GENERICITY OF OBSERVABILITY OF CONTROL-AFFINE SYSTEMS

M. BALDE AND P. JOUAN

Abstract. For smooth or real-analytic single-input, control-affine, non-linear systems, with at least two outputs, observability for any input of a given class is generic. This class can be either the class of inputs bounded with their derivatives up to a certain order, or the class of polynomial inputs with bounded degree.

1. Introduction

In this paper we deal with genericity of observability of control-affine systems of the form:

\[\Sigma = \begin{cases} \dot{x} = f(x) + u_0 g(x) & x \in X, \quad u_0 \in \mathbb{R} \\ y = h(x) & y \in \mathbb{R}^p, \end{cases} \]

where the state space \(X \) is compact and \(d \)-dimensional.

Such a single-input \(p \)-outputs system is said to be observable for an input \(t \mapsto u_0(t) \) if any two initial states are distinguished by the outputs (corresponding to a given input) on any time interval, i.e. if:

\[\forall x_1 \neq x_2 \in X, \quad \forall T > 0, \exists \tau \in [0,T] \text{ s.t.} \quad h(x_1(\tau)) \neq h(x_2(\tau)), \]

where \(x_i(t) \) is the solution of the dynamical system for the input \(t \mapsto u_0(t) \) and the initial condition \(x_i(0) = x_i \).

This definition of observability is not the standard one that was proposed by Hermann and Krener in [10]. But our definition is justified by the genericity results at least when there are more outputs than inputs. It is used in [7],[13] and [16].

In fact, we deal with the stronger property of differential observability: a \(C^k \)-input being given, the system \(\Sigma \) is said to be differentially observable for this input if, for an integer \(k' \leq k \), the mapping which associates to the state the outputs together with their \(k' \) first derivatives is an embedding. This definition permits the use of transversality tools, that are involved in order to prove the following results:

© Société de Mathématiques Appliquées et Industrielles. Typeset by L\(\text{\TeX} \).
Theorem 3.2. Fix $p \geq 2$. The set of systems with p outputs which are differentially observable for any C^{2d}-input is residual in the set of all C^r-systems, for $r \in \mathbb{N} \cup \{\infty, \omega\}$ large enough.

Theorem 3.3. A bound $B > 0$ being given, the set of systems that are differentially observable for any C^{2d}-input $t \mapsto u_0(t)$ such that $\left| \frac{du_0}{dt}(0) \right| \leq B$ is open and dense in the set of all C^r-systems, for $r \in \mathbb{N} \cup \{\infty, \omega\}$ large enough, and for $p \geq 2$.

Analogous statements are proved in [7], [8] for general nonlinear systems. Notice, however, that since the interior of the subset of control-affine systems is empty in the set of all non-linear systems, our results cannot be deduced from those of [7], [8].

In the statement of the above theorems, one can notice the requirement $p \geq 2$. This is in fact the general requirement that the number of outputs is strictly larger than the number of inputs, which is also made in [7], [8]. If the number of outputs is equal to the number of inputs the theorems are false as it is shown in [6].

In section 5 we prove the following result: Theorem 5.1. The set of systems that are differentially observable for any polynomial input whose degree is smaller than a given bound contains an open and dense subset of the set of all C^r-systems, for $r \in \mathbb{N} \cup \{\infty, \omega\}$ large enough, and for $p \geq 2$.

The proof of this theorem is based on a method of compactification of the inputs, that was used for the first time by the second author in the case of general non-linear systems (see [14], [15]).

One of the main interests of differential observability for all inputs whose derivatives belong to a bounded set is the possibility of constructing nonlinear observers. We do not give this construction here, because it follows the same line as the construction made for general non linear-systems and can be found in [6] or [7]. The computations are particularly detailed in [16] where it is moreover shown that differential observability is a sufficient but not necessary condition for the possibility of the constructing of nonlinear observers.

To finish we want to recall another result proved in the uppermentioned paper [7], and that is immediately available for our particular systems:

Theorem 5.1 of [7]. For an analytic system Σ, the following properties are equivalent:

- Σ is observable for any C^ω-input
- Σ is observable for any L^∞-input.

For the sake of clarity, we have chosen to deal with single-input systems only; but our results can be rather easily extended to multi-input control-affine systems assuming that the number of outputs is strictly larger than the number of inputs.

For systems whose state manifold is not compact, similar results are certainly true in the Whitney topology. Nevertheless, the observer design problem is well posed only if the state space is compact or when restricting to a compact subset (see for instance [16]). For this reason we consider the compact case only.
2. Definitions and notations

Let X be a d-dimensional, compact, connected C^∞-manifold. Let $h : X \to \mathbb{R}^p$ be a C^ν-mapping and f, g two C^ν-vector-fields on X, where $r \in \mathbb{N} \cup \{\infty\}$. We consider a single-input, p-outputs system $\Sigma = (h, f, g)$ on X defined by:

$$
\Sigma = (h, f, g) = \left\{ \begin{array}{l}
 \dot{x} = f(x) + u_0 g(x) \quad x \in X, \quad u_0 \in \mathbb{R} \\
 y = h(x) \quad y \in \mathbb{R}^p.
\end{array} \right.
$$

(2.1)

The set $C^\nu (X, \mathbb{R}^p)$ (resp. the set $\Gamma^\nu (TX)$ of C^ν-vector-fields on X) will be denoted by H^ν (resp. Γ^ν) and endowed with the C^ν-topology. S^r will stand for the set $H^r \times (\Gamma^r)^2$ of C^r-systems. For $r < \infty$, H^r, Γ^r and S^r have the natural structure of Banach spaces (see [1]).

In what follows, the integer r will be supposed to be large enough in order to perform all considered operations.

The k^{th} dynamical extension of the vector-field $f + u_0 g$ is the vector-field F^k on $X \times \mathbb{R}^k$ controled by u_k and defined by:

$$
F^k (x, u, u_k) = f(x) + u_0 g(x) + \sum_{i=0}^{k-1} u_{i+1} \frac{\partial}{\partial u_i},
$$

where $u = (u_0, u_1, ..., u_{k-1})$.

