bounded sets of the form �r � Br � �
 where Br denotes the ball centered
at 	 and radius r� We show that the controls hr proposed in ��� are uniformly
bounded in L��� � �	� T ��� This fact with some a priori estimates allow to
prove that for r large enough the control in the restricted domain provides
an ��insensitizing control for the functional ����� in the whole domain ��
Observe that the conditions on f are more restrictive than those of Theorem
��� �one more bounded derivative is required�� Since � is not bounded
 we
need to ask f�	� � 	 in order to ensure that the solutions belong to L��Q��
As we will see the restrictions over the derivatives appear in a natural way
when we estimate the norm

kq�	� 	�� qr�	� 	�kL���r� ���!�

where y� q� yr and qr are the solutions of��� yt �
y � f�y� � � � hr�� in Q
y � 	 on �
y�	� 	� � y� in �

����	�

Esaim� Cocv� June ����� Vol� 	� pp� �	
����



��� LUZ DE TERESA��� �qt �
q � f ��y�q � y�� in Q
q � 	 on �
q�	� T � � 	 in �

������

��� yr�t � 
yr � f�yr� � � � hr�� in Qr

yr � 	 on �r

yr�	� 	� � y� in �r

������

���
�qr�t �
qr � f ��yr�qr � yr�� in Qr

qr � 	 on �r

qr�	� T � � 	 in �r

������

respectively
 and Qr � �r � �	� T �
 �r � ��r � �	� T �	
The paper is organized in the following way� In section � we study the

existence and properties of the minima of some functional arising in the in�
sensitizing control of linear system� In particular
 section ��� is devoted to
prove a uniform bound of these minima� In section � we prove the conver�
gence of the solutions of system ������������� in the restricted domain Qr

to the solution in the global domain when the data � and y� have compact
support� In section � we prove Theorem ���� The proof of Theorem ��� is
given by density arguments in section �� For the sake of clarity of the expo�
sition some of the most technical proofs are included in section � at the end
of the paper� In the Appendix we give an sketch of the proof of Proposition
����

We are going to consider the following hypotheses throughout the paper
excluding section � in which �H�� is omitted�

�H�� f � C��R�
 globally Lipschitz
 f�	� � 	
jf ��jL� � M � 

 jf �jL� �
L �
�

�H�� � � Rn is an unbounded open set of class C� uniformly�
�H�� �� � � �
 are bounded open sets such that � � � �� 	�
�H�� h�� � L��Rn� �	� T ���
�H�� � � L��Q� and y� � L��Rn� with compact support� Moreover
 we �x


 � 	 such that supp y� � B�
 supp � � �B� � �	� T ��
 ��� � B��

Observe that the regularity of the domain � is not essential for the re�
sults of this paper since we are asking homogeneous Dirichlet boundary
conditions� Everything can be done in a connected
 open and unbounded
domain �� Nevertheless
 we prefer to work in an unbounded domain of class
C� uniformly in order to use the regularity that the elliptic theory provides
us and to avoid further technical developments� This is used
 in particular

during the proof of Theorem ����

�� Study of a functional arising in the controllability

of the linearized system

���� Preliminaries

For the sake of completeness we recall
 �rst of all
 the de�nition of domain
of class Cs uniformly� We say that a domain � �bounded or not� is uniformly
regular of class Cs�s � �� �see ��� or �����
 if there exists an integer r � 	
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and sequences fNjg of open subsets of Rn and homeomorphisms f�jg of Nj

on the unit ball in Rn such that�

i� Any �r � �� distinct sets Nj have empty intersection�
ii� �j�Nj��� � fx � jxj � �� xn � 	g� �j�Nj���� � fx � jxj � �� xn � 	g�
iii� If N �

j � ���j �jxj � ����� �jN �
j contains the ���r��neighborhood of ���

iv� For y � Nj � x � �j�Nj� we have j�D��j��y�j � r� j�D����j ��x�j � r


for all j�j � s	

For 	 � t� � t� we denote by X��t�� t�� �� the following Banach space�

X��t�� t�� �� � L��t�� t��H
�
������H��t�� t��L

�����

endowed with the natural norm

k kX��t��t�
�� �
�
k k�L��t��t�
H�

�����
� k k�H��t��t�
L�����

����
	

Let b�x� t� � L��Q� and 	 � t� � t�� We recall �see ���
 Theorem !��

page ���� the existence of constants C � 	 �depending on b�� and T � and
Ct��t� � 	 �depending of b��� t� and t�� such that
 for every k � L��Q� and
w� � L����
 the solution w of���

wt �
w � b�x� t�w � k in Q
w�x� t� � 	 on �
w�x� 	� � w��x� in �

satis�es �
kwkL����T 
L����� � C�kw�kL���� � kkkL��Q��
kwkX��t��t�
�� � Ct��t��kw

�kL���� � kkkL��Q��	
�����

Let us de�ne now for ar�x� t�� br�x� t� � L��Qr�
 �
d � L���r� and ��r �

L���r�

Jr��
�
r� ar� br� �

d� �
�

�

Z
�����T �

j�rj
�dxdt� �k��rkL���r� �

Z
�r

�d��rdx

where �r and �r are solutions of��� �r�t �
�r � br�x� t��r � 	 in Qr

�r � 	 on �r

�r�	� 	� � ��r in �r

�����

���
��r�t � 
�r � ar�x� t��r � �r�� in Qr

�r � 	 on �r

�r�	� T � � 	 in �r	
�����

For each bounded subdomain �r � ��Br
 that is for each r � 	 �xed
 Bo�
dart and Fabre proved that Jr��� ar� br� �d� reaches its minimum at a unique

point "��r � L���r�� Moreover
 let � "�r� "�r� denote the solutions to �����������
corresponding to data "��r � If �r is the solution of ����� �in Qr� a � ar� b � br�

corresponding to h � "�r
 then

k�r�	�� �dkL���r� � �	

That is h � "�r is an approximate control for the cascade linear problem in
the truncated domains�
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For �� � L���r� �resp� � � L��Qr�� we denote by f�� �resp� e�� the
extension by zero of �� �resp� �� to � �resp� to Q�
 i�e�

f�� �

�
�� in �r

	 in �n�r
� e� �

�
� in Qr

	 in QnQr	

���� Uniform bound on the minimizers

The following result provides a uniform bound of the controls proposed
in the previous section for the linear system in the truncated domains�

Proposition ���� Let f eargr� febrgr be bounded sequences in L��Q�� Sup�

pose that f e�drgr � L���� converges strongly in L���� to �d when r 
 
�
Then	 there exists C � 	 independent of r	 such that

k "��rkL���r� � C for every r � 	 �����

and

k "�rkL��Qr� � C for every r � 	 �����

where "��r is the minimizer of Jr�	� ar� br� �
d
r� and "�r is the corresponding

solution to ���
��

The proof of Proposition ��� needs the following two results� The �rst
one is a unique continuation property
 a consequence of a result due to
Saut and Scheurer� For the proof see ����
 Theorem ���� The second one is a
consequence of a classical compactness result �see ����
 Theorem ��� However
since � is unbounded
 its proof is technical and computations are long� To
make the paper easier to read we give a detailed proof of Proposition ��� in
section � at the end of the paper�

Theorem ���� Let � � Rn be an arbitrary open and connected subset� Let
Q � �� �	� T � and a�x� t� � L��Q�� Let � be an open and nonempty subset
of � and � � L�loc�	� T �H�

loc����	 such that�
��t �
�� a�x� t�� � 	 in Q
� � 	 in �� �	� T �	

Then	
� � 	 in Q	

Proposition ���� Let fcrgr � L��Qr� be a sequence such that fecrg is

bounded in L��Q�	 ��r � L���r� such that ff��rgr is bounded in L���� and
gr � L��	� T �L���r�� with f egrgr bounded in L��	� T �L������ Let �r be the
solution of the following system����

�r�t � 
�r � cr�x� t��r � gr in Qr

�r � 	 on �r

�r�	� 	� � ��r in �r

�����

Then	 there exist �� � L����	 g � L��Q�	 � � L��	� T �L������C��	� T ��
H��
loc ����� and a subsequence �still denoted by the subindex r� such thatf��r � �� weakly in L����� �����

egr � g weakly in L��Q�� �����
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e�r � � weakly in L��Q�� ���!�

e�r 
 � strongly in L���� T �L�loc����� �	 � � � T � ����	�

e�r 
 � strongly in C��	� T ��H��
loc ����� ������

e�r�t� 
 ��t� strongly in L�loc���� �t � �	� T � ������

as r 
 
� Moreover	 � belongs to L�loc�	� T �H�
loc���� and there exists c �

c�x� t� � L��Q� such that � � ��x� t� satis�es�

�t �
� � c�x� t�� � g in Q� ������

in the sense of distributions�

Proof of Proposition ���� First of all we observe that ����� implies ����� once
����� is proved� For the proof of ����� we argue by contradiction�

It is clear that

	 � Jr�	� ar� br� �
d
r� � Jr� "��r� ar� br� �

d
r� for every r	 ������

Suppose that there exists a subsequence f "��rgr such that

k "��rkL���r� 

 r

	 ������

Let

��r �
"��r

k "��rkL���r�
	

Then

Jr� "��r � ar� br� �
d
r�

k "��rkL���r�
� k "��rkL���r�

�

�

Z
�����T �

j�r�x� t�j
�dxdt ������

� ��

Z
�r

�dr�
�
rdx

where �r and �r are solutions of system��� �r�t �
�r � br�x� t��r � 	 in Qr

�r � 	 on �r

�r�	� 	� � ��r in �r

������

��� ��r�t � 
�r � ar�x� t��r � �r�� in Qr

�r � 	 on �r

�r�	� T � � 	 in �r	
������

It is clear that we can apply the results of Proposition ��� to the sequence
�r� Let us denote by r the subsequence stated in Proposition ��� and let �
�resp� ��� be the limit of �r �resp� ��r �� Observe that if we put t� � T � t
then �r�t

�� satis�es ����� with cr�x� t
�� � ar�x� t

��
 gr � �r�� and ��r � 	�
Since k��rkL���r� � � by ����� we know that f�r�� is uniformly bounded

in L��	� T �L����� and therefore �r veri�es the hypotheses of Proposition
���� We can choose a subsequence �r �of that chosen for �r� verifying the
conclusions of Proposition ���� On the other hand
 for r large enoughZ

�����T �
j e�rj� �

Z
�����T �

j�rj
�
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and therefore in view of ���!� lim inf r��

R
�����T � j�rj

� �
R
�����T � j�j

�	 Then

by ������
 ������ and since k "��rkL���r� 

 necessarilyZ
�����T �

j�rj
� 
 		

Then � � 	 in � � �	� T �� But ������ asserts that � veri�es ��t � 
� �
a�x� t�� � ��� for some a � L��Q�� That is
 � � 	 in � �� � �	� T �	

Proposition ��� asserts that � belongs to L�loc�	� T �H�
loc���� and since

� � � �� 	 we can apply the Unique Continuation Theorem ��� obtain�
ing � � 	 in � � ��� T �	 Moreover
 by Proposition ���
 we know that
� � C��	� T ��H��

loc����� Therefore

��	� � �� � 	 in �	

On the other hand


Jr� "��r� ar� br� �
d
r� � k "��rkL���r����

Z
�
�dr
f��rdx�

and then Jr� "��r� ar� br� �
d
r� 
 
� which contradicts ������� Therefore �����

is proved� �

�� Convergence of the solutions defined in the

approximate domains

The main purpose of this section is to prove the following result�

Proposition ���� Assume that �H����H
� hold� Let fhrgr � L�����	� T ��
be a uniformly bounded sequence of controls� For each r � 	 let qr be the
solution to ����
� corresponding to hr and q � q�hr� be the solution of ������
corresponding to the same control� Then kq�	��qr�	�kL���r� 
 	 as r 

�

Remark ���� In particular kq�	�kL���� � kq�	� � qr�	�kL���r� �
kq�	�kL���n�r��kqr�	�kL���r�� That is
 given � � 	
 if we can �nd controls hr
verifying the hypotheses of Proposition ��� and such that kqr�	�kL���r� � ���
then for r large enough q � q�hr� veri�es kq�	�kL���� � �� That is
 hr will
be an ��insensitizing control for the problem in the unbounded domain and
in that case the main result for data with compact support �Theorem ����
would be proved� �

In order to prove Proposition ��� we need some a priori estimates stated
in the following lemmas�

Lemma ���� Assume that �H����H
� hold� Let y� q be the solutions of the
cascade system� ���

yt � 
y � f�y� � � � h�� in Q
y � 	 on �
y�	� 	� � y� in �

�����

���
�qt �
q � f ��y�q � y�� in Q
q � 	 on �
q�	� T � � 	 in �	

�����

Then	 there exists C � 	 independent of r such that for every r � 
�
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i� kykL���r� �
C

�r���n

�
ky�kL���� � k�kL��Q� � khkL�������T ��

	
ii� kqkL���r� �

C
�r���n

�
ky�kL���� � k�kL��Q� � khkL�������T ��

	
	

Moreover	 since supp y� � B�	 supp � � B� � �	� T �	 � � B� we have that

iii� kykL���r� �
C

�r���n

�
ky�kL���� � k�kL��Q� � khkL�������T ��

	
	

Lemma ���� Assume that g � L��#r�	 with #r � �Br � �	� T �� Let w
satisfy� ���

wt � 
w � 	 in Br � �	� T �
w � g on #r
w�x� 	� � 	 in Br 	

�����

Then	 there exists C � 	 independent of r such that

kwkL��Br����T �� � C�T �rn��kgkL���r� �r � 	 �����

and	 in particular	

kw�T �kL��Br� � Crn��kgkL���r� �r � 		 �����

Let us assume that Lemma ��� and Lemma ��� hold in order to prove
Proposition ���� The proof of these lemmas will be given at the end of this
section�
Proof of Proposition 
��� Let � � y � yr with y solution of ����	� and yr
solution of ������ both corresponding to the control hr 
 � � q � qr with q
solution of ������ and qr solution of ������� Then � and � are solutions of
the following system���� �t �
� � f�y�� f�yr� � 	 in Qr

� � y on �r

��	� 	� � 	 in �r����
��t �
� � f ��y�q � f ��yr�qr � ��� in Qr

� � q on �r

��	� T � � 	 in �r	

We write � � v � � where � and v verify
 respectively
��� ��t �
� � f ��y�q � f ��yr�qr � ��� in Qr

� � 	 on �r

��	� T � � 	 in �r	
�����

���
�vt �
v � 	 in Qr

v � q on �r

v�	� T � � 	 in �r	

In order to estimate the norm of ��	� in L���r� we are going to estimate
the norms of v�	� and ��	� in L���r�� Nevertheless
 as we shall see
 in order
to estimate the norm of ��	� it is necessary to estimate the norm of v in
L��Qr�� That is the �rst thing we are going to do�

Let "w be the solution of�

�

�
� "wt �
 "w � 	 in Br � �	� T �

"w �

�
jqj on ���r � �Br�� �	� T � � ��

r

	 on #rn�
�
r

"w�	� T � � 	 in Br �
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where we recall that #r denotes �Br � �	� T �	
Since q � 	 on �rn�

�
r
 by the maximum principle


kvkL��Qr� � k "wkL��Br����T ���

but in view of Lemma ��� �noticing that "w�t�� satis�es �����
 with t� � T � t�

k "wkL��Br����T �� � Crn��kqkL���r�

and

k "w�	�kL��Br� � Crn��kqkL���r�	

That is


kvkL��Qr� � Crn��kqkL���r� �����

and

kv�	�kL���r� � Crn��kqkL���r� �����

with C � 	 a generic constant independent of r�
In order to estimate k��	�kL���r� we multiply ����� by � and integrate by

parts�

�
�

�

d

dt

Z
�r

j�j�dx�

Z
�r

jr�j�dx �

Z
�r

�f ��yr�qr � f ��y�q��dx�

Z
�r

���	dx	

We observe that

f ��y�q � f ��yr�qr � q�f ��y�� f ��yr�� � f ��yr��q � qr�

and then
��
�
d
dt

R
�r
j�j�dx�

R
�r
jr�j�dx

�M
R
�r
jq��jdx�L

R
�r
j��vjj�jdx�

R
�r
���	dx

with M � kf ��kL� � L � kf �kL� �
We conclude
 by Schwartz s and Gronwall s inequalities
 that

k��	�kL���r� � C
�
k�kL��Qr� � kq�kL��Qr� � kvkL��Qr�

	
� ���!�

with the constant C independent of r� In view of �����
 ����� and ���!� we
obtain that

k��	�kL���r� � C
�
rn��kqkL���r� � k�kL��Qr� � kq�kL��Qr�

�
	 ����	�

We proceed now to estimate kq�kL��Qr�� In this aim we observe that since
y belongs to L���r� by the maximum principle we see that � � L��Qr�
and k�kL��Qr� � CkykL���r� where C � 	 does not depend of r� That
implies that

kq�kL��Qr� � CkqkL��Qr�kykL���r� � CkqkL��Q�kykL���r�	 ������

Moreover
 proceeding as in the proof of ����	�
 we can prove that there
exists C � 	
 such that

k�kL��Qr� � Crn��kykL���r�	 ������

On the other hand
 multiplying ����� by q and ����� by y and integrating
by parts
 it is easy to see that

kqkL��Q� � C
�
ky�kL���� � k�kL��Q� � khr��kL��Q�

	
������
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From ������
 ������
 ������ and ����	� we obtain

k��	�kL���r� � C
h
rn��kykL���r���

ky�kL���� � k�kL��Q� � khr��kL��Q�
	
kykL���r�

�rn��kqkL���r�

i
	

In view of Lemma ���
 we obtain
 for every r � 

 that

k��	�kL���r� � C

�
rn��

�r� 
�n
�
� � ky�kL���� � k�kL��Q� � khr��kL��Q�

	��
	

Since the sequence hr is uniformly bounded
 we conclude the proof by notic�
ing that the right hand side converges to zero as r goes to 
� �

We proceed now to prove Lemma ���� In this aim we use the following
estimate for the solutions of the cascade system in Rn that is going to be
proved in section � at the end of the paper�

Lemma ���� Consider F a globally Lipschitz function of class C� with
F �	� � 	� Assume that y� � L��Rn� and g � L��Rn� �	� T �� have compact
support� We �x 
 � 	 such that supp y� � B�	 supp g � B� � �	� T �	 Let X
be the solution of the following system��

Xt �
X � F �X� � jgj in Rn� �	� T �
X�	� 	� � jy�j in Rn	

������

Then	 there exists a constant C � 	 independent of r	 such that for every
r � 
�

jX jL���r� �
C

�r � 
�n
�
ky�kL��Rn� � kgkL��Rn����T ��

	
where #r denotes �Br � �	� T ��

Remark ���� Following the same procedure it is easy to see that if $X sat�
is�es �

$Xt �
 $X � F � $X� � �jgj in Rn� �	� T �
$X�	� 	� � �jy�j in Rn�

then
 for every r � 
�

k $XkL���r� �
C

�r � 
�n
�
ky�kL��Rn� � kgkL��Rn����T ��

	
	

�

Proof of Lemma 
�
� Let S � Y � y
 R � Z � q where Y and Z solve�
Yt �
Y � f�Y � � j�j� jhj�� in Rn� �	� T �
Y �	� 	� � jy�j in Rn

������

�
�Zt � 
Z � LZ � Y �� in Rn� �	� T �
Z�	� T � � 	 in Rn�

������

where L � jf �j��
If we denote by �� and h� the negative parts of � and h
 respectively


then S and R satisfy���
St � 
S � f�Y �� f�y� � ��� � �h��� in Q
S � Y on �

S�	� 	� � �y�
�

on �
������
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��� �Rt �
R� LZ � f ��y�q � S�� in Q
R � Z on �
R�	� T � � 	 in �

������

We multiply ������ by �S� and integrate by parts�

�

Z
�
StS

� �

Z
�


SS� �

Z
�

�f�Y �� f�y��S� � �

Z
�

���� � h��� �S�	

Since S � Y on �
 Y � 	 and f is globally Lipschitz

�

�

d

dt

Z
�

�S��� �

Z
�

�rS��� � L

Z
�

�S���	

Then
 by Gronwall s inequality and since S�	�� � 	
 we obtain thatZ
�

�S��t��� � e�Lt
Z
�

�S�	����� e�Lt
Z t

�

Z
�
e��L
�rS������ � 	� � t � �	� T �

and therefore
S�x� t� � 	 � �t � �	� T �� a�e x � �	

We multiply ������ by �R� and integrate by parts�Z
�
RtR

� �

Z
�


RR� �

Z
�

�f ��y�q � LZ�R� � �

Z
�
SR��� 	

Since R � Z on �
 Z � 	 and SR� � 	 for almost every x � �
 we obtain

�
�

�

d

dt

Z
�

�R��� �

Z
�

�rR��� �

Z
�

��f ��y�q � LZ�R�	

Since Z � 	
 �f ��y�q � LZ � Ljqj � LZ � LjRj
 by Gronwall s inequalityZ
�

�R��t��� � 	� �t � �	� T �

and therefore
R�x� t� � 	� � t � �	� T �� a�e x � �	

That implies that

y�x� t� � Y �x� t�� q�x� t� � Z�x� t�� �t � �	� T �� a�e� x � �	

In the same way we can prove that

$Y �x� t� � y�x� t�� $Z�x� t� � q�x� t�� �t � �	� T �� a�e x � �

where $Y is the solution of ������ corresponding to data �j�j� �jy�j and
control �jhj��
 and $Z solves ������ when substituting Y by $Y �

We conclude the proof of i� by applying the results of Lemma ��� and
Remark ��� to Y and $Y � In order to obtain ii� we observe that we can apply
the results of Lemma ��� and Remark ��� to Z since if we put t� � T � t
then Z�t�� satis�es ������ with y� � 	 
 g � Y �� and F �Z� � �LZ� On the
other hand


kY �	kL��Rn����T �� � T ���j�j���kY kL��Rn����T ��	

Then
 applying ����� to ������ we conclude ii�� We obtain iii� from i� by
noticing that �H�� allows to �nd a constant independent of r such that the
L� norms of the data and the control are upper bounded by that constant
times their respective L� norms� �
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Proof of Lemma 
��� Consider �rst the case where r � � and suppose that
w solves ����� with r � �� Since g � L��#��� by the maximum principle we
know that

w�t� � L��B�� for every t � �	� T �	 ����!�

We consider the following transposed problem� for �� � L��B�� and t �
�	� T �� let � be the solution of the equation���

��t �
� � 	 in B� � �	� t�
� � 	 on #�
��x� t� � �� in B�	

Since �� � L��B�� we have that k��t�kHs�B�� � t�s��k��kL��B�� for 	 � s � �
�For the proof see Lions�Magenes �!��� Now
 if ��� � s � �
 we have that
��
�
 �t� belongs to L���B�� �see Triebel ����
 p� ��	�
 and



��d� �t�






L���B��

� Ct�s��k��kL��B��

and then



��d�





L���B�����t��

� C�B�� s�t
���s���k��kL��B�� �t � �	� T �	 ����	�

Multiplying ����� by � we obtain�Z
B�

w�t��� �

Z t

�

Z
�B�

��

��
g

and in view of ����	� we have

j

Z
B�

w�t���j � k
��

��
kL�����kgkL����� � C�B��t

���k��kL��B��kgkL�����	

Therefore

kw�t�kL��B�� � C�B��t
���kgkL����� ������

where �
� � � � �� s
 � � s � ��� and C�B�� is independent of t�

Let now w be the solution of �����
 %w�x� t� � w�rx� r�t� and %g�x� t� �
g�rx� r�t� � Then %w satis�es��� %wt �
 %w � 	 in B� � �	� T�r��

%w � %g on �B� � �	� T�r�� � %#�
%w�x� 	� � 	 in B�	

In view of ������



 %w

�
t

r�

�




L��B��

� C

�
t

r�

����

k%gkL������ �t � �	� T �

and then Z
Br

w��x� t�dx � rnC

�
t

r�

��

kgk�L���r�	

That is


kwkL��Br����T �� � CT
���
� rn��kgkL���r� �r � 	
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where C is independent of r� In particular
 we have obtained

kw�T �kL��Br� � Crn��kgkL���r� �r � 		

�

�� Study of the controls for the restricted domains

First of all we recall the controls proposed in ���� We introduce

F �s� �

�
f�s�
s if s �� 	

f ��	� if s � 		

Since f is of class C� and globally Lipschitz
 F � L��R��
Let � � 	
 y� � L����� � � L��Q� satisfying �H��� For r � 
 �xed and

given zr � L��Qr�� we write yr � 
r � %
r� qr � �r � %�r with %
r
 %�r solutions
of ���

%
r�t �
%
r � F �zr�%
r � � in Qr
%
r � 	 on �r
%
r�	� 	� � y� in �r

�����

���
�%�r�t �
%�r � f ��zr�%�r � %
r�� in Qr

%�r � 	 on �r

%�r�	� T � � 	 in �r	
�����

In ��� it is proved that there exists �r � L��Qr�
 such that if 
r� �r are the
solutions of ��� 
r�t � 

r � F �zr�
r � �r�� in Qr


r � 	 on �r


r�	� 	� � 	 in �r

�����

���
��r�t �
�r � f ��zr��r � 
r�� in Qr

�r � 	 on �r

�r�	� T � � 	 in �r	
�����

Then k�r�	� � %�r�	�kL���r� � �� That is


kqr�	�kL���r� � �	

Moreover
 �r� �r satisfy���
�r�t �
�r � f ��zr��r � 	 in Qr

�r � 	 on �r

�r�	� 	� � ��r in �r

�����

���
��r�t � 
�r � F �zr��r � �r�� in Qr

�r � 	 on �r

�r�	� T � � 	 in �r	
�����

with ��r � L���r� the corresponding minimizer of Jr�	�F �zr�� f
��zr���%�r�	���

Let us consider the nonlinear mapping�

&r � L��Qr� 
 L��Qr��

&r�zr� �
�
yr�zr� �r�zr��� kqr�	�kL���r� � ����r minimizing Jr

�
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In ��� was proved that &r has a �xed point such that�



















�



















�

�r�t � 
�r � f ��yr��r � 	 in Qr

�r � 	 on �r

�r�	� 	� � ��r in �r

��r�t �
�r � F �yr��r � �r�� in Qr

�r � 	 on �r

�r�	� T � � 	 in �r

yr�t �
yr � f�yr� � � � �r�� in Qr

yr � 	 on �r

yr�	� 	� � y���r in �r

�qr�t � 
qr � f ��yr�qr � yr�� in Qr

qr � 	 on �r

qr�	� T � � 	 in �r

kqr�	�kL���r� � �	

�����

Observe that in fact this result provides
 for each r � 	 �xed
 an ��insensi�
tizing control for the semilinear problem ���������� �in the restricted domain
�r�� We are going to prove that precisely these controls �r are uniformly
bounded in L��� � �	� T ���

Observe that Proposition ��� allows to prove this bound by just proving
the following�

Proposition ���� Let %
r� %�r be the solutions of ����������� corresponding
to F �yr�	 f ��yr� with yr the �xed point of the mapping &r and data y�� �
satisfying �H
�� Then e%�r�	� is relatively compact in L���� where e%�r�	� is
the extension by zero of %�r�	� to �	

Proof� First of all
 since f is globally Lipschitz we can proceed as in the
proof of Lemma ���� We observe that � � %
r
 � � %�r for every r � 	 where
�� � satisfy ��� �t �
� � L� � j�j in Q

� � 	 on �
��	� 	� � jy�j in ���� ��t �
� � L� � ��

�
in Q

� � 	 on �
��	� T � � 	 in �	

with L � jf �jL� �
On the other hand
 it can also be proved that $� � %
r
 $� � %�r for every

r � 	 where $�� $� satisfy���
$�t �
$� � L$� � �j�j in Q
$� � 	 on �
$��	� 	� � �jy�j in �

���
�$�t �
$� � L$� � $��� in Q
$� � 	 on �
$��	� T � � 	 in �	
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We observe that $� � 	 � � and then
 if we put "� � � � $�
 we get that
"� � L���� �	� T �� is such that for every r � 	 and for every t � �	� T �


j%�r�x� t�j � "��x� t� a�e� in �r	 �����

Since e%�r�	� is bounded in L���� there exist � � L���� and a subsequence
�still denoted by r� such thate%�r�	� � � weakly in L���� as r 

	

Proceeding as in the proof of Proposition ��� �see Section ���
 Second step�
we can see that for every compact K � � there exist C � 	 independent of
r and R large enough such that if r � R
 then

kr%�r�	�kL��K� � CT����	

Therefore we can �nd a subsequence with r � r�K� and %�K such thate%�r�	� 
 %�K strongly in L��K�	

But the uniqueness of the weak limit implies that %�K � �jK� Since the limit
has been identi�ed in a unique way we have thate%�r�	� 
 � strongly in L�loc���	

On the other hand
 in view of �����
 for every � � 	 there exists R � 	 such
that for every r � R we have

k e%�r�	�kL����R� � k��	�kL����R� � ���

where ��
R denotes �n�R
 and for R large enough k�kL����R� � ���	 As a

consequence of these facts we have for every r � R

k e%�r�	�� �kL���� � k e%�r�	�� �kL���R� �
��

�
	

It is easy then to conclude that e%�r�	� 
 � strongly in L����	

�� Proof of Theorem ���

In the proof of Theorem ��� we need some previous results�

Proposition ���� Let � � 	 be �xed and assume that � � N � �� Assume
that �H����H�� hold and that � � L��Q�� y� � L����	 Let f�ng � L��Q��
fy�ng � L���� be sequences of functions with compact support such that

�n 
 � strongly in L��Q� �����

y�n 
 y� strongly in L����	 �����

Suppose that for every n	 khnkL��Q� � H	 where hn are controls such that

kqn�	� 	�kL���� � ��� �n �����

where qn is the corresponding solution of ���
� with data �n� y
�
n and control

hn� Then there exists "n � 	 such that the solution q of ���
� with h � h�n
satis�es

kq�	� 	�kL���� � �	 �����

Furthermore	 the same holds in space dimension N � � if y� � L���� �
LN�����	 � � L��	� T �L���� � LN������ and the sequences fy�ng � L���� �
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LN�����	 f�ng � L��	� T �L���� � LN������ converge strongly to y�	 respec�
tively to �	 in these spaces�

Proof� Let q be the solution of ������ with h � hn and n to be chosen later�
Then

kq�	� 	�kL���� � kqn�	� 	�kL���� � kq�	� 	�� qn�	� 	�kL����	

We are going to see that n can be chosen such that

kq�	� 	�� qn�	� 	�kL���� � ���	

Let y be the solution of ����	� with h � hn� Then �n � y�yn and �n � q�qn
satisfy� ��� �n�t �
�n � f�y�� f�yn� � � � �n in Q

