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CONTROLS INSENSITIZING THE NORM
OF THE SOLUTION OF A SEMILINEAR HEAT
EQUATION IN UNBOUNDED DOMAINS

LUZ DE TERESA

ABSTRACT. We consider a semilinear heat equation in an unbounded
domain €2 with partially known initial data. The insensitizing problem
consists in finding a control function such that some functional of the
state is locally insensitive to the perturbations of these initial data. For
bounded domains Bodart and Fabre proved the existence of insensitiz-
ing controls of the norm of the observation of the solution in an open
subset of the domain. In this paper we prove similar results when €2 is
unbounded. We consider the problem in bounded domains of the form
Q, = QN B,, where B, denotes the ball centered in zero of radius r. We
show that for r large enough the control proposed by Bodart and Fabre
for the problem in ,, provides an insensitizing control for our problem

in .

1. STATEMENT OF THE PROBLEM

Let Q C R™ n > 1 be an open unbounded set of class C? uniformly with
boundary 0% (see section 2.1 for a precise definition). Let T' > 0, w and
O be two open bounded subsets of 2. We consider the following parabolic
semilinear system:

—Az+ f(2) =&+ hx, inQ=2x(0,T)
2—0 on X =002x(0,7) (1.1)
2(2,0) = y°(z) + 102° in Q

where f is a globally Lipschitz € function defined on R, with f(0) = 0 and
with bounded second derivative.
The state equation (1.1) has incomplete data in the following sense:

- ¢ and y° are given respectively in L?(Q) and L?*(Q);

- 2%€ L*(Q) is unknown and [|2°|p2(q) = 1;

- 79 € Ris unknown and small enough;

- h = h(z,t)is a control term to be determined in L?(wx (0,7)) and x,, is
the characteristic function of the set w where the control is supported.

J. L. Lions [8] has introduced the notion of insensitizing control and later
Bodart-Fabre [2] generalize it in the following way: Let ® be a differentiable
functional defined on the set of solutions of (1.1) and let £ > 0; we say that
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126 LUZ DE TERESA

the control h, e-insensitizes ®(z) if

0P (z(x,t; h, 1))
87’0

lry=o]| < €. (1.2)

This definition means that the functional @ is locally “c-insensitive” to the
perturbation 79z°. There are of course many possible choices of ® but
insensitivity condition (1.2) is not of use unless it may be reformulated as a
more explicit control problem. This is why it seems reasonable for ® to be
the square of the L? norm of the state in some observation subset © C Q.

When

B(z) = %/OT/G)ZQ(x,t)dxdt (1.3)

it can be proved (see [2] or Appendix A) that the condition of e-insensitivity
(1.2) is equivalent to an approximate control problem. This equivalence is
given in the following proposition. Note that the original notion of insensi-
tizing control proposed by Lions [8] (which corresponds to ¢ = 0 in (1.2))
can be reformulated into a exact control problem, while the one given by
Bodart and Fabre leads to an approximate control problem.

ProrosiTiON 1.1. Let y and g be the solutions of the following cascade
system:

ye—Ay+ fly) =&+ hx, in Q
y=0 on X (1.4)
y(-,0)=9" in Q

—q = Aq+ ['(y)a=yxo in Q
g=0 on X (1.5)
q(,T)=0 in Q

where Y is the characteristic function of the observation subset ©.
Then the condition (1.2) of e-insensitivity is equivalent to

(- 0)ll2g0 < =- (1.6)

REMARK 1.2. Observe that equation (1.5) is solved backward in time. So
in (1.6) we are asking for a control i such that the corresponding solution of
(1.5) enters the ball in L2(2) of radius ¢ centered in zero after a time interval
of length T'. This is precisely an approximate control problem. However, the
control h acts indirectly in the equation of ¢ through the variable y. This
makes this approximate controllability problem technically more difficult.
For classical approximate controllability in bounded domains we refer to [6].
The case of unbounded domains has been studied in [5].

When € is a bounded set, Bodart and Fabre [2] proved the following
result:

THEOREM 1.3. Assume that  is bounded. If w N O # O and the function
f is of class C' and globally Lipschitz, then for every ¢ > 0 there exists
h € L*(w x (0,T)) e-insensitizing the functional (1.3).
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SEMILINEAR HEAT EQUATION IN UNBOUNDED DOMAINS 127

In order to prove Theorem 1.3 Bodart and Fabre first show the approxi-
mate controllability of the double linear system with potentials:

G = Al+afe, )¢ =hyx, in @
(=0 on X (1.7)
¢(.,0)=0 in Q

—ne — An+ bz, )n=_(x, in Q
n=0 on X (1.8)
n(.,T)=0 in Q

with a(z,t),b(z,t) € L*°(Q). Then, by a fixed point method they obtain
the e-insensitizing condition for the cascade system (1.4)-(1.5). This fixed
point technique, based on Schauder’s Theorem, uses the boundedness of
and the compactness of Sobolev’s embeddings.

In this paper we prove the following results for unbounded sets 2.

THEOREM 1.4. Let Q C R"™ be an open and unbounded set with boundary of
class C?* uniformly. Assume that w N\ O # 0, the function [ is of class C?,
globally Lipschitz and with bounded second derivative, f(0) = 0. Suppose
that the data & € L*(Q) and y° € L*(Q) have compact support, then for
every € > 0, there exists a control h € L*(w x (0,T)), e-insensitizing the
functional (1.3).

In this theorem we assume, in particular, the data & and y° to have

compact support. This condition can be eliminated in space dimensions
1<n<6.
THEOREM 1.5. Suppose that 1 < n < 6. Assume that Q, w,© and [ satisfy
the assumptions of Theorem 1.4. Then for every ¢ > 0, £ € L*(Q) and
y° € L*(Q) there exists a control h € L*(w x (0,T)), e-insensitizing the
functional (1.3).

Furthermore, if n > 7, the same holds for data & € LY(0,T;L*(Q) N
L*2(Q)) and y° € L2(Q) N L™2(Q).

To prove Theorem 1.4 we use an approximation technique introduced in
[5]: For data ¢ and y° with compact support we consider the problem in
bounded sets of the form €, = B, N Q, where B, denotes the ball centered
at 0 and radius . We show that the controls h, proposed in [2] are uniformly
bounded in L?(w x (0,T)). This fact with some a priori estimates allow to
prove that for r large enough the control in the restricted domain provides
an e-insensitizing control for the functional (1.3) in the whole domain €.
Observe that the conditions on f are more restrictive than those of Theorem
1.3 (one more bounded derivative is required). Since € is not bounded, we
need to ask f(0) = 0 in order to ensure that the solutions belong to L?(Q).
As we will see the restrictions over the derivatives appear in a natural way
when we estimate the norm

lg(-,0) = 4 (-, 0)ll 120, (1.9)
where ¥, ¢,y, and ¢, are the solutions of
ye—Ay+fly) =&+ hx, in Q
y=0 on X (1.10)
y(-,0)=9" in Q
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—4: = Aq+ [(W)g=yxo in Q
g=0 on X (1.11)
¢(.,7T)=0 in Q

Yrt — Ayr + f(yr) = g + thw in Qr
y» =0 on X, (1.12)
yr(-,0) =y° in Q,

—Grt — AQT + f/(yr)qr = UrXe in Qr
=0 on X, (1.13)
¢(.T)=0 in Q,

respectively, and @, = Q, x (0,7), ¥, = 09, x (0,7).