A system $\Sigma = (h, f, g) \in S^r$ being given and for $1 \leq k \leq r + 1$ we define the mapping $R_{k, \Sigma}$ by:

$$
R_{k, \Sigma} : X \times \mathbb{R}^k \to \mathbb{R}^{kp} \\
(x, u) \mapsto \left(h(x), L_{F^k} h(x, u), ..., L_{F^k}^{k-1} h(x, u) \right).
$$

Remark 2.1.

1. $R_{k, \Sigma}$ depends on $u = (u_0, u_1, ..., u_{k-1})$ but not on u_k.

2. Let $t \mapsto u_0 (t)$ be an input which verifies $\frac{d^i u_0}{dt^i} (0) = u_i$ for $0 \leq i \leq k-1$.

It is clear that

$$
R_{k, \Sigma} (x, u) = \left(h \left(\phi(t) \right), \frac{d}{dt} h \left(\phi(t) \right), ..., \frac{d^{k-1}}{dt^{k-1}} h \left(\phi(t) \right) \right)_{t=0},
$$

where $t \mapsto \phi(t)$ is the solution of $\dot{\phi} = f(x) + u_0 (t) g(x)$ passing by the initial condition $\phi(0) = x$.

We will also use the suspension mapping $SR_{k, \Sigma}$, which is merely:

$$
SR_{k, \Sigma} (x, u) = (R_{k, \Sigma} (x, u), u) \in \mathbb{R}^{kp} \times \mathbb{R}^k
$$

Since X is a compact manifold, $SR_{k, \Sigma}$ is always a proper mapping. We are interested in systems Σ for which $SR_{k, \Sigma}$ is an embedding, at least when restricted to $X \times U$ where U is a subset of \mathbb{R}^k, for the following reasons:

1. If the restriction of $SR_{k, \Sigma}$ to $X \times U$, is one-to-one, then, according to remark 2.1(2), Σ is observable for any input whose $(k-1)$ first derivatives belong to U.

2. The fact that $SR_{k, \Sigma}$ is additionally an embedding is a sufficient condition to construct observers.
3. Transversality results

3.1. Statement of the results

The following theorems holds only for \(p \geq 2 \), i.e. if the number of outputs is strictly larger than the number of inputs.

Theorem 3.1. The set of systems \(\Sigma \) such that \(SR_{2d,\Sigma} \) is an immersion contains an open and dense subset of \(S^r \) (for \(r \in \mathbb{N} \cup \{ \infty \} \), large enough).

Theorem 3.2. The set of systems \(\Sigma \) such that \(SR_{2d+1,\Sigma} \) is an embedding is residual hence dense in \(S^r \) (for \(r \in \mathbb{N} \cup \{ \infty \} \), large enough).

Theorem 3.3. Let \(B > 0 \) and \(I_B = [-B,B] \). The set of systems \(\Sigma \) such that the restriction of \(SR_{2d+1,\Sigma} \) to \(X \times (I_B)^{2d+1} \) is an embedding is open and dense in \(S^r \) (for \(r \in \mathbb{N} \cup \{ \infty \} \), large enough).

3.2. Some remarks

1. We recall the following definition: a subbundle \(B \) of a vector bundle \(E \) is called partially semi-algebraic (PSA) if its typical fiber is a semi-algebraic subset of the typical fiber of \(E \) (see [4],[1],[17],[11]). Standard properties of PSA subbundles are used in the following proofs.

2. We denote by \(\oplus \) the fiber product over \(X \). Thus the bundle of \(k \)-jets of systems is the bundle:

\[
J^k S = J^k H \oplus J^k \Gamma \oplus J^k \Gamma.
\]

3. The mapping \(R_{k,\Sigma} \) (resp. \(T_X R_{k,\Sigma} \)) depends only on the \((k-1)\)-jet (resp. the \(k \)-jet) of \(\Sigma \), therefore it induces a mapping on \(J^k S \times \mathbb{R}^k \) that is also denoted by \(R_{k,\Sigma} \) (resp. \(T_X R_{k,\Sigma} \)).

4. If a point \((x,u_0)\) is a singularity of the system \(\Sigma \), i.e., if \(f(x) + u_0 g(x) = 0 \), we will sometimes denote by \((C,A)\) the linearized system \((dh(x), T_X(f(x) + u_0 g(x)))\).

3.3. Proof of the theorem 3.1

Let \(\tilde{B}(k) \) denote the subset of \(J^k S \times \mathbb{R}^k \) of all \((j^k_{x,\Sigma},u)\) such that \(rank[T_X R_{k,\Sigma}(x,u)] < d \). We consider the following partition of \(B(k) \):

\[
\tilde{B}(k) = \tilde{B}_1(k) \cup \tilde{B}_2(k) \cup \tilde{B}_3(k),
\]

where:

- \((j^k_{x,\Sigma},u)\) \(\in \tilde{B}_1(k) \) \iff \(f(x) + u_0 g(x) \neq 0 \)
- \((j^k_{x,\Sigma},u)\) \(\in \tilde{B}_2(k) \) \iff \(f(x) + u_0 g(x) = 0 \) and the linearized system \((dh(x), T_X(f(x) + u_0 g(x)))\) is not observable.
- \((j^k_{x,\Sigma},u)\) \(\in \tilde{B}_3(k) \) \iff \(f(x) + u_0 g(x) = 0 \) and the linearized system \((dh(x), T_X(f(x) + u_0 g(x)))\) is observable.