�n � 	 on �
�n�	� 	� � y� � y�n in �	

�����

��� ��n�t �
�n � f ��y�q � f ��yn�qn � �n�� in Q
�n � 	 on �
�n�	� T � � 	 in �

�����

We multiply ����� by �n and integrate by parts� Since f ��y�q�f ��yn�qn �
q�f ��y�� f ��yn�� � f ��yn��q � qn�
 we obtain�

�
�

�

d

dt

Z
�
��n �

Z
�
jr�nj

� � L

Z
�
j�nj

� �

Z
�
j�njj�nj�	 � M j � q�n� �n � j

where � 	� 	 � denotes the duality product between H����� and H�
� ���


L � jf �jL� and M � jf ��jL� � Therefore

�
�

�

d

dt

Z
�
j�nj

� �
�

�

Z
�
jr�nj

� �
�

�

Z
�
j�nj

� �
L

�

Z
�
��n �

M�

�
kq�nk

�
H�����	

By Gronwall s inequality we obtainZ
�
j�n�	�j� � C

�
k�nk

�
L��Q� �

Z T

�
kq�nk

�
H�����

�
�����

In order to estimate kq�nk�H����� we consider �rst the case � � N � ��

We remember that �n � L���	� T ��L������ Since � satis�es �H��
 q �
L���	� T ��H����� �see ������ Moreover
 by the variation of constant formula
it is not di�cult to see that

kqk�L����T 
H����� � Cj�j�L��Q� � jy�j�L���� � jhnj
�
L�������T ���	 �����

In view of Sobolev s embeddings
 for � � N � �
 we have that q�n �
L��Q� � L��	� T �H������ withZ T

�
kq�nk

�
H�� � Ck�nk

�
L����T 
L�����kqk

�
L����T 
H����� ���!�

and for � � N � �
 q�n � L��	� T �H������ with

� q�n� f ��

Z
�
q�nfdx �f � H�

�����

Z T

�
kq�nk

�
H�� � Ck�nk

�
L����T 
L�����kqk

�
L����T 
H�����	 ����	�
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For N � � we observe that �n � L��	� T �L���� � LN������ �see ���

p� ��� and in view of Sobolev s embeddings q � L��	� T �L
�N
N�� ����
 that is


q�n � L��Q� � L��	� T �H������ andZ T

�
kq�nk

�
H�� � Ck�nk

�
L����T 
LN������

kqk�L����T 
H�����	

In view of ����� and ����� we obtain
 for � � N � �
 thatR
� j�n�	�j�

� C
h
k�nk

�
L����T 
L������� � k�k�L��Q� � ky�k�L���� � khnk

�
L�������T ���

i
and for N � �Z

�
j�n�	�j� � C

h
k�nk

�
��N��� � k�k�L��Q� � ky�k�L���� � khnk

�
L�������T ���

i
where k k��N� denotes the norm in L��	� T �L���� � LN������ We are as�
suming that the controls hn are uniformly bounded in n� Since �� y� are
�xed we obtain for � � N � �Z

�
j�n�	�j� � D

h
k� � �nk

�
L��Q� � ky� � y�nk

�
L����

i
	

and for N � �Z
�
j�n�	�j� � D

h
k� � �nk

�
L����T 
L�����LN������

� ky� � y�nk
�
L�����LN�����

i
	

In view of the convergence in ����� and in ����� it is clear that we can choose
"n such that

kq�	� 	�� q�n�	� 	�kL���� � ���	

We conclude the proof of Theorem ��� by giving a uniform bound for the
controls hn� The next proposition is a result in that direction�

Proposition ���� Let �n	 y�n be as in Proposition 
�� and hn be the control
proposed in the previous section such that the solution qn of ������ satis�es

kqn�	� 	�kL���� � ���	

Then there exists a constant H � 	 independent of n	 such that for every n

khnkL��Q� � H	

The proof of this proposition needs an analysis similar to that which we
have done in the previous section� Observe that for each n
 the control hn
in the whole domain � is equal to a control in some restricted domain �r for
some r large enough that depends on the data y�n
 �n� That is
 hn � hr�n�� As
in the previous section it is not di�cult to see
 having in mind Proposition
���
 that the proof of Proposition ��� can be reduced to the following�

Proposition ���� Let %
nr � %�
n
r be the solutions of ����� ����� corresponding

to F �ynr �	 f ��ynr � with ynr the �xed point of the mapping &r and data y�n� �
n

satisfying the hypotheses of Proposition 
��� Then�%�nr �	� is relatively compact

in L���� where �%�nr �	� is the extension by zero of %�nr �	� to �	
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Proof� Since the sequence �n has been chosen such that it converges strongly
to � in L��Q� there exists p � L��Q� and a subsequence
 still denoted by n

such that

j�n�x� t�j � p�x� t� for almost every �x� t� � Q	

Since y�n converges strongly to y� in L���� there exist Y � L���� and a
subsequence �of the previous one� such that

jy�n�x�j � Y �x� for almost every x � �	

Therefore
 by the maximum principle
 we have that for every n

%
nr � �r � %�nr � �r

where �r and �r are solutions of���
�r�t �
�r � F �ynr ��r � p�x� t��

Qr
in Qr

�r � 	 on �r

�r�	� 	� � Y �x���r in �r��� ��r�t �
�r � f ��ynr ��r � �r�� in Qr

�r � 	 on �r

�r�	� T � � 	 in �r	

We proceed as in the proof of Proposition ���� That is
 we can �nd
� � L���� �	� T �� such that for every n � 	 and for every r � 	

j%�nr �x� t�j � j�r�x� t�j � ��x� t� in �r � �	� T �	 ������

Therefore kf%�nr �	�kL���� � C and we can �nd � � L���� and a subsequence
r�n�
 with r�n� 

 as n


 such thatg%�r�n��	� � � weakly in L���� as r�n� 

	

Proceeding as in the proof of Proposition ��� we conclude thatg%�r�n��	� 
 � strongly in L����	