The paper is organized in the following way: In section 2 we study the
existence and properties of the minima of some functional arising in the in-
sensitizing control of linear system. In particular, section 2.2 is devoted to
prove a uniform bound of these minima. In section 3 we prove the conver-
gence of the solutions of system (1.12)-(1.13) in the restricted domain @),
to the solution in the global domain when the data ¢ and y° have compact
support. In section 4 we prove Theorem 1.4. The proof of Theorem 1.5 is
given by density arguments in section 5. For the sake of clarity of the expo-
sition some of the most technical proofs are included in section 6 at the end
of the paper. In the Appendix we give an sketch of the proof of Proposition
1.1.

We are going to consider the following hypotheses throughout the paper
excluding section 5 in which [H5] is omitted:

(H1) f € C*(R), globally Lipschitz, f(0) = 0,|f"|p~ = M < oo, |f'|p~ =
L < oo.

(H2) Q C R"is an unbounded open set of class C'* uniformly.

(H3) O, w C Q, are bounded open sets such that © Nw # .

(H4) hy, € L*(R" x (0,T)).

(H5) ¢ € L*(Q) and y° € L*(R") with compact support. Moreover, we fix

p > 0 such that suppy® C B,, supp& C (B, x (0,7)), w,0 C B,.

Observe that the regularity of the domain €2 is not essential for the re-
sults of this paper since we are asking homogeneous Dirichlet boundary
conditions. Everything can be done in a connected, open and unbounded
domain €. Nevertheless, we prefer to work in an unbounded domain of class
C? uniformly in order to use the regularity that the elliptic theory provides
us and to avoid further technical developments. This is used, in particular,
during the proof of Theorem 1.5.

2. STUDY OF A FUNCTIONAL ARISING IN THE CONTROLLABILITY
OF THE LINEARIZED SYSTEM

2.1. PRELIMINARIES

For the sake of completeness we recall, first of all, the definition of domain
of class C'* uniformly. We say that a domain 2 (bounded or not) is uniformly
regular of class C*°(s > 1) (see [3] or [13]), if there exists an integer r > 0
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SEMILINEAR HEAT EQUATION IN UNBOUNDED DOMAINS 129

and sequences {N;} of open subsets of R” and homeomorphisms {¢;} of N;
on the unit ball in R” such that:

i) Any (r + 1) distinct sets N; have empty intersection;

i) ;(N;NQ) = {a |z < 1,2, > 0}, ¥;(N;NON) ={z : |z| < 1,2, = 0};

iii) If N7 = ¢;1(|x| < 1/2), U;N! contains the (1/r)-neighborhood of 9€2;

iv) For y € N;, 2 € 1;(N;) we have [(DY¢;)(y)| < r, |(Da¢]_1)(x)| <r,
for all |o| < s.

For 0 < t1 < t5 we denote by X?(t1,t2;Q) the following Banach space:

Xz(tth;Q) = Lz(tth,Hé(Q)) N Hl(tth;LZ(Q))

endowed with the natural norm

/
Il ey = (112 i 1 Brscemzeay) -

Let b(z,t) € L™(Q) and 0 < t; < ty. We recall (see [7], Theorem 9.1,
page 341) the existence of constants C' > 0 (depending on b, and T') and
Ct, 4, > 0 (depending of b, 9, ¢; and t3) such that, for every k& € L%(Q) and
w® € L*(), the solution w of

w— Aw+b(z,H)w=Fk in Q
w(z,t)=0 on X
w(z,0) = w'(z) in Q
satisfies
[l 20,2202 < CUllwllz2(9) + 15l 22(0))
0 (2.1)
lwllx2(t1,00) < Coro (107l 22 () + 1Rl]22(@)-
Let us define now for a.(z,t), b.(z,t) € L>(Q,), n? € L*(Q,) and ¢° €
12(2,)

1
T (2 ar, ey ) = 5/ (OT)|¢rl2d$dt+€H@99HL2(m) —/Q n'elde
wX(0, r

where ¢, and 1, are solutions of
Ort — A + b, (z,t)p, =0 in Q,
@, =0 on X, (2.2)
er(,0) =) in Q,

_¢r,t - A, + a, ($, t)¢7’ = ¥rXe in Q,
¢7’ =0 on %, (23)
(., T)=0 in Q,.

For each bounded subdomain €, = QN B,., that is for each » > 0 fixed, Bo-
dart and Fabre proved that J,(-; a,,b,,n?) reaches its minimum at a unique
point @0 € L2(,). Moreover, let (¢,,?,) denote the solutions to (2.2)-(2.3)
corresponding to data ¢2. If 7, is the solution of (1.8) (in Q,, @ = a,, b = b,)
corresponding to h = QLM then

17-(0) = ¥l z2(q,) < <.

That is h = %, is an approximate control for the cascade linear problem in
the truncated domains.
Esaim: Cocv, JUNE 1997, VoL. 2, pp. 125-149



130 LUZ DE TERESA

For ¢° € L%(Q,) [resp. ¢ € L*(Q,)] we denote by ;6 [resp. @] the
extension by zero of ¢° [resp. ¢] to Q [resp. to Q], i.e.
~ [ ¢® inQ, ~ | ¢ in @
T10 mo\Q, 710 in Q\Q..

2.2. UNIFORM BOUND ON THE MINIMIZERS

The following result provides a uniform bound of the controls proposed
in the previous section for the linear system in the truncated domains.

PROPOSITION 2.1. Let {a@,},, {b}, be bounded sequences in L=(Q). Sup-

pose that {nd}, C L*(Q) converges strongly in L*(Q) to n® when r — oo.
Then, there exists C' > 0 independent of r, such that

\]@9\]L2(QT) < C for every r >0 (2.4)
and

HQLTHL2(QT) < C for everyr >0 (2.5)

where ¢¥ is the minimizer of Jr(.;ar,br,nf) and QLT is the corresponding
solution to (2.3).

The proof of Proposition 2.1 needs the following two results. The first
one is a unique continuation property, a consequence of a result due to
Saut and Scheurer. For the proof see [11], Theorem 1.1. The second one is a
consequence of a classical compactness result (see [12], Theorem 5). However
since € is unbounded, its proof is technical and computations are long. To
make the paper easier to read we give a detailed proof of Proposition 2.3 in
section 6 at the end of the paper.

THEOREM 2.2. Let Q2 C R™ be an arbitrary open and connected subset. Let
Q=Qx(0,T) and a(x,t) € L*=(Q). Let 9 be an open and nonempty subset
of Qand p € L2 (0,T; HE (Q)), such that

loc loc
—pr—Aptalz,t)p=0 in Q
=0 in 9x(0,T).
Then,
=0 n Q.