\(\tilde{B}(k), \tilde{B}_1(k), \tilde{B}_2(k), \tilde{B}_3(k) \) and their respective projections \(B(k), B_1(k), B_2(k), B_3(k) \) into \(J^k S \) are PSA.
3.3.1. \(\text{Codim} (B_1 (k)) = k (p - 1) + 1 - d. \) Let

\[O_1 = \{ (j^k_x, u) \in J^k S \times \mathbb{R}^k, \quad f (x) + u_0 g (x) \neq 0 \}. \]

Notice that \(O_1 \) is an open subset of \(J^k S \times \mathbb{R}^k. \) Let \(\mu_1 \) be the mapping:

\[\mu_1 : \quad O_1 \rightarrow (T^* X)^{\oplus k_p} \]

\[(j^k_x, u) \mapsto T_x R_{k, \Sigma} (x, u). \]

The mapping \(\mu_1 \) is a submersion because, by Lemma 6.2, the linear mapping \(j^k_x \rightarrow T_x R_{k, \Sigma} (x, u) \) is surjective as soon as \(f (x) + u_0 g (x) \neq 0. \) Notice that \(B_1 (k) \) is the pullback by \(\mu_1 \) of the set of elements of \((T^* X)^{\oplus k_p} \) whose rank is less than \(d. \) By the product of coranks theorem (see [9]), the codimension of this set is \((d - (d - 1)) (k p - (d - 1)) = k p + 1 - d. \) Thus the codimension of \(B_1 (k) \) in \(J^k S \times \mathbb{R}^k \) is also \(k p + 1 - d, \) and the codimension of \(B_1 (k) \) in \(J^k S \) is \(k p + 1 - d - k = k (p - 1) + 1 - d. \)

3.3.2. \(\text{Codim} (B_2 (k), J^k S) = d + p - 1. \) Let \(x \in X \) and let \(J^k_x S \) be the (typical) fiber of \(J^k S \) over \(x. \) Let \(V \) be the subset of \(J^k_x S \times \mathbb{R}^k \) defined by \((j^k_x, u) \in V \iff f (x) + u_0 g (x) = 0. \) The set \(V \) has codimension \(d \) in \(J^k_x S \times \mathbb{R}^k. \) Let \(\mu_2 \) be the mapping:

\[\mu_2 : \quad V \rightarrow (T^* X)^p \times \text{End} (T_x X) \]

\[(j^k_x, u) \mapsto (dh (x), T_x (f (x) + u_0 g (x))). \]

We see that \(\mu_2 \) is clearly surjective and the typical fiber of \(\tilde{B}_2 (k) \) is the pullback by \(\mu_2 \) of the set of unobservable couples \((C, A) \) of \((T^* X)^p \times \text{End} (T_x X), \) whose codimension, according to lemma 6.1, is \(p. \) Therefore \(\text{codim} (\tilde{B}_2 (k), J^k S \times \mathbb{R}^k) = d + p. \) But \(\tilde{B}_2 (k) \) does not depend on the variables \(u_1, \ldots, u_{d-1} \) and codim \((B_2 (k), J^k S) = d + p - 1. \)

3.3.3. \(\text{Codim} (B_3 (k), J^k S) \geq \min \{ k (p - 1) + 1; 2 d \}. \) First let us define \(O_3 \) the subset of \(J^k S \) of elements that verify \((f (x), g (x)) \neq (0, 0). \) The set \(O_3 \) is clearly an open, dense and PSA subbundle of \(J^k S. \) Let \(B_3' (k) = B_3 (k) \cap (O_3 \times \mathbb{R}^k) \) and \(B_3' (k) = B_3 (k) \cap O_3. \) Observe that \((j^k_x, u) \in B_3' (k) \) implies \(g (x) \neq 0. \)

For \(1 \leq \rho \leq d - 1 \) let us define \(\hat{B}_6 (k, \rho) \) by :

\[\hat{B}_6 (k, \rho) = \{ (j^k_x, u) \in \hat{B}_3 (k); \quad u_1 = u_2 = \cdots = u_{\rho-1} = 0 \text{ and } u_\rho \neq 0 \} \]

We may notice that \(u_1 = u_2 = \cdots = u_{d-1} = 0 \) implies \((j^k_x, u) \in \hat{B}_3 (k) \) because of the observability of the linearized system, and conclude that:

\[\hat{B}_3 (k) = \bigcup_{1 \leq \rho \leq d-1} \hat{B}_6 (k, \rho). \]

For \(1 \leq \rho \leq d - 1, \) both \(\hat{B}_6 (k, \rho) \) and its projection \(B_6 (k, \rho) \) into \(O_3 \) are PSA.

Let \(G_\rho \subset (O_3 \oplus T X) \times \mathbb{R}^k \) be the set of elements \((j^k_x, \Lambda, u) \) such that:

1. \(f (x) + u_0 g (x) = 0 \)
2. \(u_1 = u_2 = \cdots = u_{\rho-1} = 0 \)
3. the vectors \(A_i \Lambda, 0 \leq i \leq \rho \) are linearly independant.

G_ρ is a subbundle and a submanifold of $(O_3 \oplus TX) \times \mathbb{R}^k$; its codimension equals $d + \rho - 1$. Let μ_3 be the mapping:

$$\mu_3 : (j_x^k \Sigma, \Lambda, u) \mapsto T_X R_{k, \Sigma} (x, u) \cdot \Lambda.$$

By Lemma 6.3 of the appendix, μ_3 is a submersion and $\text{codim}(\mu_3^{-1} (0), G_\rho) = kp$. Therefore, G_ρ being conical w.r.t. Λ, the codimension of the projection of $\mu_3^{-1} (0)$ in $O_3 \times \mathbb{R}^k$ is $kp + (d + \rho - 1) - (d - 1) = kp + \rho$.