�� Technical proofs

���� Proof of Lemma ���

Let X be solution of ������� Since X�	� � jy�j � 	 and jgj � 	
 by the
maximum principle X is positive� Moreover jF �Y �j � MY with M the
Lipschitz constant of F 
 and then X is subsolution of the problem�

ut �
u�Mu � jgj in Rn� �	� T �
u�x� 	� � jy��x�j in Rn

�����

Let v � e�Mtu� Then v veri�es�
vt �
v � e�Mtjgj in Rn� �	� T �
v�x� 	� � jy��x�j in Rn

�����

We can express v by the variation of constants formula�

v�x� t� �

Z
Rn

���t��n��e
�jx�zj�

�t jy��z�jdz

�

Z t

�

Z
jzj��

����t� ����n��e
�jx�zj�

��t��	 e�M
jg��� z�jd�dz	
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Since supp y� � B�
 � � B� and supp g � B� � �	� T � we have
 for every
x such that jxj � 
�

v�x� t� �

Z
jzj��

���t��n��e
�jjxj��j�

�t jy��z�jdz

�

Z t

�

Z
jzj��

����t� ����n��e
�jjxj��j�

��t��	 jg��� z�jd�dz	

and then

v�x� t� � ���t��n��e
�jjxj��j�

�t jy�jL��B��

�

Z t

�

Z
jzj��

����t� ����n��e
�jjxj��j�

��t��	 jg��� z�jd�dz �����

Let m�s� � s��e���s� By elementary calculus we obtain that m reaches

it maximum at s � �
� � Then

s��e���s �
� e
�

���
���	

Substituting this bound in ����� with � � n�� and � � jjxj� 
j�
 we obtain

kvkL���r� �

�
��e

n

��n�� �

�r� 
�n
�
ky�kL��Rn� � kgkL�����T ��Rn�

	
	

Since u�x� t� � eMtv � eMTv we have that

kukL���r� � C
eMT

�r � 
�n
�
ky�kL��Rn� � kgkL�����T ��Rn�

	
	 �r � 
	

Since X is a non negative subsolution of �����

kXkL���r� � C
eMT

�r � 
�n
�
ky�kL��Rn� � kgkL�����T ��Rn�

	
	 �r � 
	

���� Proof of Proposition ���

This section is devoted to the proof of Proposition ���� During the proof
we are going to use the following classical compactness result �see Simon
����
 Theorem �
 p� ����

Theorem ���� Let X�B� Y be Banach spaces such that X � B � Y with
continuous embeddings	 the embedding X � B being compact� Let � � p �

� If F is a bounded subset of Lp�	� T �X� and

k�hf � fkLp���T�h
Y � 
 	 as h
 	 uniformly for f � F

where �hf�t� � f �t� h� � then F is relatively compact in Lp�	� T �B� �in
C��	� T � �B� if p � 
 ��

Proof of Proposition ��
� First of all we observe that since ��r � L���r�


gr � L��Qr� and �r � L��	� T �H�
���r��� then r e�r � gr�r and e�r satis�es���

f�r�t � 
 e�r � ecr�x� t� e�r � egr � ��r
�
 ���r in Qe�r � 	 on �e�r�	� 	� � f��r in �

�����
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where �
��r

is the Dirac measure on the set ��r� That is
 for � � C����


� ��r�t�
�
 �

��r
� � � �

R
��r

��r�t�
�
 �d�	 In view of ����� we have that for every

compact subset K � �
 R � 	 such that K � BR and for every r � R
f�r�t � 
 e�r � ecr�x� t�e�r � egr in K � �	� T �	 �����

On the other hand we have that

kf��rkL���� � k��rkL���r� � C �r� �����

kgrkL��Qr� � kegrkL��Q� � T ���k egrkL����T 
L����� � C �r	 �����

In consequence there exist �� � L����
 g � L��Q� and subsequences �with
the same index r� such thatf��r � �� weakly in L���� as r 

� �����

egr � g weakly in L��Q� as r

	 ���!�

We shall see that the result stated in Proposition ��� holds precisely for
the sequences corresponding to that index r�

We divide now the proof in � steps� The �rst three correspond to con�
vergence results
 the fourth step is devoted to prove that � veri�es equation
������ and the �fth that � belongs to L�loc�	� T �H�

loc�����

First step	 e�r � � weakly
 in L��	� T �L������
We multiply equation ����� by �r and integrate by parts

�

�

d

dt

Z
�r

j�rj
�dx�

Z
�r

jr�rj
� �

Z
�r

cr�x� t�j�rj
� �

Z
�r

gr�r	

Since jcrj is uniformly bounded in L��Q�
 egr is uniformly bounded in L��Q�

and f��r is uniformly bounded in L���� we can apply �rst Schwartz s inequal�
ity and then Gronwall s inequality to obtain thatZ

�r

j�r�t�j
�dx� �

Z t

�

Z
�r

jr�rj
�dxds � C

for some constant C � 	 independent of t and r� Therefore
 for every rZ
�r

j�r�t�j
�dx � C�t � �	� T � ����	�

Z t

�

Z
�r

jr�rj
� � C �t � �	� T �	 ������

In view of ����	� we can extract a subsequence �from that we have chosen
in ������ verifying e�r � � weakly' in L��	� T �L������ ������

and in particular e�r � � weakly in L��	� T �L�����	 ������

Second step	 g�r�t� 
 ��t� strongly in L�loc��� for every t�
For K � � compact
 from ����� and ����	� we have

kf�r�tkL����T 
H���K�� � C	
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In view of Theorem ���
 taking B � H���K�� X � L��K�� Y � H���K�

p � 
 and F � f e�rgr
 there exists 
�K� and a subsequence e�r �from the
previous one� such that e�r 
 
�K� strongly in C��	� T ��H���K��	

By uniqueness of the weak limit and extracting diagonal subsequences we
observe that for every compact subset K
 