ProposiTION 2.3. Let {c.}, C L>®(Q,) be a sequence such that {¢,} is
bounded in L™ (Q), v° € L*(,.) such that {7°}, is bounded in L*(Q) and
gr € L=(0,T; L*(,)) with {g,}, bounded in L>(0,T; L*(2)). Let v, be the
solution of the following system:
Vrt — Ay e (2, 0y, = g0 in Q,
Y =0 on X, (2.6)
(-, 0) =7 in Q,
Then, there exist v° € L*(Q), g € L*(Q), v € L>(0,T; L*(2)) N C([0, T7;
HY(Q)), and a subsequence (still denoted by the subindex r) such that

loc

70 — 4% weakly in L?(Q); (2.7)

g, — g weakly in L*(Q); (2.8)
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SEMILINEAR HEAT EQUATION IN UNBOUNDED DOMAINS 131

Y, = v weakly in L*(Q); (2.9)

Y, — 7 strongly in L*(2,T; L},.(Q)), Y0 < ¢ < T; (2.10)

Y — v strongly in C([0,T]; H;,1(Q)); (2.11)

Y. (t) = () strongly in L}, .(Q), Yt € (0,T] (2.12)

as v — co. Moreover, v belongs to L} _(0,T; HE () and there exists ¢ =
c(x,t) € L™(Q) such that v = v(z,t) satisfies:

ve— Ay ez, t)y=yginQ, (2.13)
in the sense of distributions.

Proof of Proposition 2.1. First of all we observe that (2.1) implies (2.5) once
(2.4) is proved. For the proof of (2.4) we argue by contradiction.
It is clear that

0=J,(0;a,,b,,0) > J. (&% a,, b, n?) for every r. (2.14)
Suppose that there exists a subsequence {¢%}, such that
1690120,y > 00 7 0. (2.15)
Let
10 = @)
" e
Then
Jo (2% 4, by, A 1
it l) Sy [ e Pl (216
e VRIS 2 Jux(0,T)

S
Qr
where p, and [, are solutions of system

prt — Apty 4+ by (2, 8)p, =0 in @,
pr =0 on X, (2.17)
fir(0) = i) in Q.

_ﬁr,t - AB, + a, ($7 t)ﬁr = HrXe In Q-
ﬁr =0 on %, (218)
Br(T)=0 in Q,.

It is clear that we can apply the results of Proposition 2.3 to the sequence
tr. Let us denote by r the subsequence stated in Proposition 2.3 and let u
[resp. p°] be the limit of p, [resp. uY]. Observe that if we put ¢/ = T — ¢
then 3.(t') satisfies (2.6) with ¢,(2,t") = a.(z,t'), g = p,xs and 7° = 0.
Since [|ul|z2(q,) = 1 by (2.1) we know that fi;xg is uniformly bounded
in L°°(0,T; L*Q)) and therefore 3, verifies the hypotheses of Proposition
2.3. We can choose a subsequence 3, (of that chosen for p,.) verifying the
conclusions of Proposition 2.3. On the other hand, for r large enough

/ W:/ 15,2
wx(0,T) wx(0,T)
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and therefore in view of (2.9) liminf, . wx(0,T) 13,]% > fwx 0.7) |3]2. Then
by (2.14), (2.16) and since [|¢7||12(q,) = o0 necessarlly

/ 18,7 = 0.
wx(0,T)

Then § =0 in w x (0,7). But (2.13) asserts that [ verifies —3, — AG +
a(z,t)p = pxp for some a € L*(Q). Thatis, pu=0in wNO x (0,7).
Proposition 2.3 asserts that p belongs to L? (0,7;H? (€2)) and since

wNO # § we can apply the Unique Continuation Theorem 2.2 obtain-

ing p = 0 in Q X (¢,7T). Moreover, by Proposition 2.3, we know that

i€ C([0,T); H;;1(R2)). Therefore
1(0) = 1 =0 in Q.
On the other hand,

JT(@S;aMbmng) > H@SHL%Q ( / Urﬂrdﬂv)

and then .J,(¢% a,,b,,n%) — oo, which contradicts (2.14). Therefore (2.4)
is proved. O

3. CONVERGENCE OF THE SOLUTIONS DEFINED IN THE
APPROXIMATE DOMAINS

The main purpose of this section is to prove the following result.

PROPOSITION 3.1. Assume that (H1)-(H5) hold. Let {h,}, C L*(wx(0,T))
be a uniformly bounded sequence of controls. For each r > 0 let g, be the
solution to (1.13) corresponding to h, and ¢ = q(h,) be the solution of (1.11)
corresponding to the same control. Then ||q(0) —q-(0)(|2(q,) — 0 asr — oo.

REMARK 3.2. In  particular  [[¢(0)||z2@) < 119(0) — ¢ (0)[[r2,) +
l7(0) |2 (\@,) - (0)[| 22(q2,)- That is, given £ > 0, if we can find controls A,
verifying the hypotheses of Proposition 3.1 and such that ||¢.(0)||72(q,) < £/2
then for r large enough ¢ = ¢(h,) verifies [|¢(0)||2(q) < €. That is, h will
be an e-insensitizing control for the problem in the unbounded domaln and
in that case the main result for data with compact support (Theorem 1.4)

would be proved. O

In order to prove Proposition 3.1 we need some a priori estimates stated
in the following lemmas.

LEMMA 3.3. Assume that (H1)-(H5) hold. Let y,q be the solutions of the
cascade system:

—Ay+ fly) =&+ hx, in Q
y=0 on X (3.1)
y(,0)=y" in Q

—¢ = Aq+ f'(y)g=yxo in Q
g=0 on X (3.2)
q(.,T)=0 in Q.

Then, there exists C' > 0 independent of r such that for every r > p,
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) yllpeqr,) < (L (19°lzr @) + 11€llr@) + Nllt wx0.7))
i) [lgllper,) < (r—p (10l 220y + €l 2 (@) + NPl 22w 0,1))) -
Moreover, since suppy C B,, suppé C B, x (0,T), w C B, we have that
iit) [[yllzer,) < oo (19002 @) + 1€l z2@) + 1l (wx 0.7))) -

LEmMMA 3.4. Assume that g € L=(I',), with I', = 0B, x (0,1). Let w
satisfy:

—Aw=0 in B, x (0,7T)
w=g on T, (3.3)
w(z,0)=0 in B,.

Then, there exists C' > 0 independent of r such that
lwll 28, 0.1)) < CTIr" gl Lo,y ¥r >0 (3.4)
and, in particular,

lw(T)lz2(s,) < Cr*2llgllps=(r,y Vr > 0. (3.5)

Let us assume that Lemma 3.3 and Lemma 3.4 hold in order to prove

Proposition 3.1. The proof of these lemmas will be given at the end of this
section.
Proof of Proposition 3.1. Let ¢ = y — y, with y solution of (1.10) and y,
solution of (1.12) both corresponding to the control h,., § = ¢ — g, with ¢
solution of (1.11) and ¢, solution of (1.13). Then ¢ and /3 are solutions of
the following system:

Ve =AY+ fly) = f(y:) =0 in Q,
Y=y on X,
¥(.,,0)=0 in Q,,

_ﬁt - Aﬁ + f/(y)q - f/(yr)qr = ¢X@ in Qr
p=q on X,
B, T)=0 in Q,.