Let $(j_x^k \Sigma, u) \in B_0 (k, \rho)$. There exists $\Lambda \in T_x X$, $\Lambda \neq 0$, such that $T_X R_{k, \Sigma} (x, u) \cdot \Lambda = 0$. By Lemma 6.3 of the appendix, $CA^i \Lambda = 0$ for $i = 0, \ldots, \rho - 1$. The pair (C, A) is observable and this implies that the vectors $A^i \Lambda$, $0 \leq i \leq \rho$ are linearly independent. As a consequence $(j_x^k \Sigma, u)$ belongs to the projection of $\mu_3^{-1} (0)$ into $O_3 \times \mathbb{R}^k$. Hence $\text{codim} (B_0 (k, \rho), O_3 \times \mathbb{R}^k) \geq kp + \rho$ and $\text{codim} (B_0 (k, \rho), O_3) \geq kp + \rho - k = k (p - 1) + \rho$. Therefore

$$\text{Codim} \left(B_3 (k), J^k S \right) \geq \min_{1 \leq i \leq d - 1} \{ k (p - 1) + \rho \} = k (p - 1) + 1.$$

Now $B_3 (k) \setminus B_3' (k)$ is included in $J^k S \setminus O_3$. The codimension of $B_3 (k) \setminus B_3' (k)$ in $J^k S$ is therefore larger or equal to $2d$ and

$$\text{Codim} \left(B_3 (k), J^k S \right) \geq \min \{ k (p - 1) + 1; 2d \}.$$

3.3.4. END OF THE PROOF. It is now possible to compute the codimension of $B (k)$. We have

$$\text{Codim} \left(B (k), J^k S \right) \geq \min_{i=1,2,3} \text{Codim} \left(B_i (k), J^k S \right) \geq \min \{ k (p - 1) + 1 - d, d + p - 1, k (p - 1) + 1, 2p \}.$$

For $p \geq 2$ and $k \geq 2d$, we have $\text{Codim} \left(B (k), J^k S \right) \geq d + 1$. The set $B (k)$ is PSA and the same is true for the closure $\overline{B (k)}$ of $B (k)$ in $J^k S$. Therefore $\overline{B (k)}$ is a finite union of submanifolds of $J^k S$ whose codimension is larger or equal to $d + 1$. For $r \geq 2d + 1$, the evaluation mapping: $(\Sigma, x) \mapsto j_x \Sigma$ is a C^1-mapping. Then by Abraham's theorems on transversality (see [1]), the set of systems Σ such that $j_x \Sigma$ avoids $\overline{B (k)}$ is open and dense in \mathcal{S}^r. The fact that $j_x \Sigma$ avoids $B (k)$ implies obviously that $SR_{k, \Sigma}$ is an immersion. This proves Theorem 3.1 for $2d + 1 \leq r < \infty$. Since the C^∞-topology is the inductive limit of the C^r-topologies, the result holds for $r = \infty$.

3.4. PROOF OF THE THEOREM 3.2

Let \overline{X} stand for $X \times X \setminus \Delta X$ where ΔX is the diagonal of $X \times X$, and let $\overline{J^k S}$ be the restriction of $(J^k S)^{\oplus 2}$ to \overline{X}.

Let $\hat{B}_4 (k)$ be the subset of $\overline{J^k S} \times \mathbb{R}$ whose elements $(j_x^k \Sigma, j_x^{k, \Sigma} u_0)$ verify:

- $f (x_1) + u_0 g (x_1) = f (x_2) + u_0 g (x_2) = 0$
- $h (x_1) = h (x_2)$.

The codimension of $\hat{B}_4 (k)$ in $\overline{J^k S} \times \mathbb{R}$ equals $2d + p$. Since $\hat{B}_4 (k)$ is PSA, the codimension in $J^k S$ of its projection $B_4 (k)$ is $2d + p - 1$.

ESAIM: COCV, OCTOBER 1998, VOL. 3, 345-359
Let $\tilde{B}_5 (k)$ be the PSA subbundle of $J^k S \times \mathbb{R}^k$ whose elements $(j^k_{x_1} \Sigma, j^k_{x_2} \Sigma, u)$ verify:

- $f (x_1) + u_0 g (x_1) \neq 0$ or $f (x_2) + u_0 g (x_2) \neq 0$
- $R_{k, \Sigma} (x_1, u) = R_{k, \Sigma} (x_2, u)$.

Let O_5 be the open subset of $J^k S \times \mathbb{R}^k$ consisting of elements $(j^k_{x_1} \Sigma, j^k_{x_2} \Sigma, u)$ such that $f (x_1) + u_0 g (x_1) \neq 0$ or $f (x_2) + u_0 g (x_2) \neq 0$. By Lemma 6.2 of the appendix the mapping:

\[
\mu_5 : O_5 \rightarrow \mathbb{R}^{kp}
\]

\[
(j^k_{x_1} \Sigma, j^k_{x_2} \Sigma, u) \mapsto R_{k, \Sigma} (x_2, u) - R_{k, \Sigma} (x_1, u)
\]

is a submersion. Clearly $\tilde{B}_5 (k)$ is equal to $\mu_5^{-1} (0)$, and thus its codimension in O_5, and also in $J^k S \times \mathbb{R}^k$, is kp. Finally, the codimension in $J^k S$ of the projection $B_5 (k)$ of $\tilde{B}_5 (k)$ is $kp - k = k (p - 1)$.

Let $B' (k) = B_4 (k) \cup B_5 (k)$. The codimension of $B' (k)$ is larger or equal to $2d + 1$ as soon as $p \geq 2$ and $k \geq 2d + 1$. By Abraham’s theorem on density [1], the set of systems Σ such that $(j^k_{x_1} \Sigma, j^k_{x_2} \Sigma)$ avoids $B' (k)$ for any $(x_1, x_2) \in \tilde{X}$ is residual (hence dense) in S^r for $r \geq 2d + 2$. Thus Theorem 3.2 is proved for $2d + 2 \leq r < \infty$. Since the C^∞-topology is the inductive limit of the C^n-topologies, the result holds for $r = \infty$.

To finish, let K be a compact subset of $\tilde{X} = X \times X \backslash \Delta X$. Since $B' (k)$ is PSA, its closure $\overline{B' (k)}$ is again a PSA subbundle of $J^k S$ of codimension larger or equal to $2d + 1$ as soon as $p \geq 2$ and $k \geq 2d + 1$. By Abraham’s theorem on openness of non-intersection, we can state:

Lemma 3.4. The set of systems Σ such that the mapping:

\[
K \times \mathbb{R}^k \rightarrow \mathbb{R}^{kp}
\]

\[
(x_1, x_2, u) \mapsto R_{k, \Sigma} (x_2, u) - R_{k, \Sigma} (x_1, u)
\]

does not vanish at any point is open and dense in S^r for $r \geq 2d + 2$, $k \geq 2d + 1$ and $p \geq 2$.