�K� � �jK� i�e�

e�r 
 � strongly in C��	� T ��H��
loc���� ������

and ��jK � ��	�jK	
In order to get compactness in L� we need some estimates on the gradi�

ents� Let Sr�t� be the semigroup generated by the operator �
 in L���r�
with Dirichlet boundary conditions� Since Sr��� is an analytic semigroup we
have �see ��	�� that

kSr�t�vkH���r� � t����kvkL���r�� �v � L���r�	

By the variation of constants formula
 we know that

�r�t� � Sr�t��r�	��

Z t

�
Sr�t� ��cr����r���d�

�

Z t

�
Sr�t� ��gr���d�	

It is not di�cult to prove then that

kr�r�t�kL��K� � kr�r�t�kL���r� � Ct����k��rkL���r� for every 	 � t � T

������

where C depends only of kecrkL��Qr� and kegrkL����T 
L���r�� � In view of our

hypotheses on cr
 gr and ��r it is easy to see then that

kr�r�t�kL��K� � Ct���� for every 	 � t � T ������

with C independent of r�
In view of ������
 for every t � ��� T � there exists ri � ri�t� �ri subsequence

of ������� and ��t�K� such that f�ri�t� 
 ��t�K� strongly in L��K�� In view
of ������ ��t�K� � ��t�jK for t � ��� T � and therefore f�ri�t� 
 ��t�jK
strongly in L��K��

The subsequence ri depends �in principle� on t� However
 since the limit
has been identi�ed in a unique way as ��t�jK we deduce that the whole
sequence converges
 i�e� for every compact K � � and 	 � t � T 
 e�r�t� 

��t� in L��K��

Third step	 e�r 
 � in L���� T �L�loc�����
Let 	 � � � T and �r�t� � k e�r�t����t�kL��K�� From ������ we know that

there exists a constant C � 	 such that�Z T

�
j�r�t�j

�

����
� C	

Since e�r�t� 
 ��t�jK strongly in L��K� and by Egorov s Theorem
 for any
� � 	 there exists a set B� � ��� T � such that A� � ��� T �nB� with measure
jA�j � ���C� and such that �r 
 	 uniformly in B�	 Let R be such that for
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every r � R
 j�rj � j �
jB� j

j��� in B� 	 Then
 for every r � R we haveZ T

�
j�r�t�j

� �

Z
A�

j�r�t�j
� �

Z
B�

j�r�t�j
� � C� �

C�
� jB�j

�

jB�j
� ��	

Therefore e�r 
 �jK strongly in L���� T �L��K��	 Clearly
 the limit � does
not depend on the compact set K � �� Thuse�r 
 � strongly in L���� T �L�loc����	

Fourth step	 equation verified by ��
Let v � D�Q� and R � 	 be such that supp v � BR � ��� T �� Then for

every r � R

�

Z T

�

Z
�
e�rvt � Z T

�

Z
�
e�r
v �

Z T

�

Z
�
ecr e�rv �

Z T

�

Z
�
egrv	 ������

Since jecrjL��Q� � C
 there exists a sequence �still denoted by r� and c �
L��Q� such that ecr � c weakly' in L��Q�� On the other hand
 egr � g
weakly in L��Q�� Passing to the limit in ������ along the subsequence we
obtain

�

Z T

�

Z
�
�vt �

Z T

�

Z
�
�
v�

Z T

�

Z
�
c�x� t��v �

Z T

�

Z
�
gv ������

and therefore � veri�es the equation

�t � 
� � c�x� t�� � g in D��Q�

where D��Q� denotes the set of all the distributions in Q�

Fifth step	� belongs to L�loc�	� T �H�
loc����	

In order to estimate the norm of the solution in L���� T �H��K�� we need
to introduce some auxiliary sets and functions� Given any � � 	 we choose
R and KR � �R an open set of class C� �we observe that �R � ��BR has
not necessarily this regularity� such that dist��K� �KR� � �� � 	� Let K�

be a compact set of class C� such thatK�K��KR and dist��K�� �KR� � �	
We construct � � C���� such that � � � in K� and � � 	 in �nKR��KR	
For every r � R we de�ne

Ur � �r�	 ����!�

Then Ur satis�es���
Ur�t � 
Ur � cr�x� t�Ur � �r
�� �div��rr�� � �gr in KR � �	� T �
Ur � 	 on �KR � �	� T �
Ur�� � ��r� in KR	

Let S�t� be the semigroup generated by the operator �
 in L��KR� with
Dirichlet boundary conditions� By the variation of constants formula we
observe that for every 	 � t � T 


Ur�t� � S�t�Ur�	� �

Z t

�
S�t� ���r���
�d�

��

Z t

�
S�t� ��div��r���r��d��

Z t

�
S�t� ��cr���Ur���d�

�

Z t

�
S�t� ��gr�������d�	
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Since S��� is an analytic semigroup and KR is of class C�
 we have �see ��	�

p����

kS�t�vkL��KR� � kvkL��KR�� kS�t�vkH��KR� �
�

t
kvkL��KR�� �v � L��KR�	

Interpolating for 	 � s � � �see Lions�Magenes �!�� we obtain

kS�t�vkHs�KR� � C�s�t�s��kvkL��KR�� �v � L��KR�	 ����	�

Therefore


kUr�t�kH
���KR�
� C�KR�t����kUr�	�kL��KR�

�C�KR� ��k�rkL����T 
L���r��

Z t

�
�t � ������d�

�C�KR� ��k�rkL����T 
L���r��

Z t

�
�t � �����������d�

�C�KR� C�kUrkL����T 
L��KR��

Z t

�
�t� ������d�

�C�KR� ��kgrkL����T 
L��KR��

Z t

�
�t� ������d�	

In view of �����
 �����
����	� and ����!� we obtain

kUr�t�kH
���KR�
� C�t���� � ��

where the constant C depends on ��KR� T� G � kgrkL����T 
L����� and C �

kcrk�	 That is k�r�t�kH
���K��
� C�t���� � ���

By a bootstrap argument we obtain thatZ T

�
k�r�t�k

�
H��K� � C

and therefore �for a subsequence� e�rjK � �jK weakly in L���� T �H��K��	
This concludes the proof of Proposition ����

Appendix A� Proof of Proposition ���

We give an sketch of the proof of Proposition ����
The state z solution of ����� is di�erentiable with respect to �� and it s

derivative z�� satis�es����
z���t � 
z�� � f ��y�z�� � 	 in Q � �� �	� T �
z�� � 	 on � � ��� �	� T �
z���x� 	� � z� in �

�A���

where y is the solution of ������ The derivative of � with respect to �� at
�� � 	 is then

��

���

����
����

�

Z T

�

Z
�
yz��dxdt	 �A���

Substituting y in �A��� by left hand member of ����� and integrating by
parts we obtain�

��

���

����
����

�

Z
�
q�x� 	�z��x�dx �A���
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obtaining the condition ������
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