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TIME MINIMAL CONTROL OF BATCH REACTORS

B� BONNARD AND G� LAUNAY

Abstract� In this article we consider a control system modelling a
batch reactor in which three species X��X��X� are reacting according
to the scheme X� � X� � X�� each reaction being irreversible� The
control is the temperature T of the reactions or the derivative of this
temperature with respect to time� The terminal constraint is to obtain
a given concentration of the product X� at the end of the batch� The
objective of our study is to introduce and to apply all the mathematical
tools to compute the time optimal control as a closed�loop function�
This work can be used to optimize the yield of chemical batch reactors�

�� Introduction

Until now� the chemical batch reactors are mainly operating at constant
temperature� Substantial gain in the yield of such reactors can obviously
be obtained by controlling the temperature during the batch� This leads to
optimal control problems� Recent developments in geometric optimal control
allow to handle the mathematical complexity of such problems�

In ���� the authors consider the time minimal problem for a batch reactor
in which three species X�� X�� X� are reacting according to the scheme X� �
X� � X�� each reaction being irreversible and of the �rst order� while the
�nal constraint is to obtain a given ratio of the two concentrations of X�� X�

and the control is the derivative of the temperature with respect to time�
Due to symmetry the problem can be reduced to a time minimal control
problem for a planar system and the time minimal control is computed as
a closed�loop function� The objective of this article is to generalize this
analysis for a network of the form X� � X� � X�� each reaction being
irreversible but of any order� while the terminal constraint is now to obtain
a desired production of the intermediate specie X�� If the control is the
derivative of the temperature with respect to time� this leads to a time
minimal control problem for a system in R� much more complex than a
planar one�

The main objective of our study is to present general techniques and
results to handle the problem	 they are mainly threefold
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��� B� BONNARD AND G� LAUNAY

� �rst we compute the time optimal control as a closed�loop function near
the terminal constraint� This analysis is intricated	 it has motivated
and it uses the mathematical developments of ���� ��
��

� secondly we need global estimates concerning the number of switchings
of an optimal control�

� endly we have to introduce the concept of focal points and give an
algorithm to compute such points� This part is related to techniques
introduced in �
��

The combination of the three previous analysis with numerical simulations
allows to compute the optimal synthesis in many situations� Also it can
be applied to more general reaction scheme to get closed�loop sub�optimal
control laws�

This work was motivated by practical control problem and is currently
implemented on a batch reactor located at Caen� France� Preliminary simu�
lations indicate that in our experiment the gain of the optimal law is about
��� with respect to a constant operating temperature�

In order to present our main results we need to introduce precisely our
problem�

���� Statement of the problem

������ Chemical kinetics� In this article� we shall restrict our study to
a batch reactor in which three species X�� X�� X� are reacting according to
the scheme X� � X� � X�� where the two reactions are irreversible and
of the ni�th order with respect to the species Xi� i � �� �� Assuming that
the reactions are at constant volume� denote by cj � � � j � � the molar
concentration of Xj and by T the temperature of the reactions	 from the
laws of chemical kinetics ��� we know that they satisfy
���

��
�c� � �k�c

n�
�

�c� � k�c
n�
� � k�c

n�
�

�c� � k�c
n�
�

�����

where �c denotes
d

dt
�c�

The parameters ki are depending on T according to Arrhenius law

ki � Ai exp��Ei�RT � � i � �� � �����

where Ai� Ei are respectively the frequency factor and the activation energy
of the i�th reaction and R is the gas constant	 all these parameters are
positive� Similar equations can be obtained when dealing with a network
of two simple reactions n�X� � n�X� � n�X�� where the nj �s are the
stoichiometric coe�cients of the reactions�

Our optimal control problem is the following
 minimize the batch time
when a desired production quantity is �xed for a batch� The desired product
can be z � c��c� �problems of index �� or c� �problems of index ��� Hence
we shall solve time minimal problems with �nal constraint z�tF � � d� �resp�
c��tF � � d��� where tF is the batch time� and with initial condition z��� � d�
�resp� c���� � d���
ESAIM� Cocv� December ����� Vol� 	� 
��

��



TIME MINIMAL CONTROL OF BATCH REACTORS ���

������ Controls� Two mathematical controls are possible

T � subject to constraints Tm � T � TM 	 the associated problems are P�

�target z � d�� and P� �target c� � d��
or
u � �T � subject to constraints u� � u � u	 with u� � � � u		 the

associated problems are �P� �target z � d�� and �P� �target c� � d���

� The choice of the temperature as control is clearly related to the chemical
process� If we introduce

v � k�� � � E��E�� � � A��A
�
� �����

then system ����� becomes
���
��
�c� � �vcn��
�c� � vcn�� � �v�cn��
�c� � �v�cn��

���
�

and v can be taken as the control� since v is an increasing one�to�one function
of T � the constraints Tm � T � TM being equivalent to vm � v � vM �
Observe that system ���
� is a�ne with respect to v if and only if � � �	 in
this particular case the ratio dc��dc� does not depend on v and the system
is not controllable� Since in general the system is not a�ne with respect to
the input it may happen that there is no admissible time optimal control
law	 this is due to a relaxation phenomenon analyzed in ����

� If we cannot directly track the optimal temperature pro�le in the previous
system ���
�� we choose u � �T as the control and we get the following system
�which is a�ne with respect to u�
�����

����
�c� � �vcn��
�c� � vcn�� � �v�cn��
�c� � �v�cn��
�v � h�v�u with h�v� � �Rv�E�� ln

��v�A��

�����

By considering u � �T as a control law� we compute an optimal law related
only to the chemical network	 this choice is an idealization and the tem�
perature can become negative� To handle this di�culty we must introduce
constraint on the state� coordinate v	 this problem will not be considered in
our study�

������ Physical space� The physical space P of our problem is de�ned as
follows
���
��
c� � �� c� � � �c��t� � � if t is not the initial time�� c� � ��

z � d� or c� � d� except at �nal time�

� � v � A� since v � k� � A� exp��E��RT � with T � ��

�����

Then the following inequality


h�v� � � �����

comes from ����� and ������
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��� B� BONNARD AND G� LAUNAY

����
� An example� The main properties of our study can be well under�
stood by considering the following example� Notice that according to system
������ z � c��c� satis�es


�z � �v � vz�cn���� � �v�zn�cn����

Therefore �z is independant of c� if and only if n� � n� � �� In this case n� �
n� � � the structure of P� and �P� is particular and allows simpli�cations�
This introduces the lightning analysis of the next section�

���� Solving problem P� in the case n� � n� � �

������ Computations� According to section ���� problem P� is the time
minimal problem of reaching the target �z � d�� from an initial value z� �
��� d�� of z for the dynamical system ���
� which becomes in the coordinates
c�� z� c� when n� � n� � �
���

��
�c� � �vc�
�z � v � vz � �v�z

�c� � �v�c�

�����

the variable v such that vm � v � vM being considered as the control�
Note that the optimal law is
 maximize �z subject to vm � v � vM � Note

also that the target �z � d�� is not accessible from z� � ��� d�� such that
max
v�t

�z � �� where max
v�t

�z is the maximum of �z for any v � �vm� vM � and for

any time t�
Consider then H�c�� z� v� � �z� From ����� it comes

H � � when v � � �����

	H

	v
� �� z � ��v���z ������

	�H

	v�
� ���� � ���v���z ������

So if � �� �� H is a non�linear function of v such that there exists a single

positive value �v of v satisfying
	H

	v
� � and so corresponding to an extremum

of H � which is from ������


� a maximum �positive since ����� holds� if � � ��
� a minimum �negative since ����� holds� if � � ��

Let us introduce G �resp� S� the set of points �v � �� z � �� such that

H � � �resp�
	H

	v
� ��� From ������ G is de�ned by z��v��� � �� � �� and

from ������� S is de�ned by z���v��� � �� � �
 so if � �� �� G � S � 	�

������ Results� Figure � shows G and S in the cases � � �� � � � and
a careful observation of this �gure gives the optimal trajectories� In order
to describe these optimal trajectories� let us denote by 
m �resp� 
M � �
�
any arc satisfying ����� with control vm �resp� vM � �v�� Then� for 
a� 
b� 
c
in f
m� 
M � �
g� 
a
b
c denotes the concatenation of a 
a arc followed by a

b arc and then ended by a 
c arc where each arc of the sequence may be
empty�
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O

v

H � �
�H

�v
� �

H � �

z

d�

vA
O ����

�

��� �
�

���

S��H
�v

� �� G�H � ��

�H

�v
� �

H � �

z

v � vM

�H

�v
� �

z

d�

H � �

�v� vm

O

H � �

G�H � ��S��H
�v

� ��

�H

�v
� � �H

�v
� �

�
�

�������
�

���

�zm

�zM

v � �v v � vm

H � �

v � vM

z

v

�H

�v
� �

vMO

Figure � �i� 
 � � � Figure � �ii� 
 � � �

Figure �

Case � � �� For any z� in ��� d���

� if vM � vA� where vA �

�
�d�

� � d�

� �
���

is the v�coordinate of G � �z �

d��� the target �z � d�� is not accessible�
� if vM � vA� optimal trajectories are 
M �

Case � � �� For any z� in ��� d���

� if vM � �v�� where �v� �

�
��d�
� � d�

� �
���

is the v�coordinate of S��z � d���

optimal trajectories are 
M �
� if vm � �v� � vM � optimal trajectories are 
M �
� 
M being empty if and
only if z� � �zM where �zM � �����v���M � �� is the z�coordinate of
S � �v � vM��

� if �v� � vm � �
�

��� � optimal trajectories are 
M�

m� 
M being empty
if and only if z� � �zM � and 
M�
 being empty if and only if z� � �zm
where �zm � �����v���m � �� is the z�coordinate of S � �v � vm��

� if vm � �
�

��� � the target �z � d�� is not accessible�

������ Conclusion� This example shows the following phenomenon� The
value � � � is a bifurcation value for the parameter � which is the ratio of
activation energies E��E� �cf� ����� in section ������	 the optimal law appears
to be radically di�erent in the case � � � and � � �� More precisely� the
optimal policy when the target is accessible is
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��� B� BONNARD AND G� LAUNAY

� when � � �� to apply the maximal temperature TM
� whereas if � � �� there exists an intermediate optimal heat law in some
domain of the state space which is neither Tm nor TM � Such a law is
called a singular optimal control� see ���	 it plays an important role in
our problem	 it is related to the convexity of the function v 
� H � �z
and all the analysis relies on the behavior of H �

���� Maximum Principle and Extremals

In order to make this article self�contained and to give the results as clearly
as possible� let us recall some basic concepts and results about Pontryagin�s
Maximum Principle �in brief PMP� and extremals�

������ Statement of PMP� Consider a system of the form

�x�t� � f�x�t�� u�t�� � x�t� � Rn � u�t� � Rm ������

where f is an analytic mapping from Rn � R to Rn and where the set U
of admissible controls is the set of measurable mappings u��� de�ned on
an interval �t��u�� �� of R� and taking their values in �u�� u��� Let N be a
regular analytic submanifold of Rn� The PMP asserts that if u��t�� t � �t��� ��
is an optimal control for the time minimal control problem with terminal
manifold N � then there exists a so�called adjoint vector p��t� � Rnnf�Rng
with p� absolutely continuous� such that the following equations are satis�ed
almost everywhere on �t��� ��


d

dt
�x�� �

	H

	p
�x�� p�� u�� �

d

dt
�p�� � �

	H

	x
�x�� p�� u�� ������

H�x�� p�� u�� � M�x�� p�� ����
�

where H�x� p� u� � hp� f�x� u�i� h�� �i being the canonical inner product in Rn

and where M�x� p� � max
u�
u��u��

H�x� p� u�� Moreover we have


t 
�M�x��t�� p��t�� is constant and non�negative ������

and at the �nal time � the so�called transversality conditions are satis�ed


x���� � N � p���� is orthogonal to Tx���
N ������

where TxN denotes the tangent space to N at x�

������ Definitions�

� System ������ is called the hamiltonian lift of ������� and H is called
the Hamiltonian�

� Any �x� p� u� solution to ������� ����
� and ������ is called an extremal
�sometimes the adjoint state p will be omitted��

� Any extremal �x� p� u� that satis�es the transversality conditions ������
is called a BC�extremal�

� Any extremal �x� p� u� such that M�x� p� � � is called exceptional�
� An extremal �x� p� u� is called regular if and only if for almost all t�
u�t� is equal to u� or to u�	 if moreover u is piecewise constant� the
extremal is called bang�bang�

� An extremal �x� p� u� is called singular if and only if for every time
	H

	u
�x� p� u� � �
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TIME MINIMAL CONTROL OF BATCH REACTORS ���

� Let �x� p� u� be an extremal� A time � is called a switching time if and
only if � belongs to the closure of the set of times where x is not C�	
the corresponding point x��� is then called a switching point�

������ Notation� As in section ������ if 
a and 
b are two arcs solutions
to system ������� 
a
b denotes the concatenation of 
a followed by 
b �this
corresponds to the concatenation of the controls associated to 
a and then
to 
b��

����
� Singular extremals� By de�nition a singular extremal �x� p� u� is

a solution to ������� ����
� and ������ satisfying
	H

	u
� �	 from ����
� it has

to satisfy the Legendre condition
	�H

	u�
j�x�p�u
� �	 if this inequality is strict

for every time t� it is called the strong Legendre condition� Then by the
implicit function theorem the singular control can be locally computed as a

function of �x� p� by solving
	H

	u
� �	 equivalently the singular control can

be obtained as solution to the Cauchy problem for the di�erential equation
d

dt

	H

	u
� �� the strong Legendre condition implying the existence of such a

solution�
Recall that� in order to be admissible� the singular control has to belong

to �u�� u��� Any point of a singular extremal where the singular control is
equal to u� or to u� is called a saturation point�

��
� Statement of the main results

We shall give the main results of our article� To simplify the presentation
we shall assume that each reaction is of �rst order� i�e� that n� � n� � ��

��
��� Problem �P� in the case n� � n� � �� According to section ���� �P�
is the time minimal control problem of reaching the target �z � d�� from an
initial value z� � ��� d�� of z for the dynamical system ����� and for control
u such that u� � u � u	 with u� � � � u	� When n� � n� � �� system
����� becomes in the state�coordinates c�� z� c�� v
�����

����
�c� � �vc�
�z � v � vz � �v�z

�c� � �v�c�

�v � h�v�u with h�v� � �Rv�E�� ln
��v�A��

������

We shall prove subsequently �cf� section ���� that we can restrict our study
to the planar system
�

�z � v � vz � �v�z

�v � h�v�u with h�v� � �Rv�E�� ln
��v�A��

������

Let us discuss the corresponding optimal synthesis�
We introduce the following notations


Let us be the singular control� and let us denote by 
� �resp� 
	� 
s� any
arc satisfying ������ with control u� �resp� u	� us��
Let A be the set of the points of the target �z � d�� that are accessible from
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�z � d���
Let G be the set of the points �z � �� v ���� A��� such that �z � ��

Let S be the set of the points �z � �� v ���� A��� such that
d

dt

	H

	u
� ��

where H denotes the Hamiltonian corresponding to system ������ and let
S� � S � N � From section ����
� S contains all the singular extremals�
Computations show that the singular control us is negative and that there
is on S at most one saturation point Ssat� where us � u��

In the following �gures �Figures � and �� we assume that vA � A�� where
vA denotes the v�coordinate of G � �z � d��	 if A� � vA� these �gures have
to be restricted to �v � A���

Case � � �� Near the target� every optimal trajectory is of the form 
	
and the local synthesis is given by Figure ��

S G� �z � ��

S�

A�vA

�	

�	

z

d�

v

A� empty if and only if A� � vA

Figure �

Case � � �� In this case we can describe the global synthesis� Let zsat
denote the z�coordinate of the saturation point Ssat� We have two situations

� if zsat � d�� optimal trajectories are 
	
� and the synthesis is represented
on Figure ��i��
� if zsat � d�� optimal trajectories are 
	
�
s and the synthesis is given by
Figure ��ii�
where each arc of these sequences may be empty

��
��� Problem P� in the case n� � n� � �� According to section ����
P� is the time minimal problem of reaching the target �c� � d�� from an
initial value �c��� � ��� d�� of c� for the system ���
� where the control is v
such that vm � v � vM �
We shall prove subsequently �cf� section ���� that we can restrict our study
to the planar system
 �

�c� � �vc�
�c� � vc� � �v�c�

������

Let us denote by �v the singular control and by 
m �resp� 
M � �
� any arc
satisfying ������ with control vm �resp� vM � �v��
Let A be the set of the points of the target �c� � d�� that are accessible
from �c� � d���
Let Em �resp� EM� be the point of target such that �c� � � when v � vm
�resp� v � vM��
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A�
v

G� �z � ��

d�

G� �z � ��

�
�

S

S

��

��

��

��

�
�

�
�

G� �z � ��SS

A�
v

d�
�
�

G� �z � ��

�s��

��

��

��

��
��

�
�

�
�

A �

O

O

z

z

S�

S�

v� vA

v� vA

S

zsat
Ssat

vsat

Ssat

zsat

vsat

��

Figure ��i� � zsat � d�

Figure ��ii� � zsat � d�

set of switching points for ���� �

set of �rst switching points for �����s

Figure �

Let Sm �resp� SM � be the point of the target such that � �
	H

	v
jv�vm �

i�e� vm � �v jt�� �resp� � �
	H

	v
jv�vM � i�e� vM � �v jt��� where H is the

Hamiltonian �recall that� from section ����
� the singular control �v is solution

to
	H

	v
� ���
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Case � � �� Each optimal trajectory is of the form 
M and the synthesis
is represented on Figure 
�

A

�M

EM

�M �M

c�

d�

c�

Figure 


Case � � �� Results are threefold


� Near the target� each optimal policy has at most one switching�
� Each optimal trajectory is of the form 
M�

m� where each arc of the
sequence may be empty� and each open�loop control is C��

� Numerical simulations �cf� section �� show that the optimal synthesis
is given by Figure ��

A

Em Sm SM

�v � vM

��

��

c�

�v � vM

�M�M

�M

�M

�M
�m

�v � vm

�v � vM
��

�m

d�

c�

Figure �

��
��� Problem �P� in the case n� � n� � �� According to section ���� �P�
is the time minimal problem of reaching the target �c� � d�� from an initial
value �c��� � ��� d�� of c� for the control system ����� where the control u
satis�es u� � u � u	 with u� � � � u	�
We shall prove subsequently �cf� section ���� that we can restrict our study
to the three dimensional system
���

��
�c� � �vc�
�c� � vc� � �v�c�

�v � h�v�u with h�v� � �Rv�E�� ln
��v�A��

������
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Let us denote by us the singular control and by 
� �resp� 
	� 
s� any arc
satisfying ������ with control u� �resp� u	� us��
The set A of the points of the target �c� � d�� that are accessible from
�c� � d�� is included in the set A of the points of the target such that
�c� � �� the frontier of which is the set E of the points of the target such that
�c� � ��

Let S� be the set of the points of the target such that
d

dt

	H

	u
� �� where H

denotes the Hamiltonian �from section ����
 any singular extremal satis�es
this condition�� It turns out that at the �nal time the singular control is neg�
ative and that there is on S� one saturation point Ssat� where u� � us jt���

On Figure � we describe the strati�cation of the target by the optimal
control in the �v� c�� coordinates	 it is deduced from the equations of the
Maximum Principle� except near the set E where the situation is intricated
because of accessibility problems�

non�accessible points
 on E � with E	 non�accessibleand

u � u	

u � u	

u � u�

on E � with E� accessible

A�

v

u� � us jt��

S�

vsat

E

c�

O

E�

Ssat

Figure � �ii� 
 � � �

non�accessible points
 and

us jt��� u�

A�

c� S� E

E	

O

S�

E

v

Figure � �i� 
 � � �

Figure � 
 strati�cation of the target
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Case � � �� It turns out that near the target the optimal policy is u � u	�

Moreover there exists one point E	 on E such that
d�

dt�
�c�� � �	 near this

point the local synthesis is given by Figure �

andnon�accessible points
 on E � with E	 non�accessible

v
E�	

�	

E	

c� E

�	

A�

Figure � 
 local synthesis near E	 when � � �

O

Case � � �� We got the following local and global results


Local synthesis Near the target the optimal synthesis is described as fol�
lows

� For optimal trajectories arriving near S�� the synthesis can be topologically
described by an invariant foliation �v � v��� Let vsat denote the v�coordinate
of the saturation point Ssat	 the syntheses in each leaf �v � v�� are shown
by Figure �


if v� � vsat� optimal trajectories are of the form 
	
�
s �see Figure � �i��

if v� � vsat� optimal trajectories are of the form 
	
� �see Figure � �ii��
where each arc of these sequences may be empty�
� For optimal trajectories arriving near E � the situation is intricated� Near
the target� close enough to E � the optimal policy is u � u�� Moreover there

exists one point E� on E where
d�

dt�
�c�� � �	 let v� denote the v�coordinate

of E�� Near a point E� �� E� of E � the optimal synthesis is described by a
C� invariant foliation F 
 �v � v�� the leaves of which are given by Figures �
�i� and �ii�	 near E� there is no such foliation and the synthesis is given by
Figure � �iii��
Global switching rules Each optimal control law has at most two switch�
ings and each optimal trajectory is of the form 
	