This lemma will be used in Section 5.

3.5. Proof of the theorem 3.3

The mapping:

\[
S^r \rightarrow C_r^{2d} \left(X \times (I_B)^{2d} ; \mathbb{R}^{(2d+1)p} \right)
\]

\[
\Sigma \mapsto SR_{2d+1, \Sigma}
\]

being continuous, and the set of embeddings being open in $C_r^{2d} \left(X \times (I_B)^{2d} ; \mathbb{R}^{(2d+1)p} \right)$ for $p \geq 2$ and $r > 2d$, the set of systems Σ such that the restriction of $SR_{2d+1, \Sigma}$ to $X \times (I_B)^{2d}$ is an embedding is open in S^r (for r large enough); it is dense by Theorem 3.2 and thus Theorem 3.3 is a straightforward consequence of the previous ones.
4. The analytic case

We consider in this section the set \(S^\omega \) of real-analytic systems of the form (2.1):

\[
\Sigma = (h, f, g) = \left\{ \begin{array}{ll}
\dot{x} = f(x) + u_0 g(x) & x \in X, \ u_0 \in \mathbb{R} \\
y = h(x) & y \in \mathbb{R}^p,
\end{array} \right.
\]

i.e., we assume that \(X, h, f \) and \(g \) are analytic.

For any system \(\Sigma_0 = (h_0, f_0, g_0) \in S^\omega \), one can build Banach spaces of analytic functions (resp. analytic vector-fields), (resp. analytic systems) \(H, F, G \) and \(S = H \times F \times G \), containing respectively \(h_0, f_0, g_0 \) and \(\Sigma_0 \) and such that:

1. the norm of \(H \) (resp. \(F, G, S \)) is stronger than the norm of \(H^r \) (resp. \(F^r, G^r, S^r \)) for \(r \in \mathbb{N} \);
2. for any distinct points \(x_1 \) and \(x_2 \) in \(X \), and for any integer \(k \), there exists an element in \(H \) (resp. \(F, G, S \)) whose \(k \)-jets at \(x_1 \) and \(x_2 \) have arbitrary prescribed values.

The proof of the existence of such Banach spaces can be found in [7].

Now, replacing \(S^r \) by \(S \), we can exactly repeat the statements and proofs of Theorems 3.1, 3.2 and 3.3. Thus these theorems remain true in the analytic case.

5. Observability for any polynomial input with bounded degree

In this section we examine systems that are observable for any polynomial input whose degree is smaller than an arbitrary but given bound. For the sake of clarity we consider the case \(p = 2 \). The main result is:

Theorem 5.1. Let \(b \) be a positive integer. The set of systems that are observable for any polynomial input whose degree is smaller or equal to \(b \) contains an open and dense subset of \(S^r \) (for \(r \in \mathbb{N} \cup \{\infty, \omega\} \), large enough).

This theorem is a straightforward consequence of Theorem 5.2, whose statement needs the following definition according to the input compactification in Section 5.1.

Let \(b \geq 2d \) be an integer. We denote by \(G_b \) the subset of \(\mathbb{R}^K \), where \(K = (d - 1)(b + 1) + 1 \), whose elements \((\bar{u}, \bar{v}) = (u_0, \ldots, u_i; u_{i+1}, \ldots, u_{K-1})\) verify:

- either
 \[
 \max_{0 \leq i \leq b} |u_i| \leq 1
 \]
- or
 \[
 |u_i| \leq [\lambda(u)]^{i+1} \quad \text{for} \quad b + 1 \leq i \leq K - 1
 \]
 where \(\lambda(u) = \max_{0 \leq i \leq b} |u_i|^{\frac{i}{i+1}} > 1 \).

We can now state:

Theorem 5.2. The set of systems \(\Sigma \) such that the restriction of \(SR_{K, \Sigma} \) to \(X \times G_b \) is an embedding contains an open and dense subset of \(S^r \) (for \(r \in \mathbb{N} \cup \{\infty, \omega\} \), large enough).

In order to prove this theorem, we will need two lemmas.
5.1. Inputs compactification

For $\Sigma = (h, f, g) \in S^r$ and $\lambda \in \mathbb{R}_+^* = \{ x \in \mathbb{R} \mid x > 0 \}$, Σ_λ will stand for the system $(h, \lambda f, g)$. For the same positive real λ:

- Δ_λ is the linear mapping from \mathbb{R}^k into \mathbb{R}^k defined by:
 \[\Delta_\lambda u = \Delta_\lambda (u_0, u_1, \ldots, u_{k-1}) = (\lambda u_0, \lambda^2 u_1, \ldots, \lambda^k u_{k-1}) \]

- A_λ is the linear mapping from \mathbb{R}^{2k} into \mathbb{R}^{2k} defined by:
 \[A_\lambda (y_1, z_1; y_2, z_2; \ldots; y_k, z_k) = (y_1, z_1; \lambda y_2, \lambda z_2; \ldots; \lambda^{k-1} y_k, \lambda^{k-1} z_k). \]

Lemma 5.3. For any system $\Sigma \in S^r$, any $\lambda \in \mathbb{R}_+^*$, and any $k \geq 1$ we have

\[R_{k, \Sigma_\lambda} (., \Delta_\lambda (., .)) = A_\lambda R_{k, \Sigma} (., .). \]

Proof. Let $u = (u_0, u_1, \ldots, u_{k-1}) \in \mathbb{R}^k$ and let $t \mapsto u(t)$ be a C^{k-1}-input that verifies:

\[\frac{d^i u}{dt^i} (0) = u_i \quad \text{for} \quad i = 0, \ldots, k - 1. \]