We write § = v + v where v and v verify, respectively,

_775_A7+f/(y)q_f/(yr)%’ :¢X® in Qr
vy=0 on X, (3.6)
v(,T)=0 in Q,.

—v; —Av=0in @,
v=g on X,
v(.,,T)=0 in €Q,.

In order to estimate the norm of 3(0) in L2(£2,) we are going to estimate
the norms of v(0) and v(0) in L?(£2,.). Nevertheless, as we shall see, in order
to estimate the norm of v(0) it is necessary to estimate the norm of v in
L?(Q,). That is the first thing we are going to do.
Let w be the solution of
iy~ Ad=0in B, x (0,T)
0 — { lg| on (909, NIB,)x (0,T) =13
1 0 on TLA\XL
@(.,T)=0 in B,
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where we recall that I', denotes 0B, x (0,7).
Since ¢ = 0 on X,\X!, by the maximum principle,

Ivllz2@n) < 1@z, x(0.1)):
but in view of Lemma 3.5 (noticing that @ (t’) satisfies (3.3), with ¢’ = T'—1t)

/|72, < (0,1 < Cr™lal| oo s,

and
(0)[Ir2(m,) < Cr*lql| (s,
That is,
0]l 220,y < CT2llgll (s, (3.7)
and
10(0)lz2(0,) < Cr™ 2l poe (s, (3.8)

with C' > 0 a generic constant independent of r.
In order to estimate ||7(0)||z2(q,) we multiply (3.6) by v and integrate by
partS'

5 o e+ [ 9apas = [ (7won - rwardes [ eveds
Qy Qr Qr
We observe that

f/(y)q - f/(yr)%’ = Q(f/(y) - f/(yr)) + f/(yr)(q - QT)
and then

— 5 o IIPda+ fo |V|da
<M Jq [qty|da+L fg |y+ollyldat [ vy veds

with M > [|f"lnees L = || f/||nee-
We conclude, by Schwartz’s and Gronwall’s inequalities, that
17 (0) 2,y < C (191220, + Na¥llr2q,) + 10l r2q,)) » (3.9)
with the constant C' independent of r. In view of (3.7), (3.8) and (3.9) we
obtain that
1BO)z2(0) < C (7 lalloqs,) + 1$lz2gn + latlig, ) - (3:10)

We proceed now to estimate ||q|r2(g,)- In this aim we observe that since
y belongs to L>°(3,) by the maximum principle we see that ¢y € L*=(Q,)
and [|¢[|p(g,) < Cllyllzo(x,) where €' > 0 does not depend of r. That
implies that

lavllz2@,) < Clldllzzonlvlln=(z,) < Cllallrz@)llvllne(z,)- (3.11)

Moreover, proceeding as in the proof of (3.10), we can prove that there
exists C' > 0, such that

1llz20,) < Cr 2 lyll(z,). (3.12)

On the other hand, multiplying (1.5) by ¢ and (1.4) by y and integrating
by parts, it is easy to see that

lallrzig) < € (19°1r2@) + 1€llz2(0) + 11X 22 () (3.13)
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From (3.11), (3.12), (3.13) and (3.10) we obtain

),
18Oz < C [P Pllyllzs,)+
(9°l 22 @) + 1€l 22 @) + 1o 2 @) Wl zoe (s,
2 gl poe s,
In view of Lemma 3.3, we obtain, for every r > p, that

n/2

r 2
180|220,y < € (e (L+ 1197l 220y + €llz20) + M xllz2(0))

Since the sequence h, is uniformly bounded, we conclude the proof by notic-
ing that the right hand side converges to zero as r goes to co. O

We proceed now to prove Lemma 3.3. In this aim we use the following
estimate for the solutions of the cascade system in R” that is going to be
proved in section 6 at the end of the paper:

LemMA 3.5. Consider I a globally Lipschitz function of class C' with
F(0) = 0. Assume that y° € L*(R™) and g € L*(R™ x (0,T)) have compact
support. We fix p > 0 such that suppy® C B,, suppg C B, x (0,T). Let X
be the solution of the following system:
X —AX +F(X)=lg| in R*x(0,T)
X(,0)=1y° in R™
Then, there exists a constant C' > 0 independent of r, such that for every
> P,

(3.14)

C
| X poo(r,y < o (19°1 L @y + N9l @ 0,7))

where I, denotes 0B, x (0,T).

REMARK 3.6. Following the same procedure it is easy to see that if X sat-
isfies _ _ _
Xi—AX + F(X)=—|g| in R*"x(0,7)
{ X(,,0)=—]y°| in R",
then, for every r > p:

5 C
HXHLOO(FT) < (r_ \m (HyOHLl(R") + H!JHLl(Rnx(o,T))) :
(r=p)
O
Proof of Lemma 3.3. Let S=Y —y, R =7 — ¢ where Y and Z solve

Y(,0) =g in R" '
7= A7 —LZ =Yy, in R"x(0,7) (3.16)

Z(,T)=0 in R" '

where L = | /|-
If we denote by £~ and h™ the negative parts of £ and h, respectively,
then S and R satisfy
Si— AS+ f(Y) — fly) =26~ +2h7x, In Q
S=Y on X (3.17)
S(,0)=2y°" on Q
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—Ri—AR—-LZ - f'(y)g =Sy, in Q
R=7 on X (3.18)
R(.,T)=0 in Q

We multiply (3.17) by —S™ and integrate by parts:

/StS —|—/ASS‘ / FY) - f(y))S‘:—/QQ(g_—I—h‘XW)S‘.

Since S =Y on 3, Y > 0 and f is globally Lipschitz

1d —\2 —\2 —\2
—— <L .
s [T [(vsTrs /Q<s>
Then, by Gronwall’s inequality and since S(0)™ = 0, we obtain that

/Q(S_(t))2 < em/g( // 27 (VS (o) )2 < 0, ¥ £ € (0,T)

and therefore
S(z,t)>0,Vt€ (0,T), aeax €.
We multiply (3.18) by —R~ and integrate by parts:

/QRLLR_‘F/QARR_‘F/Q(]C( g+ LZ)R /SR Xo-

Since R=Z on X, Z > 0 and SR~ > 0 for almost every z € {2, we obtain
1d
s L [ R < [ rwe- i
Since Z >0, — f'(y)g — LZ < L|q| — LZ < L|R|, by Gronwall’s inequality

/(R‘(t))2 <0, Vit € (0,7T)
Q

and therefore
R(x,t) >0, YVt e (0,7), aex e
That implies that
y(z,t) <Y(x,t); q(z,t) < Z(x,t), YVt € (0,T), ae. z €.
In the same way we can prove that
Y (x,t) < y(a,t); Z(x,t) < q(z,t), Yt € (0,T), aezeQ

where Y is the solution of (3.15) corresponding to data =€l —]y°| and
control —|A|xw, and Z solves (3.16) when substituting ¥ by Y.