�
s� where each arc of
this sequence may be empty�

���� Summary

This paper is organized as follows� In section � we recall extremality
results for time minimal problems with single input a�ne systems� In section
� we introduce the concepts of projected and reduced problems� which are
straightforward but important tools in our study� The use of projected
problems is related to symmetry properties of our systems� The concept of
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c�

c�
E

S�

E

�c� � d��

��

�	

�	

�	
�	

�	

��
�s

�c� � d��

�	

�	

S�

�	

��

set of switching points for 
	
�

set of �rst switching points for 
	
�
s

Figure � �ii� 
 v� � vsatFigure � �i� 
 v� � vsat

Figure � 
 local synthesis near S� in the leaf v � v� when � � �

reduced problem is more acute	 it is related to Goh�s transformation and
lightens the relationship between problems Pi �with control T � and �Pi �with
control �T�� i � �� �� In section 
 we analyze problem P�	 �rst we solve P�
near the target when � �� �	 secondly we �nd global bounds on the number of
switchings� In section � �resp� �� we apply results of ��� and ��
� to compute
in the case � �� � the closed�loop optimal control near the target for problem
�P� when n� � n� � � �resp� problem �P� for any n�� n��	 secondly in the
case � � �� we �nd global switching rules for �P� when n� � n� � � �resp�
�P�� except when n� � � and n� � ��� Section � deals with the concept
of conjugate and focal points� Endly� section � is an appendix regrouping
commented numerical experiments�

	� Extremals for time minimal problems with single input

affine systems

���� Definitions and elementary results

������ Statement of the problem� Throughout this section �� the con�
sidered system is


�x�t� � X�x�t�� � u�t�Y �x�t�� � x�t� � Rn and u�t� � R �����

where X and Y are analytic vector �elds� As in section ������ the set U
of admissible controls is the set of measurable mappings u��� de�ned on
an interval �t��u�� �� of R

� and taking their values in �u�� u��	 and again
N denotes a regular analytic submanifold of Rn� which is the target to be
reached within minimal time�

This problem is said to be �at if and only if Y is everywhere tangent to
N � Note that problems �P� and �P� de�ned in section ��� match the above
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v

E��

�� ��

��

c�

Figure � �i�
 v� � v�

E�

��

��

Figure � �ii�
 v� � v�

E� no optimal
trajectory

local synthesis near E� � E � �v � v�� in the leaf v � v� when � � �

non�accessible points
 and on E � with E� accessible

Figure � �iii�
 local synthesis near E� when � � �

��

A�v�

��

��E�

Figure �

conditions and are both �at�

Notations Let us denote by us the singular control and by 
� �resp� 
�� 
s�
any arc satisfying ����� with control u� �resp� u�� us��

������ Switching function� For any extremal �x� p� u� the Hamiltonian is
H�x� p� u� � hp�X�x��u Y �x�i �from section ����� applied to system �������

Hence the equation
	H

	u
� � �which is satis�ed by any singular extremal� is

equivalent to hp� Y �x�i � �� The mapping


� 
 t 
� hp�t�� Y �x�t��i �����

evaluated along �x� p� is called the switching function�
Computing we get


���t� � hp�t�� �X� Y ��x�t��i �����

and along any smooth extremal


 ��t� � hp�t�� ad�X�Y ��x�t��� u�t�ad�Y �X��x�t��i ���
�
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where the Lie bracket of two analytic vector �elds Z�� Z� is computed with

the convention
 �Z�� Z���x� �
	Z�
	x

�x�Z��x� �
	Z�
	x

�x�Z��x�� and where

adZ��Z�� is the mapping de�ned by adZ��Z�� � �Z�� Z���

������ Elementary regular cases�

Proposition ���� Let z� � �x�� p�� � R
n � �Rnnf�Rng� be such that

hp�� Y �x��i �� �� In a neighborhood of z�� any extremal is a 
� �resp� 
��
arc if and only if hp�� Y �x��i is negative �resp� positive��

Proof� From PMP any extremal maximizes the Hamiltonian�

Corollary ���� Let �x� p� u� be an extremal with switching time � 	 then
necessarily hp���� Y �x����i � �� i�e� ���� � ��

Proposition ���� Let z� � �x�� p��� Rn��Rnnf�Rng� be such that Y �x�� ��
�� hp�� Y �x��i � � and hp�� �X� Y ��x��i �� �
 such a point z� is called a
normal switching point� Then close enough to z� there is only one extremal
containing z�� which is 
�
� �resp� 
�
�� if and only if hp�� �X� Y ��x��i is
negative �resp� positive�� x� being the switching point�

Proof� Consider �x� p� u� an extremal that contains z�� and let �� be the
time such that z� � �x����� p������ Since hp�� �X� Y ��x��i �� � i�e� �from
������ ������ �� �� close enough to z� the considered extremal has no singular
arc �indeed� from section ������ any singular arc satis�es � 
 ��� Then the
result comes from the maximization of the Hamiltonian �cf� PMP� after
expanding � at �� up to the �rst order�

����
� Singular extremals� generalities�

Definitions and notations� A point �x� p� is called ordinary if and only
if hp� ad�Y �X��x�i �� �	 let � be the set of non�ordinary points� A singular
extremal �x� p� u� such that �x�t�� p�t�� � R�nn� is said to be of order ��
Let ! be the variety f�x� p� � Rn � �Rnnf�Rng�	 hp� Y �x�i � �g and let
!� � f�x� p� � Rn� �Rnnf�Rng�	 hp� Y �x�i � hp� �X� Y ��x�i � �g included in
!�
Let Hs be the restriction to !�n� of the mapping
 �x� p� 
� hp�X�x� �
us�x� p�Y �x�i� where


us�x� p� �
hp� ad�X�Y ��x�i

hp� ad�Y �X��x�i
�����

Proposition ��
� Any singular extremal �x� p� u� is such that �x�t�� p�t�� �
!�� Moreover the singular extremals �x� p� u� of order � are de�ned by


u�t� � us�x�t�� p�t�� where us�x� p� is de�ned in ������

and �x� p� is a solution to the ordinary di�erential analytic system


dx

dt
�
	Hs

	p
�x� p� and

dp

dt
� �

	Hs

	x
�x� p�

with the following admissibility constraints


u� � us�x� p� � u�

Proof� See �
��
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Definitions� Let �x� p� u� be a singular extremal of order � and let h be
the value of the Hamiltonian �non�negative constant from PMP� along this
extremal�
The considered extremal is exceptional if and only if h � � �cf� section
�������
If h � �� the considered extremal is called hyperbolic �resp� elliptic� if and
only if hp�t�� ad�Y �X��x�t��i is negative �resp� positive��

���� Optimality of singular extremals for limit�problem

������ Statement of limit�problem� Limit�problem associated to the
problem stated in section ����� is a time minimal problem with the same
single input a�ne system ������ but where
� the boundary constraints u � �u�� u�� on the control are relaxed and we
admit a speci�c class of impulse controls� More precisely a trajectory is a
�nite concatenation of arcs corresponding to bounded measurable controls
and �nite jumps in the Y direction	 it is associated to a set of admissible
controls which will be denoted by U ��
and where
� the terminal manifold is a point�

The optimality status of singular extremals of order � for such limit�problems
was studied in �
� under the following assumptions


������ Assumptions� Consider �x� p� u� a singular extremal de�ned on �t�� ��
and assume that


�H�
�� t 
� x�t� is one�to�one�

Since the concept of singular extremal is feedback�invariant �see �
�� one may
set u 
 �� Let us then introduce K�t� � SpanfadkX�Y ��x�t�� 	 k � Ng�
Since �x� p� u� is a singular extremal� it is known ������ that the codimension
of K�t� is not zero� Moreover let us then assume that


�H�
�� �t � �t�� ��� K�t� is of codimension one� and K�t� is spanned by the

vectors adkX�Y ��x�t��� k � �� � � � � n� ��
�H�

�� �t � �t�� ��� ad
�Y �X��x�t�� �� K�t��

�H�
�� If n � �� �t � �t�� ��X�x�t�� and Y �x�t�� are linearly independent�

If n � �� �t � �t�� ��X�x�t�� �� SpanfadkX�Y ��x�t�� 	 k � �� � � � � n��g�

������ Results�

Theorem ���� Let �x� p� u� be a singular extremal de�ned on �t�� �� and sat�
isfying �H�

����H
�
��� Note that the adjoint vector p is then unique up to a

non�zero factor� and that for any t in �t�� ��� p�t� is orthogonal to K�t�	 so
�x�t�� p�t�� � !�n� and thus �x� p� u� is of order �� Then there exists a C��
neighborhood U of x such that x is a time�minimizing �resp� maximizing�
trajectory with respect to all the solutions to ����� contained in U and join�
ing x�t�� to x��� 
the set of admissible controls being U � de�ned in section
������ if �x� p� u� is exceptional or hyperbolic �resp� elliptic� and if t�c � ��
where t�c is the �rst conjugate time to t� along x� Note that if �x� p� u� is
hyperbolic and if t�c � �� the trajectory is not even C��time�minimizing�

Proof� See �
��
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This theorem solves the time minimality problem for singular trajectories
satisfying �H�

����H
�
�� when any bounded measurable control is admissible

and when the terminal manifold is a point	 it has to be adapted to deal
with problems �P� and �P� de�ned in section ��� where the control is subject
to boundary constraints and where the terminal manifold is of codimension
one�

���� Fold case

Consider z� � �x�� p�� � !� �de�ned in section ����
� such that
�
Y �x�� � �X� Y ��x�� are linearly independent�

for i � f�� �g� 
i � hp�� ad�X�Y ��x��� ui ad�Y �X��x��iis not zero

Such a point z� is called a fold point	 and from ���� and �
� the extremals
near z� for the problem de�ned in section ��� are of the form


� if 
�
� � � �parabolic case�
 
�
�
� or 
�
�
�
� if 
� � � and 
� � � �hyperbolic case�
 
i
s
j with �i� j� � f�� �g�

� if 
� � � and 
� � � �elliptic case�
 bang�bang extremals� with no uni�
form bounds on the number of switchings on any compact containing
z�� but with a �nite number of switchings for any extremal

where each arc of these sequences may be empty�

Proof� The behavior of regular extremals near z� has been classi�ed in ����
and is shown by Figure ��� where zi denotes z � �x� p� for control ui�
i � �� ��

z�

z�z�
z�

z�

z�

z�

z�

z�

elliptic caseparabolic casehyperbolic case

Figure ��

In the parabolic case� elementary computations show that us �� �u�� u��
and so us is not admissible� Moreover� if we assume that the singular ex�
tremal arc passing through z� satis�es assumptions �H�

����H
�
�� �de�ned in

section ������ we know from �
� that it is fast �resp� slow� for limit�problem
in the hyperbolic �resp� elliptic� case�

��
� Singular extremals in the case n � �

Considering the problem de�ned in section ��� when n � �� let us de�ne

D � � det�Y� �X� Y �� ad�Y �X��� D� � det�Y� �X� Y �� ad�X�Y �� and D�� �
det�Y� �X� Y �� X��
The singular extremals �x� p� u� satisfying D �� � are clearly of order �	
moreover x satis�es


�x � X�x� � us�x�Y �x� with us � �
D�

D
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Proof� Since � � hp� Y �x�i is zero at any time along any singular ex�
tremal� ����� and ���
� �cf� section ������ imply hp� �X� Y ��x�i 
 � and
hp� ad�X�Y ��x� � u ad�Y �X��x�i 
 �	 so we get D� � uD 
 � since p is
never zero�

Corollary ���� The singular extremals included in R�nfD � �g satisfy
�H�

����H
�
�� �de�ned in section ������	 they are hyperbolic �resp� elliptic� if

and only if D��D � � �resp� D��D � ��	 they are exceptional if and only if
D�� � ��


� Projected problem� Reduced problem

���� Projected problem

������ Statement of the problems� Every object is supposed to be real
analytic� Let M and M � be two manifolds� let � denote a submersion from
M into M �� Let N �resp� N �� be a regular submanifold of M �resp� M ���
Consider a system of the form


�x�t� � f�x�t�� u�t�� � x�t� �M and u�t� � " � R �����

Let us assume that


�i� for each admissible control u���� the di�erential system ����� is com�
plete�

�ii� for each �xed u in "� the di�erential system ����� can be ��projected
on M ��

�iii� N � ����N ���

Note that when considering local coordinates� assumptions �ii� and �iii�
mean that there exist coordinates x � �x�� x��� on M such that � is the
projection M ��

�x�� x��� 
� x�
M �� N being identi�ed to the set of all �N �� x���� and

such that ����� can be written as


�x� � f ��x�� u� and �x�� � f ���x� u�

Let us denote by P �resp� P �� the time minimal problem associated to the
system �x � f�x� u� �resp� �x� � f ��x�� u�� with terminal manifold N �resp�
N ��
 P � is called the projected problem associated to P � Then let us denote
by x�t� x�� u� the solution to �x � f�x� u� initiating at initial time t� from
x� �M � and by x��t� x��� u� the solution to �x� � f ��x�� u� initiating at initial
time t� from x�� � ��x�� �M ��

������ Results for the problems stated in section ������

Lemma ���� The trajectory x�t� x�� u� de�ned on �t��u�� �� is a solution to
P if and only if x��t� x��� u� is a solution to P � on �t��u�� ���

Proof� From assumptions �i� and �ii� in section ������ one has at any time t
such that the right hand member of ����� is de�ned


x��t� x��� u� � ��x�t� x�� u��

Moreover N � ����N �� from �iii� in section ������

ESAIM� Cocv� December ����� Vol� 	� 
��

��



TIME MINIMAL CONTROL OF BATCH REACTORS ���

Lemma ���� Every BC�extremal �x�� p�� u� of the projected problem P � can be
lifted into a BC�extremal �x� p� u� of the original problem P with x � �x�� x���
and p � �p�� ���

Proof� We know from section ����� that system ����� can be locally written
as


�x� � f ��x�� u� and �x�� � f ���x� u� with x � �x�� x����

Moreover the adjoint vector p � �p�� p��� of any extremal �x� p� u� of P satis�
�es


�p� � �p�
	f �

	x�
�x�� u�� p��

	f ��

	x�
�x�� x��� u� and �p�� � �p��

	f ��

	x��
�x�� x��� u��

Since any extremal �x�� p�� u� of P � satis�es


�x� � f ��x�� u� and �p� � �p�
	f �

	x�
�x�� u��

it can be lifted into �x � �x�� x���� p � �p�� ��� u� �where x�� is any solution to
�x�� � f ���x�� x��� u�� which is an extremal of P �
Moreover for both extremals �x�� p�� u� of P � and �x � �x�� x���� p � �p�� ��� u�
of P the transversality conditions are


x���� � N � and p���� is orthogonal to Tx���
N
�

since N is identi�ed to the set of all �N �� x����

Remark ���� Not every extremal of problem P can be projected onto an
extremal of problem P �� So� although from Lemma ��� problems P and P �

are equivalent� studying the solutions of the PMP for P � is simpler than for
P because there are less extremals�

������ Applications�
� �P� in the case n� � n� � � is the time minimal problem associated to

the system ������ �cf� section ��
��� with terminal manifold �z � d��� Then
from section ����� we can consider the equivalent time minimal projected
problem �P �� associated to the system ������ �cf� section ��
��� with terminal
manifold �z � d�� and control u such that u� � u � u	 and u� � � � u	�

� P� is� according to section ���� the time minimal problem associated to
the system ���
� with terminal manifold �c� � d��� Consider the adapted
coordinate


x� �

�
ln c� if n� � �
�

��n�
c��n�� if n� � �

�����

System ���
� becomes in the state�coordinates x�� c�� c�
������
�����

�x� � �v

�c� �

�
vex� � �v�cn�� if n� � �

v���� n��x��
n�

��n� � �v�cn�� if n� � �

�c� � �v�cn��

�����
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Then from section ����� we can consider the equivalent time minimal pro�
jected problem P �� associated to the system
���

��
�x� � �v

�c� �

�
vex� � �v�cn�� if n� � �

v���� n��x��
n�

��n� � �v�cn�� if n� � �

���
�

with terminal manifold �c� � d�� and control v such that vm � v � vM �

� �P� is� according to section ���� the time minimal problem associated to
the system ����� with terminal manifold �c� � d��� System ����� becomes
in the state�coordinates x�� c�� c�� v system ����� with the supplementary
equation �v � h�v�u� Then from section ����� we can consider the equivalent
time minimal projected problem �P �� associated to the system
������

�����

�x� � �v

�c� �

�
vex� � �v�cn�� if n� � �

v���� n��x��
n�

��n� � �v�cn�� if n� � �

�v � h�v�u with h�v� � �Rv�E�� ln
��v�A��

�����

with terminal manifold �c� � d�� and control u such that u� � u � u	 and
u� � � � u	�

���� Reduced problem

������ Preliminary� Consider the time minimal problem stated in section
����� with a�ne single input system ����� in Rn �n � �� and with �atness
hypothesis�
For batch reactors


� it was already noticed in section ����� that problems �P� and �P� �with
control �T � de�ned in section ��� meet all these conditions� Then T �or
equivalently v� is a state variable�

� on the contrary� for problems P� and P� �de�ned also in section ����
the dynamical system is not a�ne with respect to the control T �or
equivalently v� when � �� ��

The aim of this section ��� is to relate singular extremals in both cases�
Indeed� a general system of the form
 �x � f�x� u� can be interpreted as
an a�ne system with respect to the new control �u� u becoming a state�
variable� Let us study the converse transformation� which is called Goh�s
transformation�

������ Results for limit�problem�

Definitions and notations� According to section ������ consider the
limit�problem associated to the problem stated in section ����� with the
same single input a�ne system ����� in Rn�n � �� 
 �x � X�x� � u Y �x�
where the boundary constraints on the control u are relaxed and where the
terminal manifold is a point �so the �atness hypothesis does not make sense
any more��
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Take x� � R
n such that Y �x�� �� �� Hence� from the �ow�box theorem� there

exists an open neighborhood U of x� and local coordinates �x�� � � � � xn� in

U such that Y jU�
	

	xn
� Introducing #x � �x�� � � �xn���t and #X such that


X�x� �
nX
i��

X i�x�
	

	xi
� #X�x�

	

	#x
�Xn�x�

	

	xn
�

the restriction of �x � X�x� � u Y �x� to U becomes


�#x � #X�#x� xn� � �xn � Xn�#x� xn� � u �����

Then the system �#x � #X�#x� xn� is called a reduced system associated to the
original a�ne system �x � X�x�� u Y �x�� xn being the control variable and
#x belonging to #U open subset of Rn��� Note that such a reduced system is
not unique�

For the original �resp� reduced� problem� let p � �p�� � � � � pn�t �resp� #p �
�#p�� � � � � #pn���

t be the dual variables of the state variables x �resp� #x� and
let H�x� p� u� � hp�X�x� � u Y �x�i �resp� #H�#x� #p� xn� � h#p� #X�#x� xn�i� be
the Hamiltonian�

Lemma ��
� The pair �x� p� is the projection on the space of state and ad�
joint variables of a solution �x� p� u� to


�x �
	H

	p
�x� p� u� � �p � �

	H

	x
�x� p� u� �

	H

	u
�x� p� u�
 � �����

if and only if pn 
 � and �#x� #p � �p�� � � � � pn���
t� xn� is a solution to


�#x �
	 #H

	#p
�#x� #p� xn� � �#p � �

	 #H

	#x
�#x� #p� xn� �

	 #H

	xn
�#x� #p� xn� 
 � �����

and then the following relations are satis�ed


d

dt

	H

	u
j�x�p�u
� hp� �X� Y ��x�i � �

	 #H

	xn
j��x��p�xn
 �����

	

	u

d�

dt�
	H

	u
j�x�p�u
� �hp� ad�Y �X��x�i� �

	� #H

�	xn��
j��x��p�xn
 ������

Proof� System ����� can be written as
��������
�������

�#x � #X�#x� xn�� �xn � Xn�#x� xn� � u �i�e� �x �
	H

	p
�x� p� u��

�j � f�� � � � � ng �pj � �
nX
i��

pi
	

	xj
X i�#x� xn� �i�e� �p � �

	H

	x
�x� p� u��

pn 
 � �i�e�
	H

	u
�x� p� u� 
 ��

which is equivalent�when omitting u� to
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pn 
 � and����������
���������

�#x � #X�#x� xn�� i�e� �#x �
	 #H

	#p
�#x� #p� xn�

�j � f�� � � � � n� �g �pj � �
n��X
i��

pi
	

	xj
X i�#x� xn�� i�e� �#p � �

	 #H

	#x
�#x� #p� xn�

n��X
i��

pi
	

	xn
X i�#x� xn� 
 �� i�e�

	 #H

	xn
�#x� #p� xn� 
 � with #p � �p�� � � � � pn���

t

that is pn 
 � and ����� with #p � �p�� � � � � pn���
t�

From section ����� we know that� if � �
	H

	u
j�x�p�u
� hp� Y �x�i denotes the

switching function of the a�ne system �x � X�x� � uY �x��

�� �
d

dt

	H

	u
j�x�p�u
� hp� �X� Y ��x�i �cf� ������

and  � �
d�

dt�
	H

	u
j�x�p�u
� hp� ad�X�Y ��x�� u ad�Y �X��x�i �cf� ���
��

so
	

	u

d�

dt�
	H

	u
j�x�p�u
� �hp� ad�Y �X��x�i

Moreover ����� implies �after computations with Y �
	

	xn
� pn 
 � and

#p � �p�� � � � � pn���t�


hp� �X� Y ��x�i � �
	 #H

	xn
j��x��p�xn
 and hp� ad�Y �X��x�i� �

	� #H

�	xn��
j��x��p�xn
�

so ����� and ������ are proved�

Definition ���� A singular extremal �x� p� u� for the original a�ne system

satis�es the Legendre�Clebsch condition if and only if
	

	u

d�

dt�
	H

	u
� � along

�x� p� u��

Corollary ���� Relation ������ implies that� if �x� p� u� is a singular ex�
tremal for the original a�ne system� the Legenre�Clebsch condition along
�x� p� u� is equivalent to the Legendre condition �de�ned in section ������
along the associated singular extremal for the reduced system�

Lemma ��� �singular controls�� Since the concept of singular extremal is
feedback�invariant �see �
�� one may set Xn � �� Thus the restriction of
�x � X�x� � u Y �x� to U �cf� ������ is


�#x � #X�#x� xn� � �xn � u ������

Consider �x� p� u� a singular extremal of order � for this a�ne system and
assume that