Let us denote by $t \mapsto \phi(t)$ the solution of $\dot{x} = f(x) + u_0 g(x)$ passing by the initial condition $\phi(0) = x_0$ and corresponding to the input $t \mapsto u(t)$. The trajectory ϕ verifies:

\[\frac{d}{dt} [\phi(\lambda t)] = \lambda [f \circ \phi(\lambda t) + u(\lambda t) g \circ \phi(\lambda t)]. \]

Therefore $t \mapsto \phi(\lambda t)$ is the solution of $\dot{x} = \lambda f(x) + u_0 g(x)$ for the initial condition x_0 and the input $t \mapsto \lambda u(\lambda t)$, whose derivatives verify:

\[\frac{d^i}{dt^i} [\lambda u(\lambda t)] \bigg|_{t=0} = \lambda^{i+1} u_i \quad \text{for} \quad i = 0, \ldots, k - 1. \]

Since:

\[\frac{d^i}{dt^i} [h \circ \phi(\lambda t)] \bigg|_{t=0} = \lambda^i \frac{d^i}{dt^i} (h \circ \phi)(0) \quad \text{for} \quad i = 0, \ldots, k - 1 \]

and according to the remark 2.1(2), we have:

\[R_{k, \Sigma_\lambda} (x_0, \Delta_\lambda u) = A_\lambda \left(h \circ \phi(t), \frac{d}{dt} [h \circ \phi(\lambda t)], \ldots, \frac{d^{k-1}}{dt^{k-1}} [h \circ \phi(\lambda t)] \right) \bigg|_{t=0} \]

\[= A_\lambda \left(h \circ \phi(t), \frac{d}{dt} [h \circ \phi(t)], \ldots, \frac{d^{k-1}}{dt^{k-1}} [h \circ \phi(t)] \right) \bigg|_{t=0} \]

\[= A_\lambda R_{k, \Sigma} (x_0, u). \]

\[\square \]

5.2. A transversality lemma

Lemma 5.4. The set O of systems $\Sigma = (h, f, g)$, such that the mapping from X into \mathbb{R}^{2d}

\[x \mapsto (h, L_g h, \ldots, L_g^{d-1} h)(x) \]

is an immersion, is open and dense in S^r for $r \geq d$.

This lemma is a standard application of the transversality theorems to the observability theory of uncontrolled systems. Its proof can be found in [5] or in [13].

5.3. Proof of theorem 5.2

Proof. Let \mathcal{R} be the set of systems Σ that verify:

1. Σ belongs to the open set O defined in lemma 5.4.
2. $SR_{2d+1,\Sigma}$ is an embedding.
3. Σ belongs to the interior of the set of systems Σ' such that $SR_{2d,\Sigma'}$ is an immersion.

The set \mathcal{R} is residual in \mathcal{S}. Let $\Sigma = (h, f, g) \in \mathcal{R}$. There exists a neighbourhood of Σ in \mathcal{S} whose elements Σ' are such that $SR_{2d,\Sigma'}$ is a proper immersion. In order to prove theorem 5.2, we have to prove the existence of a neighbourhood of Σ in \mathcal{S} whose elements Σ' are such that the $SR_{2d,\Sigma'}$ are one-to-one.

Let $(\Sigma^n)_{n \geq 1}$ be a sequence of systems that converges to Σ in \mathcal{S}. We have to show that the restriction of SR_{K,Σ^n} to $X \times G_b$ is one-to-one for n large enough. Let us assume that for $n \geq 1$ one can find:

$$x^n_1 \neq x^n_2 \in X$$

$$(u^n, \bar{u}^n) = (u^n_0, \ldots, u^n_b; u^n_{b+1}, \ldots, u^n_{K-1}) \in G_b,$$

such that $SR_{K,\Sigma^n} (x^n_1, (u^n, \bar{u}^n)) = SR_{K,\Sigma^n} (x^n_2, (u^n, \bar{u}^n))$.

X being compact, we can extract a subsequence such that:

$$x^n_1 \longrightarrow x_1$$

$$x^n_2 \longrightarrow x_2$$

According to lemma 3.4, the equality $x_1 = x_2$ holds: (x^n_1, x^n_2) converges to (x_1, x_2) in $X \times X$; the pair (x_1, x_2) cannot belong to any compact subset of $X \times X \setminus \Delta X$. Hence $(x_1, x_2) \in \Delta X$.

Let us denote by x the point $x = x_1 = x_2$ and choose a local chart centered at x. We can assume that x^n_1 and x^n_2 belong to this chart for all $n \geq 1$. Now we can define:

$$\lambda_n = \frac{1}{\|x^n_2 - x^n_1\|} (x^n_2 - x^n_1), \quad n \geq 1,$$

where $\| \cdot \|$ stands for the Euclidian norm in \mathbb{R}^d; clearly, λ_n belongs to the sphere S^{d-1}.

Furthermore, theorem 3.3 implies:

$$\|u^n\|_{\infty} = \max_{n \rightarrow +\infty} \{ |u^n_0|, \ldots, |u^n_b| \} \longrightarrow +\infty.$$

In order to obtain convergences, we use the compactification of Section 5.1:

$$\lambda_n = \lambda (u^n) = \max_{0 \leq i \leq b} |u^n_i|^{\frac{1}{i+1}}$$

$$\bar{v}_i^n = \frac{u^n_i}{(\lambda_n)^{i+1}} \quad \text{for } i = 0, \ldots, K - 1$$

$$(v^n, \bar{u}^n) = (v^n_0, \ldots, v^n_b; v^n_{b+1}, \ldots, v^n_{K-1})$$

$$= \Delta^{\lambda_n} (u^n, \bar{u}^n).$$
Taking another subsequence, we have the following convergences:

\[\lambda_n \rightarrow +\infty \]
\[x^n_1, x^n_2 \rightarrow (x, x) \in \Delta X \]
\[\Lambda_n \rightarrow \Lambda \in S^{d-1} \]

\[(v^n, \bar{v}^n) \rightarrow (v, \bar{v}) \]
where \(\|v\|_\infty = 1 \) and \(\|\bar{v}\|_\infty \leq 1 \)