We conclude the proof of i) by applying the results of Lemma 3.5 and
Remark 3.6 to Y and Y. In order to obtain ii) we observe that we can apply
the results of Lemma 3.5 and Remark 3.6 to 7 since if we put ¢/ =T — ¢
then Z(t') satisfies (3.14) with 4 =0, g = Y, and F(Z) = —LZ. On the
other hand,

1Y Yoll 1 rrx0,1)) < IO 1Y (| 2 s (0,7))-
Then, applying (2.1) to (3.15) we conclude ii). We obtain iii) from i) by
noticing that (H5) allows to find a constant independent of r such that the
L' norms of the data and the control are upper bounded by that constant

times their respective L? norms. O
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Proof of Lemma 3.4. Consider first the case where r = 1 and suppose that
w solves (3.3) with r = 1. Since g € L>(I'y), by the maximum principle we
know that

w(t) € L*(By) for every t € (0,T). (3.19)

We consider the following transposed problem: for ° € L?(Bj) and ¢ €
(0,7, let i be the solution of the equation

- —An =0 in By x (0,t)
n=0 on I'y
n(z,t)=n° in  Bj.

Since 9 € L*(B1) we have that [|5(t)||z+s,) < t_5/2H770HL2(B1) for0 < s <2
(For the proof see Lions-Magenes [9]). Now, if 3/2 < s < 2, we have that
g—Z(t) belongs to L'(0By) [see Triebel [14], p. 330], and

an —s/21..0
— (1) < Ct 0|2,
‘ dv L1(5By) B
and then
% < By o) VEE(O,T). (3.20)
dv L1(8B1x(0,t))

Multiplying (3.3) by 1 we obtain:

t 877
/B1 ( )77 0 JoB; 3’/9

and in view of (3.20) we have

] .
|/B w(t)yn’] < 15, e llgllzesryy < C (Bt P2 s llgllLoqr)-
1
Therefore

lw®llz2(8,) < CBYE gl (3.21)

where 1 > 2 =2-35,2> s> 3/2and C(B)) is independent of ¢.
Let now w be the solution of (3.3), w(z,t) = w(rz,r’*) and g(z,t) =
g(rz,r?t) . Then w satisfies

wy — Aw =0 in By X (O,T/rz)
w=g on 9By x (0,T/r*) =T,
w(z,0)=0 in By.

In view of (3.21)
_ft
|2

and then
n t :
/ W (e, t)da < r c(—) 19117 s 1, -

T

ts/?
<0(%) lalmry  vel.T)
L?(Bu)

That is,

el
lwllr2(s, o)) < CT 2 r2(|g||eor,y Vr > 0
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where (' is independent of r. In particular, we have obtained

(D)l z28,) < Cr?|lgllp(r,y Vr > 0.

4. STUDY OF THE CONTROLS FOR THE RESTRICTED DOMAINS
First of all we recall the controls proposed in [2]. We introduce

£(s) ;
Fls) = /S'lfs#O
F(0)if s =0.

Since f is of class C'? and globally Lipschitz, I’ € L>=(R).

Let ¢ > 0, y° € L*(Q), £ € L*(Q) satisfying (H5). For r > p fixed and
given 2, € L*(Q,), we write y, = ¢, + (r, ¢ = 0, + 7, with (., 7, solutions
of

ir,t - AET + F(Zr)ir =¢ in Q,
¢G-=0 on %, (4.1)
G(,0) =1 in Q

_ﬁr,t - Aﬁr + f/(zr)ﬁr = ET’X(»D in Qr
7, =0 on X, (4.2)
7-(,T)=0 in €Q,.
In [2] it is proved that there exists ¢, € L*(Q,), such that if ¢,, 7, are the
solutions of

Cr,t - ACT’ + F(ZT’)CT’ = ¢7’Xw in Qr
Cr =0 on Er (43)
¢ (,0)=0 in Q,

Nt — An, + f/(zr)nr = CT’X@ in Q,
7, =0 on X, (4.4)
n-(,T)=0 in €Q,.

Then [|7-(0) + 7-(0)[|2(q,) < €. That is,

- (0)]l 2202,y < &-
Moreover, ,, 1, satisfy
@rt — A@Qr + f/(Zr)QOr =0 in Qr
¢, =0 on 3, (4.5)
@r(-,0) = ¢} in Q,

_¢r,t — Av, + F(Zr)¢r = ¥@rXe in Q
¢7’ =0 on %, (46)
(., T)=0 in Q,.
with ¥ € L*(Q,) the corresponding minimizer of .J,.(.; F(z,), f'(z+), =7,(0)).
Let us consider the nonlinear mapping:

A, LQ(QT) - Lz(Qr)v
M) = {9 o 0 () [-(0) L 2(3 < =50 minimizing J, ).
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In [2] was proved that A, has a fixed point such that

Prit — A@Qr + f/(yr)@or =0 in Qr
=0 on %,

er(,0) =) in Q,

_¢r,t — Ay + F(yr)¢r = ¥@rXe in Q

v, =0 on X,

(., T)=0 in Q,

Yrit — Ay, + f(yr) =&+ e in Q, (4'7)
y- =0 on 2,

yr’(-7 0) = yOXQr in Qr

—qrt — AQT + f/(yr)qr = UrXe in Qr
g-=0 on X,

¢(,T)=0 in Q,

- (0)]l 2202,y < &-

Observe that in fact this result provides, for each r > 0 fixed, an e-insensi-
tizing control for the semilinear problem (1.4)(1.5) (in the restricted domain
Q,). We are going to prove that precisely these controls 1, are uniformly
bounded in L*(w x (0,7)).

Observe that Proposition 2.1 allows to prove this bound by just proving
the following.

PROPOSITION 4.1. Let (., 1, be the solutions of (4.1)-(4.2) corresponding
to F(y,), f'(y.) with y, the fized point of the mapping A, and data y°, &
satisfying (H5). Then 1,(0) is relatively compact in L*(Q) where 1,(0) is
the extension by zero of 1,(0) to Q.

Proof. First of all, since f is globally Lipschitz we can proceed as in the
proof of Lemma 3.3. We observe that v > (., 3 > 7, for every r > 0 where

v, [ satisfy
Y- Ay - Ly=[¢ inQ
v=0 on X
7(-0)=[y°] in Q

—Bi—AB - LB =X, inQ
=0 on X
B(.,T)=0 in Q.

with L = |f/|L<>O.

On the other hand, it can also be proved that ¥ < ¢, B < 7. for every
r > 0 where 7, 3 satisfy

Y- A= Ly=—[§] inQ

¥=0 on X
¥(,0)=—[y° in Q

—AB-LB=Ax, inQ
0 on X
(,7T)=0 in Q.
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~ We observe that 3 < 0 < § and then, if we put ﬁ =5 -3, we get that
B € L*Q x (0,T)) is such that for every r > 0 and for every ¢ € (0,7),

|7-(z,8)| < Blx,t) ae. in Q. (4.8)
Since 7,(0) is bounded in L%(Q) there exist € L?(2) and a subsequence
(still denoted by r) such that
7,(0) = 1 weakly in L*(Q) as r — oco.