	

	u

d�

dt�
	H

	u
� � along �x� p� u� ������

Then the singular control u is given by ����� �cf� section ������


u � us�x� p� �
hp� ad�X�Y ��x�i

hp� ad�Y �X��x�i
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Moreover� relation ������ implies that ������ is equivalent to the strong Le�
gendre condition �de�ned in section ������ along the associated singular ex�
tremal �#x� #p� xn� for the reduced system� Then� as noticed in section ������
we know from the implicit function theorem that the singular control xn can

be locally computed as a function of �#x� #p� by solving
	 #H

	xn
� �	 equivalently

xn can be obtained as solution to the Cauchy problem for
d

dt

	 #H

	xn
� �� which

exists since the strong Legendre condition
	� #H

�	xn��
� � holds along �#x� #p� xn��

Finally� it comes from ������ that
 �xn � u�

Lemma ��� �Optimality�� Theorem ��� gives the optimality status of any
singular extremal �x� p� u� satisfying �H�

����H
�
�� for the original a�ne limit�

problem� The associated singular extremal �#x� #p� xn� for the reduced problem
considered in the previous lemma ��� has the same optimality status when
changing C��optimality of �x� p� u� into C��optimality of �#x� #p� xn��

Proof� See �
�� Indeed� if x � �#x� xn� and x� � �#x�� x�n� are in a C��
neighborhood� then xn and x�n are in a C��neighborhood	 and xn� x�n are
the control variables for the considered reduced systems�

������ Results for flat minimal�time problem with a target of

codimension one in dimension greater than two�

Statement of the problem� According to the preliminary ����� let us
consider the time minimal problem stated in section ����� with


� an a�ne single�input system �����
 �x � X�x� � u Y �x� in Rn �n � ���
the boundary constraints on the control u being relaxed

� a targetN which is a regular analytic submanifold ofRn of codimension
one

� Y everywhere tangent to N ��atness hypothesis��

This problem is denoted by Paff �
Let �n be a normal vector to N pointing outwards the half�space where

the considered trajectories lie� Let SN be the subset of N de�ned by

SN � fx � N 	 h�n� �X� Y ��x�i � �g

assumptions� Take a point x� of SN as the origin and assume that


�Hr
�� Y ��� �� ��

Hence� from the �ow�box theorem� there exists an open neighborhood U of

� in Rn and local coordinates �x�� � � �xn� in U such that Y jU�
	

	xn
� Let us

introduce #x � �x�� � � � � xn���t and ##x � �x�� � � � � xn���t

�Hr
�� N is identi�ed to �x� � ���

Then SN � f��� ##x� xn� � N 	
	X�

	xn
��� ##x� xn� � �g� so SN is de�ned on N by

an equation ��##x� xn� � � with ���Rn��� � � since �Rn � SN

�Hr
�� Y ��� is not included in SN �
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This implies that ���Rn��� x
n� �
 �� So� considering the equation ��##Z�W � �

� for ##Z in C n�� and W in C � we know that W is of �nite order k � N� at
�Cn�� i�e� that there exists an analytic function �� such that ���Cn�� �W � �
W k���W � with ����� �� �� Then from the Weierstrass Preparation Theorem
there exist analytic functions a�� � � � � ak� �� de�ned on a neighborhood U �

of �Cn�� in C
n�� such that ��##Z�W � � P �##Z�W ����

##Z�W � with �� never

vanishing in U � and P �
##Z�W � � W k�

kX
i��

ai�
##Z�W k�i� So on U �� ��

##Z�W � � �

is equivalent to P �
##Z�W � � � which is polynomial in W �

�Hr
�� For any �

##Z��W � in U � where
##Z� �� �Cn�� is �xed� there are k distinct

solutions to the polynomial equation in W 
 P �##Z��W � � ��

So the restriction of #�
 � ##Z�W � 
� ##Z to f�##Z�W � � U � 	 P �##Z�W � � �g is a

covering map �with branch�point �Cn�� � which is k�sheeted above
##Z �� �Cn�� 	

any of these k sheets is transverse to Y for U � small enough� So comes the
following


Proposition ���� Let �X� Y�N� satisfying �Hr
�� � �Hr

�� and let G be the
pseudo�group of local di�eomorphisms that keep invariant the distribution
RY and any point of N close enough to x� � �Rn � N �so specially �Rn

is invariant�� For the equation ��##x� xn� � � of SN � N near x� � SN
�where N is identi�ed to x� � � and where ##x � �x�� � � � � xn���t�� xn is of
�nite order k � N� at �Rn��� this order k being invariant under the action of
G� And there exists a neighborhood U � of �Cn�� such that� if #� denotes the

projection from C
n���C onto C n�� de�ned by #��##Z�W � � ##Z� the restriction

of #� to f�##Z�W � � U � 	 ##Z �� �Cn�� and ��##Z�W � � �g is a k�sheeted covering
map�

If moreover �X� Y�N� satis�es at x� the so�called strong Legendre�Clebsch

condition
	

	u

d�

dt�
	H

	u
� � �where H denotes the Hamiltonian� i�e� from

the transversality condition �cf� section ������ and from computations �see
the proof of Lemma ���� h�n� ad�Y �X��x��i � �� it comes k � �� Then

��##Z�W � � � is an analytic submanifold of C n�� � and SN � N can be
locally �near x� � �Rn � SN � identi�ed to x� � � as shown by Figure �� for
n � �

In the general case� for any ##x� � R
n��nf�Rn��g close enough to �Rn�� and

for xn in a compact subset C of R� there exists U �� neighborhood of ##x� in
Rn�� above which SN is the union of k� regular submanifolds of N transverse
to Y � with k� � k �see Figure �� for n � � and k� � ��

Corollary ����� Assume that� for the considered �at problem Paff with
target N � �X� Y�N� satis�es �Hr

����H
r
��� Let � be the projection de�ned from

Rn���R onto Rn�� by ��#x� xn� � #x� Using �� one can generically relate bi�
univoquely the singular extremals for the original problem Paff �with target
N� and for an associated reduced problem �with target ��N���
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O
SN

N

x�

x�

x�

Figure ��

SN

C

U ��

O ��x�
x� � ��x

xn � x�

N

C

O

U ��

x�

xn � x�

��x�
x� � ��x

Figure ��

Proof� Since �X� Y�N� satis�es �Hr
����H

r
��� the restriction of �x � X�x� �

u Y �x� to a neighborhood U of x� � �Rn with local adapted coordinates
�#x � �x�� � � � � xn���t� xn� is


�#x � #X�#x� xn� � �xn � Xn�#x� xn� � u

and as in Lemma ���� one can set Xn � � since the concept of singular
extremal is feedback invariant�

At �nal time �� singular trajectories for Paff arrive on

SN � N � �h�n� �X� Y ��x�i � ��

Indeed� any singular extremal �x� p� u� for Paff satis�es
 hp� Y �x�i �
hp� �X� Y ��x�i � � �cf� section ����
� and the transversality conditions

x��� � N and p���� �n are colinear �cf� section ������� Since in U open
neighborhood of �Rn� N is �x� � ��� �n normal vector to N is colinear to
��� �� � � � � ��t � Rn	 and so the transversality conditions are


x���� � � and p���� � � � � � pn��� � � ������

Let us associate to Paff the time minimal reduced problem Pred with

system �#x � #X�#x� xn�� control xn and target ��N�� Computing as in Lemma
��
� since any singular extremal �x� p� u� for Paff satis�es ����� and �������
we �nd that �#x� #p � �p�� � � � � pn���t� xn� satis�es ����� and that pn 
 �	 so the
Hamiltonians H�x� p� u� � hp�X�x��uY �x�i and #H�#x� #p� xn� � h#p� #X�#x� xn�i
are equal� Moreover the transversality conditions for Pred are
 #x��� � ��N�

ESAIM� Cocv� December ����� Vol� 	� 
��

��



��� B� BONNARD AND G� LAUNAY

and #p��� is normal to ��N�� i�e� �since in ��U� open neighborhood of �Rn���
��N� is �x� � ��� x���� � � and p���� � � � � � pn����� � �� which is
equivalent to ������ when pn 
 ��

So �x� p� u� is a singular extremal for Paff if and only if ���x�� ��p�� xn�
is a singular extremal for Pred

It appears that Paff is a desingularization of Pred �see Figure �� for n � �

and k� � �� and that� when k� � �� local maxima of the Hamiltonian #H for
Pred may compete at some points of ��SN��

SN

x� � ��x

N
xn

x�

O

�s

���s�

���s��

�s
�

Figure ��

����
� Applications�
� Let us consider the �at problem �P �� in dimension � and the associated

reduced problem P �� �P
�
� and

�P �� are de�ned in section ������� Corollary ����

relates biunivoquely the singular extremals for �P �� and P ���
We shall prove subsequently �cf� Lemma ��� in section ����� and Figure
��� that for �P ��� on the target N 
 �c� � d��� there exists a single smooth
singular curve transverse to Y 
 such a �at optimal control problem is said
to be simple�

Indeed� keeping the original coordinates �c�� c��� it comes from sections

��� and ��� that �P �� is the time minimal problem associated to the system
���
��
�c� � �vcn��
�c� � vcn�� � �v�cn��
�T � u which is the control for �P ��� while T is the control for P ��

with �cf� equations ����� and ������

v � A� exp��E��RT �� � � E��E�� � � A��A
�
�

Then assumptions �Hr
����H

r
�� are satis�ed when


choosing a point x� � �c��� d�� T�� of

SN � fx � �c�� c� � d�� T � � N 	
	

	T
�vcn�� � �v�cn�� � � �g

with
	

	T
�v� � E�v�RT

� and so

SN � fx � �c�� c� � d�� T � � N 	 �cn�� � ��v���cn�� � � �g�
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and then considering coordinates �x�� x�� x�� � �c� � d�� c�� c��� T � T���
Finally v �and so x�� is of order � at �R� for the equation of SN 


��x�� x�� � �x� � c���
n� � ��v���dn�� � �

Thus we just proved that the problem �P �� is simple�

� Let us then consider the time minimal problem for a batch reactor in
which three species X�� X�� X� are reacting according to the scheme

X� � X� � X�

each reaction being of the �rst order� while the �nal constraint is to obtain
a given concentration d� of X��
Similarly as in section ���� chemical laws yield the following system
���

��
�c� � �k�c� � k��c�

�c� � k�c� � k��c� � k�c�

�c� � k�c�

with� according to Arrhenius law


ki � Ai exp��Ei�RT � � i � �� � and k�� � A�� exp��E
�
��RT �

So� when introducing

v � k�� � � E��E�� � � A��A
�
� �

� � E���E�� �
� � A���A

��

�

and when considering the associated projected problem �cf� section ����
with control T � we get the following dynamical system�

�c� � �vc� � ��v�
�

c�

�c� � vc� � ��v�
�

c� � �v�c�

whereas the choice of �T as control u gives the supplementary state�variable
T satisfying the equation �T � u�
Then assumptions �Hr