Consider now:

\[\delta^n = \frac{1}{\|x^n_2 - x^n_1\|} \left[R_{K, \Sigma^n} (x^n_2, (v^n, \bar{v}^n)) - R_{K, \Sigma^n} (x^n_1, (v^n, \bar{v}^n)) \right]. \]

According to Lemma 5.3:

\[\delta^n = \frac{1}{\|x^n_2 - x^n_1\|} A_{\lambda_n} \left[R_{K, \Sigma^n} (x^n_2, (u^n, \bar{u}^n)) - R_{K, \Sigma^n} (x^n_1, (u^n, \bar{u}^n)) \right]. \]

By assumption \(\delta^n \rightarrow 0 \), and hence the same is true for its limit that we denote by:

\[\lim_{n \rightarrow +\infty} \delta^n = (L_0, L_1, ..., L_{K-1}) \in \mathbb{R}^{2K}. \]

Let us denote by \(\delta^n_k \) the \(k^{th} \) double coordinate of \(\delta^n \). Clearly \(\delta^n_k \) is a polynomial in the \(k-1 \) first components of \((v^n, \bar{v}^n)\) and its coefficients are derivatives of \(h \) w.r.t. \(\lambda^{-1}_n f_n \) and \(g_n \). Since \(\lambda^{-1}_n \rightarrow 0 \) all the monomials where derivation w.r.t. \(\lambda^{-1}_n f_n \) arises tend to 0 when \(n \) tends to infinity. Therefore:

\[L_0 = h^{[0]} \]
\[L_1 = v_0 h^{[1]} \]
\[L_2 = v_0^2 h^{[2]} + v_1 h^{[1]} \]
\[\vdots \]
\[L_k = P_{k, k} h^{[k]} + \cdots + P_{k, 1} h^{[1]} \]
\[\vdots \]

where

\[h^{[l]} = dL_l^1 h (x) \cdot \Lambda, \quad 0 \leq l \leq K - 1. \]

\(L_k \) belongs to \(\mathbb{R}^2 \) and \(P_{k, i} \) is a polynomial in \(v_0, v_1, ..., v_{k-1} \).

Moreover, for \(0 \leq k \leq K - 1 \), we have that \(P_{k, i} \) is a sum of monomials of the form:

\[\zeta_0^{p_0} v_1^{p_1} \cdots v_{i-1}^{p_{i-1}} \]

where \(\zeta \in \mathbb{N}^* = \mathbb{N}\setminus\{0\} \) and:

\[(\ast) \left\{ \begin{array}{l} p_0 + p_1 + \cdots + p_{k-1} = l \\
p_0 + 2p_1 + \cdots + kp_{k-1} = k. \end{array} \right. \]

We prove the property \((\ast)\) by induction. Clearly \(L_0 = h^{[0]} \) and \(L_1 = v_0 h^{[1]} \). Let us assume the property is true for \(L_k \). Clearly \(L_{k+1} \) is obtained by derivation of \(L_k \) w.r.t. \(v_0 g \) and \(v_{i+1} \frac{\partial}{\partial v_i} \) for \(0 \leq i \leq k - 1 \). Let \(m = \ESAIM: COCV, OCTOBER 1998, VOL. 3, 345-359
\(\zeta v_0^{p_0} v_1^{p_1} \cdots v_{k-1}^{p_{k-1}} \) be a monomial of \(P_{k,l} \), where \(0 \leq l \leq k - 1 \). By assumption we have:
\[
\begin{cases}
 p_0 + p_1 + \cdots + p_{k-1} = l \\
 p_0 + 2p_1 + \cdots + kp_{k-1} = k.
\end{cases}
\]

- If \(mh^{(i)} \) is derivated w.r.t. \(v_0 \) we obtain:
\[
L_{v_0} \left(mh^{(i)} \right) = v_0 mh^{(i+1)},
\]
\[
v_0 m = \zeta v_0^{p_0+1} v_1^{p_1} v_2^{p_2} \cdots v_{k-1}^{p_{k-1}} \text{ is a monomial of } P_{k+1,i+1} \text{ that verifies:}
\]
\[
\begin{cases}
 (p_0 + 1) + p_1 + \cdots + p_{k-1} = l + 1 \\
 (p_0 + 1) + 2p_1 + \cdots + kp_{k-1} = k + 1.
\end{cases}
\]

- If \(mh^{(i)} \) is derivated w.r.t. \(v_{i+1} \), \(0 \leq i \leq k - 1 \), we obtain (if \(p_i \geq 1 \)):
\[
v_{i+1} \frac{\partial}{\partial v_i} \left(mh^{(i)} \right) = p_i \zeta v_0^{p_0} \cdots v_i^{p_i-1} v_{i+1}^{p_{i+1}+1} \cdots v_{k-1}^{p_{k-1}} h^{(i)}.
\]

The monomial \(p_i \zeta v_0^{p_0} \cdots v_i^{p_i-1} v_{i+1}^{p_{i+1}+1} \cdots v_{k-1}^{p_{k-1}} \) of \(P_{k+1,i} \) verifies:
\[
\begin{cases}
 p_0 + p_1 + \cdots + (p_i - 1) + (p_{i+1} + 1) + \cdots + p_{k-1} = l \\
 p_0 + 2p_1 + \cdots + (i + 1) (p_i - 1) + (i + 2) (p_{i+1} + 1) + \cdots + kp_{k-1} = k - (i + 1) + (i + 2) = k + 1.
\end{cases}
\]

Thus the property (\(\ast \)) is true for \(L_{k+1} \).