Proceeding as in the proof of Proposition 2.3 (see Section 6.2, Second step)
we can see that for every compact K C € there exist €' > 0 independent of
r and R large enough such that if » > R, then

IV, (0) || 25y < CT™Y2.

Therefore we can find a subsequence with r = r(K) and 7x such that

7-(0) — 7 strongly in L*(K).
But the uniqueness of the weak limit implies that nx = n|x. Since the limit
has been identified in a unique way we have that

7-(0) — 5 strongly in L7 _(€).
On the other hand, in view of (4.8), for every § > 0 there exists R > 0 such
that for every r > R we have

17-(0) |2y < 118022 < 6/3
where Q denotes €\Qp, and for R large enough [[n][z2qr) < 6/3. As a
consequence of these facts we have for every r > R
20
3
It is easy then to conclude that 7,(0) — 5 strongly in L?(€2). O

17:(0) = nll 2() < 119 (0) = Wllr2 () +

5. PROOF OF THEOREM 1.5

In the proof of Theorem 1.5 we need some previous results:
ProprosiTION 5.1. Let € > 0 be fized and assume that 1 < N < 6. Assume
that (H1)-(H}) hold and that ¢ € L*(Q),y° € L*(Q). Let {&,} C LA(Q),
{y2} C L*(Q) be sequences of functions with compact support such that

& — & strongly in L*(Q) (5.1)
y2 — y°  strongly in L*(Q). (5.2)

Suppose that for every n, ||hn|lr2qy < H, where hy, are controls such that
lgn (- 0)l| 22y < /2 Vn (5.3)

where g, is the corresponding solution of (1.5) with data &,,y° and control
hy,. Then there exists i > 0 such that the solution q of (1.5) with h = h;
satisfies

la( 0)ll2q0 < = (5.4)

Furthermore, the same holds in space dimension N > 7 if y° € L?*(Q) n
INI2(Q), € € L2(0,T; L2(Q) N LN2(Q)) and the sequences {y°} C L*(Q) N
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IN2(Q), (€.} € L2(0,T; LH(Q) N LN/2(Q)) converge strongly to y°, respec-
tively to &, in these spaces.
Proof. Let ¢ be the solution of (1.11) with h = h,, and n to be chosen later.
Then
lgC 0)llzzgey < Ngn (- O)llL2) + l9(- 0) = gn (-, 0) [l 22y
We are going to see that n can be chosen such that
14(-,0) = ¢u (- 0)l| o) < £/2.

Let y be the solution of (1.10) with h = h,,. Then W, = y—yn and B, = ¢—q,
satisfy:

P, =0 on X (5.5)
(., 0) = y? — 42 in Q.

{ _ﬁn,t - Aﬁn ‘|' f/(y)q - f/(yn)qn = ¢nX@ in Q

{ ¢n,t_A¢n+f(y)_f(yn):€_€n in Q

frn=0 on X (5.6)
We multiply (5.6) by 3, and integrate by parts. Since f'(y)q— f'(yn) g, =
q(f'(v) — f'(yn)) + f'(yn) (¢ — qn), we obtain:

53 [+ L9l =1 [ 162 < [ 1nliive + Ml < w5 > |

where < .,. > denotes the duality product between H~™ (Q) and H&(Q)7
= |f'|pee and M > |f"|fec. Therefore

_5%/ 18] + /QWM? < %/lebnl2 /ﬂ2+—Hq¢nHH

By Gronwall’s inequality we obtain

2 2 T 2
L1 0P < Ialiaior+ [ laballin] (5.7

In order to estimate quan%I_l(Q) we consider first the case 1 < N < 6.

We remember that ¢, € L°((0,7T); L%(2)). Since Q satisfies (H2), ¢ €
L2((0,T); H*(R)) (see [13]). Moreover, by the variation of constant formula
it is not difficult to see that

411207120 < ClElT20) + 19172 (0) + 1aliz(wx0m))- (5.8)
In view of Sobolev’s embeddings, for 1 < N < 4, we have that ¢y, €
L*(Q) C L*(0,T; H-(2)) with

T
/0 laalZies < Clenlieorizayliliormzq — (5:9)
and for 4 < N < 6, quo, € L*(0,T; H~1(Q)) with

< g, f 5= /Q gonfde € HYQ),

T
/0 laalldos < Il oz iz@yllaleorm@y:  (5:10)
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For N > 7 we observe that ¢, € L(0,T;L*(Q) N LN%(Q)) (see [4]
p. 46) and in view of Sobolev’s embeddings ¢ € L?(0,T; Lfg—J—vﬁl(Q))7 that is,
q, € L3(Q) C L*(0,T; H1(Q)) and

T
| 1atlies < Wbl o sy 00 rrny

In view of (5.7) and (5.8) we obtain, for 1 < N < 6, that

S 1. (0)?
< C {1l o 1200y (1 + €220 + 15°113 2y + (om0
and for N > 7

/Q 1B (0)2 < € [lblZona(1+ 1€022) + 151320 + 1anl 22 o oim)]

where || [|oo.n2 denotes the norm in L(0,T; L3(Q2) N LY/2(Q)) We are as-
suming that the controls h, are uniformly bounded in n. Since &,y° are
fixed we obtain for 1 < N <6

L1808 < D[l = 6ol oy + 19° = 120
and for N > 7

/Q|ﬂn(0)|2 < D {Hf - gn"%2(0,T;L2(Q)OLN/2(Q)) + HyO - ng%%Q)nLN/?(Q)} '

In view of the convergence in (5.1) and in (5.2) it is clear that we can choose
7 such that

lla(.,0) = ga (., 0)HL2(Q) <eg/2.
O

We conclude the proof of Theorem 1.5 by giving a uniform bound for the
controls h,. The next proposition is a result in that direction.

PROPOSITION 5.2. Let &,, y° be as in Proposition 5.1 and h,, be the control
proposed in the previous section such that the solution g, of (1.11) satisfies

19n (-, )| L2y < £/2.
Then there exists a constant H > 0 independent of n, such that for every n

hnllzz) < H.

The proof of this proposition needs an analysis similar to that which we
have done in the previous section. Observe that for each n, the control h,
in the whole domain €2 is equal to a control in some restricted domain €2, for
some r large enough that depends on the data 32, &,. Thatis, k, = P ny. As
in the previous section it is not difficult to see, having in mind Proposition
2.1, that the proof of Proposition 5.2 can be reduced to the following;:

PROPOSITION 5.3. Let (7,7 be the solutions of (4.1) ({.2) corresponding
to F(y™), f'(y?) with y? the fived point of the mapping A, and data y2,&"
satisfying the hypotheses of Proposition 5.1. Then m) is relatively compact
in L*(2) where m) is the extension by zero of 7 (0) to Q.
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Proof. Since the sequence &, has been chosen such that it converges strongly
to & in L?(Q) there exists p € L*(Q) and a subsequence, still denoted by n,
such that

1€ (2, )] < p(a,t) for almost every (z,1) € Q.
Since y2 converges strongly to y° in L2(Q2) there exist Y € L?(Q2) and a
subsequence (of the previous one) such that

ly2(x)] < Y(z) for almost every z € Q.
Therefore, by the maximum principle, we have that for every n
G <y, T < By
where v, and f3, are solutions of

Yt — Avr + Fy!)ye = pla, t)x,, in Q,
v =0 on X,

Yr(0) =Y (2)x,, in Q

_ﬁr,t —AB, + f/(y;l)ﬁr = TrXe in Q
B, =0 on X,
Br(,T)=0 in Q,.
We proceed as in the proof of Proposition 4.1. That is, we can find
B € L*Q x (0,T)) such that for every n > 0 and for every r > 0

e (z,t)| < |5, (z,t)] < Bz, t) in Q, x (0,7). (5.11)
Therefore H;—j}\E(O)H[?(Q) < C and we can find € L?(Q2) and a subsequence
r(n), with r(n) — oo as n — oo, such that
7’7/\(;)(0) — n weakly in L*(Q) as r(n) — oco.
Proceeding as in the proof of Proposition 4.1 we conclude that

7r(n)(0) — 7 strongly in L*(€2).

6. TECHNICAL PROOFS
6.1. Proor or LEMMA 3.3

Let X be solution of (3.14). Since X(0) = |y°| > 0 and |g| > 0, by the
maximum principle X is positive. Moreover |F(Y)| < MY with M the
Lipschitz constant of F, and then X is subsolution of the problem

u — Au— Mu=|g| in R" x (0,7) (6.1)

u(z,0) = |y°(@)] in R" '
Let v = e=Mty. Then v verifies

vy — Av = e Mlg| in R" x (0,7) (6.2)

o(,0) = @) in " '

We can express v by the variation of constants formula:

.r—z|2

o(a,t) = An(4ﬂt)—n/2e”T|y0(z)|dz

2
|

_| —
e Mo g(a, 2)|dodz.

t xT z
4 / (4r(t — o)) ~"/2e =
0 Jlz|<p
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Since suppy® C B,, w C B, and suppg C B, x (0,T) we have, for every
x such that |z| > p,

lz|—=p|?
vt = /| ) e s
z|<p
! ~llzl=pl
/ /|| (47 (t — o))" 2 30=0) |g(a z)|dodz.
z|<p

and then

2
=llz|=pl
4t

|yo|L1

t ~llz|~
/ /|| (Ar(t — o)) ”/26 4(t=) |g(a z)|dodz  (6.3)
z|<p

v(z,t) < (dxt)"%e

Let m(s) = s~@e¢~"/*. By elementary calculus we obtain that m reaches

it maximum at s = g Then

s oze—ﬁ/s < (E)_Ofﬁ_a‘
«
Substituting this bound in (6.3) with @ = n/2 and 8 = ||z| — p|?, we obtain

P

Ty we have that

2me —n/2 1 o
vl oo (r,) < _7)71 (I e @y + 19l (0.1 ) -
v<e

Since u(z,t) =

MT
lull o (1) < Cip)n (10 L@y + l9llLr 0,0y cmmy ) - V7> p.

-
Since X is a non negative subsolution of (6.1)

MT
I Xl peoqr,y £ Crr PR (Ily° 2@y + gl 0T)><R"))- Vr > p.

(r—
6.2. PrRoOF oF ProPOSITION 2.3

This section is devoted to the proof of Proposition 2.3. During the proof
we are going to use the following classical compactness result (see Simon
[12], Theorem 5, p. 84):

THEOREM 6.1. Let X, B,Y be Banach spaces such that X C B C'Y with
continuous embeddings, the embedding X C B being compact. Let 1 < p <
oo. If F is a bounded subset of LP(0,T; X) and

l7nf — fHLp(QT_hy) — 0 as h — 0 uniformly for f € F

where 1, f(t) = f(t+ h), then F is relatively compact in L?(0,T; B) [in
(0, T} B) if p = o0 ]
Proof of Proposition 2.3. First of all we observe that since v° € L%(€,),
gr € L*(Q,) and =, € L*(0,T; H}(,)), then V:fr = V4, and 7, satisfies
— A%+ (2,17, = G + F26,, in Q
'y,, =0 on ¥ (6.4)
F.(,0) =79 in Q
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where §,, is the Dirac measure on the set 9€2,. That is, for ¢ € C°(Q),

< 8w8rlft) g, > = faﬁr aglft) ¢do. In view of (6.4) we have that for every

compact subset K C Q, R > 0 such that K C Bp and for every r > R,
Yot = A — (2, )% + g, in K x (0,7). (6.5)
On the other hand we have that
Iellee @) = I llz2 e, < C Vr, (6.6)
19+ l22(0) = 1G22 @) < T2 = (0,752 () < C' V. (6.7)

In consequence there exist 7% € L%(2), g € L?(Q) and subsequences (with
the same index r) such that

79 — 40 weakly in L*(Q) as r — oo, (6.8)

g, — g weakly in L*(Q) as r — oo. (6.9)

We shall see that the result stated in Proposition 2.3 holds precisely for
the sequences corresponding to that index r.

We divide now the proof in 5 steps. The first three correspond to con-
vergence results, the fourth step is devoted to prove that ~ verifies equation

(2.13) and the fifth that « belongs to L7 _(0,T; HE (Q)).
FIRST STEP: 9, — 7 WEAKLY® IN L°(0,T; L*()).
We multiply equation (2.6) by v, and integrate by parts
1d
sar [ bePdet [ 19 [ a@oml= [ g
2dt Jq, Q Q .
Since |c,| is uniformly bounded in L°(Q), g, is uniformly bounded in L%(Q)

and 9 is uniformly bounded in L%(2) we can apply first Schwartz’s inequal-
ity and then Gronwall’s inequality to obtain that

t
/|’yr(t)|2dac—|—2// |V, |2deds < C
Qr 0 JQr

for some constant C' > 0 independent of ¢ and r. Therefore, for every r

/ v, (1) |2da < CVt € (0,T) (6.10)

Q
t

/ / V7,2 < C VYt e (0,T). (6.11)
0 r

In view of (6.10) we can extract a subsequence (from that we have chosen
in (6.8)) verifying
Y, — v weakly* in L>(0,7; L*(Q)), (6.12)
and in particular
Y — v weakly in L?(0,T; L*(2)). (6.13)

SECOND STEP: ¥,(t) — v(t) sTRONGLY IN L} (Q) FOR EVERY .
For K C Q compact, from (6.5) and (6.10) we have

17l Lo 0,3 -2(5)) < C
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In view of Theorem 6.1, taking B = H™'(K), X = L*(K), Y = H*(K),
p = oo and I = {7,},, there exists p(K) and a subsequence 7, (from the
previous one) such that 4, — p(K) strongly in C'([0,T]; H™Y(K)).