A consequence of this property is the existence of an integer \(j, 1 \leq j \leq \frac{k}{l} - 1 \), such that \(p_j \neq 0 \). Otherwise we would have:
\[
\sum_{0 \leq i \leq k-1} (i + 1) p_i > \frac{k}{l} l = k.
\]

Let \(s, 0 \leq s \leq d - 1 \), be the smallest integer for which \(h^{(s)} = d L_0^* h (x) \cdot \Lambda \neq 0 \). Such an \(s \) does exist by lemma 5.4. If \(s = 0 \), then \(L_0 = h^{(0)} \neq 0 \). Otherwise, let \(q, 0 \leq q \leq b \), be the smallest integer for which \(v_q \neq 0 \). Such a \(q \) does exist since \(\|v\|_\infty = 1 \). We have:
\[
s (q + 1) \leq (d - 1) \times (b + 1) \leq K - 1.
\]

We will show that:
\[
L_{s(q+1)} = \sum_{i=1}^{s(q+1)} P_{s(q+1),i} h^{(i)} \neq 0.
\]

- if \(l < s \), \(h^{(l)} = 0 \) by assumption, hence \(P_{s(q+1),l} h^{(i)} = 0 \).

- if \(l > s \) let us consider a monomial \(m \) of \(P_{s(q+1),l} \):
\[
m = \zeta v_0^{p_0} v_1^{p_1} \cdots v_{s(q+1)-1}^{p_{s(q+1)-1}}.
\]

There exists \(j \leq \frac{s(q+1)}{l} - 1 < q \) for which \(p_j \neq 0 \). But \(j < q \) implies \(v_j = 0 \). Hence \(m = 0 \) and \(P_{s(q+1),l} = 0 \).

- It remains the case \(l = s \).

- one of the monomials of \(L_{s(q+1),s} \) is \(\zeta v_q^s h^{(s)} \), \(\zeta \neq 0 \). It can easily be obtained by suitable derivations of \(L_0 = h^{(0)} \).
- let \(m = \zeta v^i = p_0 + p_1 + \cdots + p_j \) be another monomial of \(L_{s(q+1)} \).

There exists \(j \neq q \) for which \(p_j \neq 0 \). Moreover:

\[
p_0 + p_1 + \cdots + p_q + \cdots + p_{s(q+1)} = s
\]

\[
p_0 + 2p_1 + \cdots + (q+1)p_q + \cdots + s(q+1)p_{s(q+1)} = s(q+1).
\]

Hence:

\[
\frac{1}{q+1}p_0 + \frac{2}{q+1}p_1 + \cdots + p_q + \cdots + sp_{s(q+1)} = s.
\]

If \(p_0 = p_1 = \cdots = p_q = 0 \), then on the one hand:

\[
\frac{q+2}{q+1}p_0 + \cdots + sp_{s(q+1)} = p_0 + \cdots + p_{s(q+1)}
\]

and on the other hand there exists \(j \), \(q+1 \leq j \leq s(q+1) - 1 \), such that \(p_j \neq 0 \). This is impossible, hence one of the \(p_j \)'s, \(0 < j < q-1 \), is positive. Therefore \(m = 0 \), since \(v_j = 0 \).

Finally, we have obtained:

\[
L_s(q+1) = \zeta v^i h^{(i)}
eq 0
\]

This is in contradiction with the assumptions \(L_k = 0 \), \(0 < k < K - 1 \), and the theorem is proved.

\[\square \]

6. Appendix

We state here three lemmas that are proved in [7]. They are used in the proofs of our transversality results.

Lemma 6.1. Let \(d \) and \(p \) be two positive integers and let \(L \) be the set of linear mappings \(L = L(\mathbb{R}^d, \mathbb{R}^p) \times L(\mathbb{R}^d, \mathbb{R}^p) \). An element \((C, A)\) of \(L \) is said to be observable if \(\bigcap_{i \geq 0} \text{Ker} CA_i = \{0\} \) or, equivalently, if the rank of \((C, CA, CA^2, \ldots, CA^{d-1})\) is \(d \).

The set of unobservable elements of \(L \) is an algebraic subset of \(L \) of codimension \(p \).

In the statement of the two next lemmas the notations are those of the third section.

Lemma 6.2. Let \((j^k_{x_0} f, j^k_{x_0} g, u) \in (J^k \Gamma)^{\mathbb{R}^2} \times \mathbb{R}^k\) such that \(f(x_0) + u_0 g(x_0) \neq 0 \). Then

1. the mapping

\[
J^k_{x_0} H \mapsto \mathbb{R}^k
\]

\[
j^k_{x_0} h \mapsto R_{k, \Sigma}(x_0, u)
\]

is linear and surjective.

2. the mapping

\[
J^k_{x_0} H \mapsto (T^*_{x_0} X)^k
\]

\[
j^k_{x_0} h \mapsto T_{x_0} R_{k, \Sigma}(x_0, u)
\]

is linear and surjective.

Lemma 6.3. Let \((j^k_{x_0} f, j^k_{x_0} g, \Lambda, u) \in (J^k \Gamma)^{\mathbb{R}^2} \times T X \times \mathbb{R}^k\) such that:

\[
\]
f(x_0) + u_0g(x_0) = 0;
• f(x_0) \neq 0 or g(x_0) \neq 0 (hence g(x_0) \neq 0);
• u_1 = u_2 = \ldots = u_{\rho-1} = 0 but u_\rho \neq 0;
the vectors A^iA, 0 \leq i \leq \rho, are linearly independant (where A = T_X(f(x_0) + u_0g(x_0)).

Then:

1. the mapping
 \begin{align*}
 J^k_{x_0} H & \longrightarrow \mathbb{R}^{bp} \\
 \tilde{J}^k_{x_0} h & \longrightarrow T_X R_{k, \Sigma}(x_0, u) \Lambda
 \end{align*}
is linear and surjective.

2. for 0 \leq i < \rho
 \begin{align*}
 d_X L^{i}_{T^k h}(x_0, u) \Lambda &= \frac{1}{i!} CA^i A \\
 \text{where } C &= dh(x_0).
 \end{align*}

We are very grateful to Professor W. Respondek for his collaboration in the reading and criticism of the text.

References