By uniqueness of the weak limit and extracting diagonal subsequences we
observe that for every compact subset K, p(K) = 7|k, i.e.

Y — 7 strongly in C([0,T]; H;;1()) (6.14)
and 7%k = 7(0)|x.

In order to get compactness in L? we need some estimates on the gradi-
ents. Let S,.(t) be the semigroup generated by the operator —A in L?(£,)
with Dirichlet boundary conditions. Since S, (-) is an analytic semigroup we
have (see [10]) that

15- () vl pi(g,) < fl/zH”HL?(QT)v Vo e L*(,).

By the variation of constants formula, we know that

W) = S (0) - / S (t — o)y (o) (0)do

¢
—I—/ Sp(t—o0)g,(0)do.
0
It is not difficult to prove then that

IV )l z2a0) < 1970|220y < O30 o) for every 0 <t < T
(6.15)

where C' depends only of [|¢, ||~ (q,) and [|g: |50, 7;12(q,)) - In view of our
hypotheses on ¢,, g, and 72 it is easy to see then that

VY (Ol 2y < Ct="2 for every 0<t<T (6.16)

with € independent of r.

In view of (6.16), for every ¢t € (g,T') there exists r; = r;(t) [r; subsequence
of (6.14)] and n(t; K) such that 4, (t) — n(¢; K) strongly in L*(K). In view
of (6.14) n(t; K) = v(t)|x for t € (,T) and therefore v, (t) — v(t)|x
strongly in L*(K).

The subsequence r; depends (in principle) on ¢t. However, since the limit
has been identified in a unique way as v(¢)|x we deduce that the whole
sequence converges, i.e. for every compact K C Qand 0 <t < T, 7,.(t) —
y(t) in L*(K).

THIRD STEP: 4, — v IN L?(e,T; L (Q)).

Let 0 <e < T and n,(t) = ||7:(t) = v (D)l 22 (k). From (6.13) we know that

there exists a constant C' > 0 such that

1/3

(/6T|m<t>|3) <c

Since 4, (t) — v(t)|x strongly in L?(K) and by Egorov’s Theorem, for any
d > 0 there exists a set Bs C [¢,T] such that As = [¢, T]\Bs with measure
|As| < 62/C® and such that 7, — 0 uniformly in Bs. Let R be such that for
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1/2 in Bj. Then, for every r > R we have

T o o
rtzg/ rtz‘l’/ rt2§02_+B5—:25-
[ s [ mors [ morsotg mdg

Therefore §, — v|x strongly in L%(s, T; L?(K)). Clearly, the limit 7 does
not depend on the compact set K C 2. Thus

Y, — 7 strongly in L*(e,T; L},.(Q)).

loc

every r > R, [n] < ||

FOURTH STEP: EQUATION VERIFIED BY Y.
Let v € D(Q) and R > 0 be such that suppv C Br X (¢,7). Then for
every r > R

T T T T
—/ /;frvt—/ /%Av—l—/ /é}ﬂ,v:/ /f]}v (6.17)
0 JQ 0 JQ 0 JQ 0 JQ

Since |¢,|r(q) < €, there exists a sequence (still denoted by r) and ¢ €
L*(Q) such that ¢, — ¢ weakly* in L>(Q). On the other hand, g, — ¢
weakly in L*(Q). Passing to the limit in (6.17) along the subsequence we
obtain

_/OT/QW_/OT/QyAH/OT/Qc(x,t)w:/OT/QgU (6.18)

and therefore 7 verifies the equation

Y — Ay + ez, t)y =g in D'(Q)
where D'(()) denotes the set of all the distributions in .
FIFTH STEP:y BELONGS TO L? (0,T; H} ().

loc loc
In order to estimate the norm of the solution in L*(s, T; H*(K)) we need

to introduce some auxiliary sets and functions. Given any ¢ > 0 we choose
R and Kr C Qg an open set of class C? (we observe that Qr = QN Bg has
not necessarily this regularity) such that dist(0K,0Kgr) > 36 > 0. Let Kj;
be a compact set of class C'? such that K C K5 C Kg and dist(0Ks, dKR) > 6.
We construct ¢ € C°(€2) such that ¢ = 1in K5 and ¢ = 0 in Q\KrUIKpg.
For every r > R we define

U, = v-¢. (6.19)
Then U, satisfies

Uy — AU + ¢ (2, ) U, = v, A¢ — 2div(y, Vo) + ¢g, in Krx (0,7T)
U =0 on dKgrx(0,7)
U.() =+% in Kg.

Let S(t) be the semigroup generated by the operator —A in L?(Kpg) with
Dirichlet boundary conditions. By the variation of constants formula we
observe that for every 0 <t < T,

00 = SOUA0+ [ (- o) rodo
—2/0 S(t—a)div('yr(a)qu)dU—/o S(t—o)e (0)Uy(0)do

—I—/O S(t—o)gr(o)d(o)do.
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Since S(-) is an analytic semigroup and Kg is of class C?, we have (see [10],
p.74)

1S @ ollrz(wgy < Molleagr gy 19@vllmmg < %HUHB(KR)v Vv € L*(Kp).
Interpolating for 0 < s < 2 (see Lions-Magenes [9]) we obtain
1Sl me(rp) < C(s)t_s/szHLz(KR), Yo € L*(KR). (6.20)
Therefore,
10Oy < COERE U0 |2

t
HOUR Dellmoraany [ ¢~ 0) o
t
(K Ry &) 1l (0.2 ) /0 (t — o)1 12do
t
+CER O sorascny [ (=)o

t
‘I'C(I(Rv¢)H97’HL°°(O,T;L2(KR))/ (t — o)~/ do.
0
In view of (6.6), (6.7),(6.10) and (6.19) we obtain
10O g2 1y < CLE 1]
where the constant C' depends on ¢, Kr, T, G > [|g: ||~ (0,1;12(02)) and C >

||cr||oo- That is H%’(t)HHS/’Z(Ké) < C[t_3/4 1)
By a bootstrap argument we obtain that

T
| 0l < ©

and therefore (for a subsequence) 7,|x — 7|k weakly in L%(e,T; H*(K)).
This concludes the proof of Proposition 2.3.

ApPPENDIX A. ProOOF OF PrOPOSITION 1.1

We give an sketch of the proof of Proposition 1.1.
The state z solution of (1.1) is differentiable with respect to 7y and it’s
derivative z;, satisfies:
Zrot — Azrg + f(y)2;, =0 In Q =Q x(0,7)
Z, =0 on X =002x(0,7T) (A.1)
2 (2,0) =2 in Q

where y is the solution of (1.4). The derivative of ® with respect to 7y at

7o = 0 is then
~dxdt. A2
87'0 T70=0 / /yz 0¥ ( )

Substituting y in (A.2) by left hand member of (1.5) and integrating by
parts we obtain:

87’0
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obtaining the condition (1.6).

(1]
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