����H
r
�� are satis�ed when


choosing a point x� � �c��� d�� T�� of

SN � fx � �c�� c� � d�� T � � N 	
	

	T
�vc� � ��v�

�

c� � �v�c�� � �g

with
	

	T
�v� � E�v�RT

� and so

SN � fx � �c�� c� � d�� T � � N 	 c� � ����v�
���c� � ��v���c� � �g�

and then considering coordinates �x�� x�� x�� � �c� � d�� c�� c��� T � T���
Finally the equation of SN becomes


��x�� x�� � x� � c�� � �����v�
��� � ��v����d� � �

So v �and so x�� is of order � at �R� for this equation of SN when we choose
� � � and �� � �	 thus we just proved that in that case the considered
problem is not simple�
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�� Time minimal synthesis for P� near the target


��� Generalities


����� Definitions and notations� According to section ����� we can
consider instead of P� the equivalent time minimal projected problem P ��
with system ���
�� control v � �vm� vM � and terminal manifold N 
 �c� � d��
to be reached from an initial value �c��� � ��� d��� So the state�vector is
#x 
� �x�� c��

t� x� being related to the original variable c� by ������ Note
that if n� � � it comes x� � � since �cf� ����� in section ������ c� � ��

Let us denote by �v the singular control� and by 
m �resp� 
M � �
� any arc
satisfying ���
� with control vm �resp� vM � �v��


����� Adjoint�state� Along any BC�extremal �#x� #p� v�� the adjoint�vector
#p � �p�� p��

t associated to #x � �x�� c��
t satis�es �when taking ����� into

account�
 �
�p� � �n�vc

�n���
� p�

�p� � n��v
�cn���� p�

�
���

the corresponding Hamiltonian being


#H�#x� #p� v� � �vp� � �vcn�� � �v�cn�� �p� �
���

At �nal time � we can take

#p��� � ��� �� �
���

and at any negative time t� p��t� � � and p��t� � ��

Proof� Since the target N 
 �c� � d�� has to be reached from the domain
�c� � ��� d���� the PMP �maximization of the Hamiltonian and transversality
conditions� implies in the non�exceptional case that #p��� is a normal vector
to N pointing outwards �c� � d��	 so we can take #p��� � ��� ���

Note that in the exceptional case �i�e� �cf� section ������ when the Hamil�
tonian is zero� or equivalently when the trajectory is tangent to N at �nal
time �� PMP allows #p��� � ������ as well as #p��� � ��� ��	 the value ���$��
is discarded for optimal trajectories �this result is proved in the same way
as the orientation principle �����

From �
���� at any time t� p��t� � �exp

Z t

�
n��v

��u�cn���� �u�du� p����	

and from �
��� p���� � � � �� so p��t� � �
 this implies that at any negative
time t �p��t� � � �from �
���� with c��t� � � from ����� in section ������
� � vm � v�t��	 so� since from �
��� p���� � �� it comes p��t� � ��


����� Accessibility� Let A be the set of points of the target N 
 �c� � d��
that are accessible from �c� � d��� When � � � �resp� � � ��� A is included

in A� � f�c�� d�� � N 	 c� � c�M �resp� c�m�g where c�M � ��dn�� v���M �
�

n�

�resp� c�m � ��dn�� v���m �
�

n� � �see Figures � and � in section �������

Proof� For any v� � �vm� vM � �so v� � ��� any point a � �x�� d�� of A reached

with �nal control v� has to satisfy #H�a� #p���� v�� � �� i�e� �from �
��� and

�
��� in section 
����� v�c
n�
� � �v�� d

n�
� � �� i�e� c� � ��dn�� v���� �

�

n� � and so
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comes the result since � � � � � and � � v� � vM �resp� since � � � � �
and � � vm � v���


���
� Singular BC�extremals� There is no singular BC�extremal when
� � �	 indeed the �necessary� Legendre condition is satis�ed if and only if
� � ��

Proof� From section ����
 and �
��� any singular BC�extremal has to satisfy

the Legendre condition
	� #H

	v�
j�x��p�v
� �� i�e� ��������v���cn�� p� � �� which

is true if and only if � � � since at any non�positive time t p��t� � � �cf�
section 
������ v�t� � vm � �� and c��t� � � from ����� in section ����� with
c��t� � � if t is not the initial time�


��� Local synthesis for � � �

Theorem 
��� Locally �near the target N�� as shown by Figure � in section
������ the optimal trajectories are the 
M arcs arriving on A� � f�c�� d�� �
N 	 c� � c�Mg de�ned in section ������ Note that the point EM de�ned in
section ����� as the point of the target such that �c� � � when v � vM � is
EM � �c�M � d�� arrival point of an optimal exceptional trajectory 
M �

Proof� When � � �� we know from section 
���
 that any BC�extremal
�#x� #p� v� is regular�

Let us assume that c� � �� which is not restrictive in this local study near
N 
 �c� � d� � ���
Moreover� for any BC�extremal �#x� #p� v�� it comes from �
��� in section 
����


	 #H

	v
j��x��p�v
� �p� � �cn�� � ��v���cn�� �p� �
�
�

with

�p� � cn�� p� � � �
���

since #H�#x� #p� v� � v��p� � cn�� p�� � �v�cn�� p� � v��p� � cn�� p�� �indeed
v � vm � �� we assumed that c� � �� and p� is positive valued from 
�����
and �from PMP� #H�#x� #p� v� � � with v � vm � ��

Let us then introduce

�v �

�
�

��cn��

�
cn�� �

p�
p�

�	 �

���

�
���

which is the solution to the equation in v 

	 #H

	v
�#x� #p� v� � ��

Let us consider a �xed �#x� #p� satisfying �
��� and such that c� � �� c� � ��
p� � � and p� � �	 let us look then for the variations of v 
� #H�#x� #p� v� for
v � �

from �
��� in section 
���� it comes

lim
v���

#H�#x� #p� v� � �

ESAIM� Cocv� December ����� Vol� 	� 
��

��



��� B� BONNARD AND G� LAUNAY

and� since moreover � � �� we get


	� #H

	v�
�#x� #p� v� � ���� � ���v���cn�� p� � �

lim
v�	�

#H�#x� #p� v� � lim
v�	�

v��p� � cn�� p� � �v���cn�� p�� � ��

So comes the following table � which gives the variations of v 
� #H�#x� #p� v�
for v � ��

#H�#x� #p� v�

	 #H

	v
�#x� #p� v�

v �v�#x� #p�� #v�#x� #p� ��

��

��
��
��
��
��
���

��
��
��
��
��
��
��
��
��

���

H
H
H
H
H
H
HHj

�

�

�

$ � �

Table �

Computing as in the proof of result 
����� we �nd that at any point
a � �c�� d�� of A� with #p��� � ��� �� according to �
��� in section 
�����
#H�a� #p���� vM� � � and that #H�a� #p���� vM� � � if and only if c� � c�M �
Then


� for any point a � �c�� d�� of A� such that c� � c�M we know from
Table � that vM � #v�a� #p���� and that vM maximizes v 
� #H�a� #p���� v�
for v � �vm� vM �� So locally the 
M trajectory arriving at a is BC�
extremal�

� since #p��� � ��� ��� #H�a� #p���� vM� is equal to �c� at point a with v � vM 	
so �c�M � d�� is the point of the target such that �c� � � with v � vM � i�e�
�c�M � d�� � EM introduced in section ��
��� and the arc 
M arriving
at EM is tangent to N �

And since #H�EM � #p���� vM� � �� we know from Table � that #v�EM � #p���� �

vM and that vM maximizes v 
� #H�EM � #p���� v� for v � �vm� vM ��
Moreover� in that case� �c���� � � with v � vM and #x��� � EM � i�e� �cf� sec�
tion 
����� c���� � c�M and c���� � d�� So� since from ���
� in section ������
�c� � �vcn��
�c� � vcn�� � �v�cn��

which implies c
��

� � �n�v

�c�n���� ��v�n�c
n���
� c�� it

comes c
��

� ��� � �n�v

�
Mc�n����M � �� Since �c���� � � and c

��

� ��� � �� we get

from Taylor�s expansion of c� at time � that for any time t close enough to
� c��t� � c���� � d��
So the 
M trajectory arriving at EM is locally BC�extremal�
Recapitulating� we get the result�
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��� Local synthesis for � � �


����� Stratification of the target N � Locally �near the target N� as
shown by Figure � in section ����� any point of A� � f�c�� d�� � N 	 c� �
c�mg de�ned in section ����� is the arrival point of a BC�extremal trajectory�
The point Em� de�ned in section ����� as the point of N such that �c� � �
when v � vm� is Em � �c�m� d�� arrival point of an exceptional BC�extremal
trajectory with �nal control vm�
The point Sm �resp� SM� is� as in section ������ the point of N where the
�nal singular control is vm �resp� vM��
The �nal control of the BC�extremal trajectories arriving on N is then shown
by Figure ��

Sm

vm

c�

d�
Em

vm

O
A

SM

vM
vM

c�

�v jt���
vm� vM �vm

Figure �


Proof� As in the proof of Theorem 
��

We assume that c� � ��that any BC�extremal �#x� #p� v� satis�es �
�
� and

�
���� and we consider �v de�ned by �
��� which is the solution to the equation

in v

	 #H

	v
�#x� #p� v� � ��

Let us consider a �xed �#x� #p� satisfying �
��� and such that c� � �� c� � ��
p� � � and p� � �	 let us look then for the variations of v 
� #H�#x� #p� v� for
v � �

from �
��� in section 
���� it comes lim

v���
#H�#x� #p� v� � �	 and since moreover

� � �� we get


	� #H

	v�
�#x� #p� v� � ����� ���v���cn�� p� � �

lim
v�	�

#H�#x� #p� v� � lim
v�	�

v����cn�� p� � v�����p� � cn�� p��� � ��

So comes the following table � which gives the variations of v 
� #H�#x� #p� v�
for v � ��
Computing as in the proof of result 
����� we �nd that at any point a �
�c�� d�� of A�� with #p��� � ��� �� according to �
��� in section 
�����
#H�a� #p���� vm� � � and that #H�a� #p���� vm� � � if and only if c� � c�m�

Moreover �
��� implies that �v jt��� which is �v�a� #p����� is equal to



c
n�
�

��d
n�
�

� �

���

and so is an increasing function of c��
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#H�#x� #p� v�

	 #H

	v
�#x� #p� v�

v �v�#x� #p�� #v�#x� #p� ��

��
�
�
�
�
���

XXXXXXXXXXXXXXXXXXXXz

PPPPPPPPPPPPq
�

�

�

� $ $

Table �

Then for any point a � �c�� d�� of A� such that c� � c�m we know from
Table � that vm � #v�a� #p���� and that v 
� #H�a� #p���� v� for v � �vm� vM � is
maximized by


� vm if �v jt��� vm� i�e� if a ��Em� Sm�
� �v jt�� if �v jt����vm� vM �� i�e� if a ��Sm� SM �
� vM if �v jt��� vM � i�e� if a is on the right of SM �

The proof of the results claimed about Em is similar to the proof given in
section 
�� about EM �


����� Synthesis�

Theorem 
��� Each optimal trajectory is of the form 
M �

m� where each
arc of the sequence may be empty� and each open�loop control is C��
Numerical simulations �cf� section �� show that the optimal synthesis is
given by Figure � in section ������

Proof� As in the proofs of sections 
�� and 
���� we assume that c� � ��
Along any BC�extremal �#x� #p� v�� let us study the variations of the singular
control �v �cf� �
��� in section 
��� which are the same as the variations of
�w � ���v��� since � � � and � � ��

From �
��� it comes �w �
�

cn��
�cn�� �

p�
p�

� and so computations taking into

account ���
� in section ����� and �
���� �
��� in section 
���� yield


d �w

dt
� �

n�c
n�
�

#H�#x� #p� v�

cn�	�� p�
�
���

Moreover we know that
 c� � � �cf� ����� in section ������� p� � � �cf�

section 
����� and that t 
� #H�#x�t�� #p�t�� v�t�� is a non�negative constant �cf�
PMP�� And we assumed that c� � ��

If #H�#x� #p� v� 
 �� which �from section 
����� occurs only for the exceptional
BC�extremal arriving at Em with �nal control vm� �w is constant along this
BC�extremal and so does �v� So� considering Table � in section 
����� at
any non�positive time t close enough to �� �v � vm since �v jt��� vm �
#v�Em� #p����	 and so vm � #v�#x�t�� #p�t�� maximizes v 
� #H�#x�t�� #p�t�� v�� Thus
Em is the arrival point of an optimal exceptional trajectory 
m�
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If #H�#x� #p� v� � �� which �from section 
����� occurs for BC�extremals ar�
riving on N strictly on the right of Em� �w is a decreasing function of time
along any of these BC�extremals and so does �v�

We already noticed in section 
���
 that c� � � with c��t� � � if t is
not the initial time t� �from ����� in section ������	 and we assumed in
sections 
�� and 
�� that c� � �� If c��t�� � �� it comes from section

���� and �
��� that lim

t�t
�
�

�v�#x�t�� #p�t�� � ��	 otherwise let us prove that

lim
t�t

�
�

�v�#x�t�� #p�t�� � �� with t� � ��� so that we can conclude in any case

that �v relates biunivoquely and decreasingly the considered times �t�� �� onto
��v jt������� Indeed at any time t � �


� in the considered case t 
� #H�#x�t�� #p�t�� v�t�� is a positive constant �say
#H�	 and c��t� � �	
� moreover c��t� � � �from ����� in section ������	 and p��t� � �� p��t� � �

�from section 
������
� So ���
� in section ������ �
��� and �
��� in section 
���� imply that

�c��t� � �� �p��t� � �� � � #H � �c��t�p��t� and so �c��t� � �� Thus� since
p���� � � from �
��� in section 
����� it comes from �
���


d �w

dt
� �

n�c
n�
� ��� #H

cn�	�� ���
which is a negative constant

so we get lim
t���

�w�#x�t�� #p�t�� � ��� and so lim
t���

�v�#x�t�� #p�t�� � ���

Finally we �nd the following results

� if �v jt��� vM � which �from section 
����� occurs for BC�extremals arriv�

ing on the right of SM � at any time t ��t�� �� close enough to �� �v � vM and

so �from Table � in section 
����� vM maximizes v 
� #H�#x�t�� #p�t�� v�� Thus
any point on the right of SM is the arrival point of an optimal trajectory

M �
� if �v jt��� �vm� vM �� which �from section 
����� occurs for BC�extremal

arriving on �Sm� SM �� there exists a single time tM ��t�� �� such that �v jt�tM�
vM � And at any time t ��t�� �� close enough to �
 for t � tM �resp� t � tM ��
�v � vM �resp� �v � �vm� vM �� and so �from Table � in section 
����� vM �resp�
�v� maximizes v 
� #H�#x�t�� #p�t�� v�� Thus any point of �Sm� SM � is the arrival
point of an optimal trajectory 
M�
�
� if �v jt��� vm� which �from section 
����� occurs in the considered case

for BC�extremals arriving on �Em� Sm�� there exists a single time tM �resp�
tm� in �t�� �� such that �v jt�tM� vM �resp� �v jt�tm� vm�� And at any time
t ��t�� ��� close enough to �
 for t � tM �resp� t ��tM � tM �� t � tm�� �v � vM
�resp� �v ��vm� vM �� �v � vm� and so �from Table � in section 
������ vM
�resp� �v ��vm� vM �� vm� maximizes v 
� #H�#x�t�� #p�t�� v�� Thus any point of
�Em� Sm� is the arrival point of an optimal trajectory 
M �

m�
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�� Time minimal synthesis for �P� in the case n� � n� � �

���� Generalities

������ Definitions and notations� According to section ����� we can
consider instead of �P� in the case n� � n� � � the equivalent time min�
imal projected problem �P �� with system ������ �cf� section ��
���� control
u � �u�� u	� with u� � � � u	 and terminal manifold N 
 �z � d�� to be
reached from an initial value z� � ��� d��� So the state�vector is x � �z� v�t�
with v ���� A�� �cf� ����� in section ������� Let us denote by us the singular
control and by 
� �resp� 
	� 
s� any arc satisfying ������ with control u�
�resp� u	� us��

������ Adjoint�state� Along any BC�extremal �x� p� u�� the adjoint vector
p � �p�� p��

t associated to x � �z� v�t satis�es
��
�

�p� � ��v� � v�p�

�p� � ���v���z � z � ��p� �
dh

dv
�v�up�

�����

the corresponding Hamiltonian being

H�x� p� u� � �v � vz � �v�z�p� � h�v�up� �����

At �nal time �� we can take

p��� � ��� �� �����

and at any non positive time t� p��t� � ��

Proof� Equations ������ ����� come from section ����� applied to the optimal
control problem �P �� stated in section ������

The proof of ����� is similar to the proof of #p��� � ��� �� in section


����� And from ������ at any non�positive time t� p��t� � �exp

Z t

�
��v��u��

v�u��du� p���� with p���� � � � �� so p��t� � ��

������ Accessibility� Let A be the set of points of the target N 
 �z � d��
that are accessible from �z � d��� Let G be the set of points �z � �� v �
��� A��� such that �z � � �cf� ������ in section ������ as in section ������
When � � � �resp� � � ��� A is included in A� � f�d�� v ���� A��� �

N 	 v � vA �resp� v � vA�g where vA �

�
�d�

� � d�

� �

���

is the v�coordinate

of G � �z � d��� Note that when � � � and vA � A�� A� is empty and so A
is empty�

Proof� For any u� � �u�� u	�� any point a � �d�� v� of A reached with �nal
control u� has to satisfy H�a� p���� u�� � �� i�e� from ������ ����� in section
����� v � vd� � �v�d� � � i�e� �since �d� � � from section ��� and since

v � � from ����� in section ������ v��� �
� � d�
�d�

� and so comes the result

according to the sign of � � �� Note that v � vd� � �v�d� � �z jx�a and so
v � vA is equivalent to �z � � at the arrival point a�
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����
� Switching function� The switching function of �P �� is

� 
 t 
� h�v�t��p��t� ���
�

Thus ����� in section ����� implies that ���� � �� Indeed we can notice that
problem �P �� is �at�
Then at any time


�� � �h�v��� � z � ��v���z�p� �����

Proof� Computations� applying equations ���������
� of section ����� to prob�

lem �P �� stated in section ����� with a�ne single�input system �������

������ Singular BC�extremals� As in section ��
��� let S be the set of

points �z � �� v ���� A��� such that
d

dt

	H

	u
� ��

Lemma ���� Any singular arc 
s of a BC�extremal trajectory is included in
S� with S � f�z � �� v ���� A��� such that z���v��� � �� � �g	 the singular

control is us � �
v�

�zh�v�
� � and so v is a decreasing function of time along


s�

Proof� From section ����
 any singular BC�extremal has to satisfy
d

dt

	H

	u
�

�� so 
s is included in S�

From ����� in section ������
d

dt

	H

	u
� � is equivalent to

d

dt
�h�v�p�� � �

which is equivalent from ������ in section ��
�� and ����� in section ����� to
���v���z�z���h�v�p� � �� We thus �nd the expected equation of S since
h�v� is always positive �from ����� in section ������ and since p� is never zero
�from section �������

Applying ����� �cf� section ����
� to system ������� we get the value of
the singular control us which is negative since � � � �from section ���� and
v�zh�v� � � �from ������ ����� in section ������� Finally� since �v � h�v�u �cf�
������� with h�v� � � �from ����� in section ������� us � � implies �v � �
along 
s�

Lemma ���� Let us consider S� � S �N as in section ������
� If � � �� as shown by Figure � in section ������ S� is not accessible from
�z � d���
� If � � �� any singular BC�extremal arriving on N �with admissible sin�
gular control us� arrives at S� and is hyperbolic� Along S� us relates biuni�

voquely and decreasingly the considered v ������
�

��� � A�� onto �� �� ��	 so
there exists a single point of S �denoted by Ssat as in section ������ where
us � u�� And there is no exceptional singular BC�extremal arriving on N �

Proof� From the equation of S given in Lemma ���� S� � �d�� v�� satis�es


� � d� � ��d�v
���
� � � �����

So if � � �� S� �� A� �de�ned in section ������ which contains the points of
N that are accessible from �z � d���
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From Lemma ���� any singular BC�extremal arriving onN arrives atN�S �
S�	 moreover its Hamiltonian is H�S�� p���� us jt��� � v� � v�d� � �v�

�d�
�from ������ ����� in section ������ and so is positive when � � � from ������

Then in that case � � �� according to the de�nition recalled in section
����
� 
s is hyperbolic if and only if hp� ad�Y �X�i � �	 and indeed� since 
s
is included in S �cf� Lemma ����� computations give


hp� ad�Y �X�i � ���� � ���v���zh��v�p�

with ��� � ��� � � �from section ��� and since � � ��� v���zh��v� � �
�from ����� and ����� in section ������ and p� � � �from section ������� So

s is hyperbolic� with positive Hamiltonian �thus 
s is not exceptional��

Finally� according to Lemma ���� at any point

�
z �

�

��v��� � �
� v

�
of

S� us � �
E�

�R

v���v��� � ��

ln��v�A��
is a function of v ������

�

��� � A�� �indeed z � �

and v ���� A��� such that lim
v����


�
���

us � �� lim
v�A

�

�

us � �� and

d

dv
�us� � �

E�

�R�n��v�A��

�
����v��� � �� ln�v�A��� ����v��� � ��




so �since v ���� A���
E�

R
� � and � � � from section ��� and since � � ���

d

dv
�us� � �

E�

�R�n��v�A��
���v��� � �� �ln�v�A��� ��

which has the sign of ����v��� � �� � � since on S� z �
�

��v��� � �
is

positive� So we get the result� specially for Ssat since u� is negative�

������ Regular BC�extremals�

Lemma ���� � If � � �� any point �d�� v ���� A��� of N such that v � vA

vA is de�ned in section ������ is the arrival point of a BC�extremal with
�nal control u	�

� If � � �� any point �d�� v ���� A��� of N such that � � v � v�
�resp� v� � v � vA� 
v� is de�ned in section ������ is the arrival point of a
BC�extremal with �nal control u	 �resp� u���

Proof� Let a � �d�� v� be any point of N belonging to A� with v �� vA

then we know �from the proof of section ������ that for any u� � �u�� u	��
H�a� p���� u�� � �� And ���� � � �cf� ����
�	 so Corollary ��� implies that
if ����� �� � there is only one BC�extremal arriving at a� the control being
locally u� with � � �sign� ������� Then comes the result according to the

sign of � � �� since ����� � �h�v��� � d� � ��d�v
���� �cf� ����� in section

����� and ����� in section ����
� and h�v� � � �cf� ����� in section ������ with
v� satisfying ����� in section ������

Lemma ��
� If it exists� the point G�N � �d�� vA ���� A��� is not accessible
from �z � d��� So A � f�d�� v� � A� 	 v �� vAg� A� and vA being de�ned in
section ������
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Proof� Let a� � �d�� vA ���� A��� be G � N if it exists� From the proof of
section ������ vA is de�ned so that� for any u� � �u�� u	��H�a�� p���� u�� � ��

And similarly as in Lemma ��� it turns out that� when arriving at a��
the extremal control is locally u� with � � �sign� ������ � sign�� � d� �
��d�v

���
A �	 thus� since �from section ������ � � d� � �d�v

���
A and since

� � d� � �� it comes � � sign��� ���
But here we are in the exceptional case� so we have to check the position

of the considered 
� arc arriving at a� with respect to N 
 indeed for this
arc z��� � d�� �z��� � � �cf� section ������ and so the expansion of z at time
� to the second order implies that locally sign�z�t� � d�� � sign�z��
�����
Moreover ������ �cf� section ��
���� with u � u�� x��� � �d�� vA�

t and so
�z��� � �� implies z��
��� � h�vA�u���� ���� � d��� So z��
��� � � since we
know that � � sign�� � ��� since � � sign�u�� �indeed u� � � � u	 was
recalled in section ������ and since h�vA� � � from ����� in section ������
Finally we get for any time t close enough to �
 z�t�� d� � � and so comes
the result�

���� Local synthesis

In this section ��� we shall asume that vA � A� �vA is the v�coordinate
of � �z � �� � N de�ned in section ������	 note that if this assumption does
not hold �i�e� if A� � vA�� the corresponding synthesis is simply obtained
by restricting the following results to �v � A���

������ Case � � �� Locally �near the target N�� as shown by Figure �
in section ��
��� the optimal trajectories are the BC�extremal trajectories
arriving on A � f�d�� v ���� A��� � N 	 v � vAg which are 
	 arcs�

Proof� Lemmas ��� and ��
 in the case � � � give all the BC�extremals�
which are 
	 trajectories arriving on A�

������ Case � � �� Locally �near the target N�� the synthesis is shown by
Figure ���

Proof� The synthesis near G �N is formed by 
� arcs according to Lemma
���� Since from Lemma ��
� G �N is not accessible from �z � d��� Figure
�� in section ��� of ��� in the case X���� � � shows the corresponding
local synthesis �indeed� it is the case where the exceptional trajectory is not
admissible��

If zsat � d�� we know from Lemma ��� that us � u� at any point of
S��z � d�� which is included in S��v � vsat�	 so any singular arc� included
in S from Lemma ���� is parabolic �cf� section ����� The synthesis near S�
is shown by Figure ���i� according to Lemma ��� and to Figure � in section
����
 of ��� in the case a � � �indeed we know from section ����� of ��� that
a � � is the case where the singular arc arriving on N is hyperbolic when
the singular control is admissible� which is the considered case from Lemma
�����

If zsat � d�� we know from Lemma ��� that us � u� at any point of
S � �z � zsat� � S � �v � vsat�� that us ��u�� ����u�� u	� at any point of
S � �zsat � z � d�� � S � �v� � v � vsat� and that any singular arc included
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G� �z � ��Sz

A�

��

S

Ssat

��

��

d�

zsat

O

�	
�	

�	

�	

v

G� �z � ��

S�

vAv�vsat

Figure ���i� 
 zsat � d�

zsat

G� �z � ��

G� �z � ��

��
�	

Ssat

��

��
��

z

d�

�s�	

�	

S

vsat A�
v

O

S�

v� vA

Figure ���ii� 
 zsat � d�

A � set of switching points for 
	
�

S

Figure ��

in the arc �SsatS�� of S is hyperbolic� The synthesis near S� is thus shown
by Figure ���ii� according to section ����� of ����
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���� Global switching results in the case � � �

������ Switching result for 
	 extremal arcs� Let 
	� de�ned for
times t � �t�� t��� be a non�empty subarc of a BC�extremal trajectory	 then�
if t� is a switching time� t� cannot be a switching time�

Proof� From section ����� 
	 satis�es ��t� � � at any time t ��t�� t��	 more�
over� if t� and t� are switching times� ��t�� � ��t�� � � �cf� Corollary �����
and so we should have ���t�� � � and ���t�� � ��

Let us consider � � ���h�v�� Then� since h�v� � � �cf� ����� in section
������� we should have ��t�� � � and ��t�� � �� And computations taking
into account ����� in section ����
 and ������ in section ��
�� yield �� �
��� ���v����v���zh�v�u	�p�	 so� since ��� ��� � � �from section ��� and
since � � ��� v � �� z � �� h�v� � �� u	 � � �from section ���� and p� � �

�from section ������� it comes �� � � along 
	
 this is contradictory with
��t�� � � and ��t�� � � knowing that t� � t��

������ Optimal trajectories� Optimal trajectories are shown by Figure
� in section ������
Indeed� zsat denoting the z�coordinate of the unique point Ssat of S where
us � u� �cf� section ������� optimal trajectories are


� if zsat � d�
 
	
� �see Figure ��i��
� if zsat � d�
 
	
�
s �see Figure ��ii��

where each arc of these sequences may be empty�
Notice that if zsat � d�� the optimal policy is just an extension of the local
synthesis described in section �����	 whereas if zsat � d� a supplementary
switch may occur for 
� arcs when globalizing�

Proof� � If zsat � d�� sections ����� and ����� imply that any optimal tra�
jectory is 
	
� �where each arc of this sequence may be empty� and that
these optimal trajectories are shown by Figure ��i��

� If zsat � d�� from sections ������ ����� and section ����� of ���� a
su�cient condition for the result is that no sequence 
s
� �with 
s and 
�
non�empty� can appear in a BC�extremal trajectory�
Indeed in that case zsat � d�� if there exists an extremal sequence 
s
�
�with 
s and 
� non�empty�� let us denote by � � �z�� v�� the switching
point from 
s to 
� and t� the corresponding switching time� Then� as
shown by Figure ��

the point � belongs necessarily to the open arc �SsatS�� of S from Lemma ����
with � �� S� �resp� Ssat� for 
� �resp� 
s� not to be empty	 so us jx����u�� ��	
thus from ������ in section ��
��� it comes for the extremal sequence 
s
�
at the switching time t� 
 lim

t�t
�
�

�v�t� � h�v��u� � lim
t�t

�

�

�v�t� � h�v��us jx��

while �z is continuous at time t� 	 so at any time t � t� close enough to t� �
the arc 
� starting from point � is on the left of S	
but from section ����� and section ����� of ���� the arc �SsatS�� of S separates
optimal arcs 
	 �on the left of S� and 
� �on the right of S�	
so no extremal arc 
� can be found on the left of S near ��
Thus� optimal trajectories are shown by Figure ��ii��
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�	

Ssat

z

d�

�	

S

vsat A�
v

O

�s

�	
�� �

S�

zsat

v�

S

Figure ��

�� Time minimal synthesis for �P�

���� Generalities

������ Definitions and notations� According to section ������ we can
consider instead of �P� the equivalent time minimal projected problem �P ��
with system ������ control u � �u�� u	� with u� � � � u	 and terminal
manifold N 
 �c� � d�� to be reached from an initial value �c��� � ��� d��� So
the state�vector is x � �x�� c�� v�t� x� being related to the original variable
c� by ������ Note that if n� � � it comes x� � � since �cf� ����� in section
������ c� � ��

Let us denote by us the singular control and by 
� �resp� 
	� 
s� any arc
satisfying ����� with control u� �resp� u	� us��

������ Adjoint state� Along any BC�extremal �x� p� u�� the adjoint vector
p � �p�� p�� p��t associated to x � �x�� c�� v�t satis�es �when taking �����
into account�
����

���
�p� � �n�vc

�n���
� p�

�p� � n��v
�cn���� p�

�p� � p� � ��cn�� � ��v���cn�� �p� �
dh

dv
�v�up�

�����

the corresponding Hamiltonian being


H�x� p� u� � �vp� � �vcn�� � �v�cn�� �p� � h�v�up� �����

At �nal time �� we can take

p��� � ��� �� �� �����

and at any negative time t� p��t� � � and p��t� � ��

Proof� Similar to the proof of section 
�����
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������ Accessibility� Let A be the set of points of the target N 
 �c� � d��
that are accessible from �c� � d��� Then A is included in A� � f�c� �
�� d�� v ���� A��� � N 	 cn�� � �v���dn�� � �g� the frontier of which is E �
f�c� � �� d�� v ���� A��� � N 	 cn�� � �v���dn�� � � i�e� �c� � �g�

Proof� For any u� � �u�� u	� any point a � �c�� d�� v� of A reached with �nal
control u� has to satisfy H�a� p���� u�� � � i�e�� from ������ ����� in section
����� vcn�� � �v�dn�� � �� and so comes the result since v � � from ����� in
section ������

����
� Switching function� The switching function of �P �� is

� 
 t 
� h�v�t��p��t� ���
�

So ����� in section ����� implies that

��t� � �� p��t� � � �����

And at time �� ���� � � �cf� ����� in section ������� Indeed we can notice

that problem �P �� is �at�

Moreover

�� � �p� � ��cn�� � ��v���cn�� �p��h�v� �����

Proof� Computations� applying equations ������ ����� of section ����� to
problem �P �� stated in section ����� with a�ne single�input system ������

���� Stratification of the target N

������ Singular BC�extremals�

Lemma ���� As in section ������ let S� be the set of points �c� � �� d�� v �

��� A��� of N such that
d

dt

	H

	u
� �� Then S� � f�c� � �� d�� v ���� A��� �

N 	 cn�� � ��v���dn�� � �g� And any singular BC�extremal arriving on N
arrives on S�� So� when � � �� since S� � A� � 	� there is no singular
BC�extremal arriving on N �

Proof� From section ����
 any singular BC�extremal has to satisfy
d

dt

	H

	u
�

�� so any singular BC�extremal arriving on N arrives on S��

From ����� in section ������
d

dt

	H

	u
� � is equivalent to

d

dt
�h�v�p�� � �

which is equivalent from ����� in section ����� and ����� in section ����� to
h�v��cn�� p� � �cn�� � ��v���cn�� �p�� � �� We thus �nd the expected result
from ����� in section ������ ����� in section ����� and c���� � d� since we
assume that the considered trajectory arrives on N at �nal time ��
Finally� when � � �� any point �c�� d�� v� of S� satis�es cn�� � �v���dn�� � �
and so S� � A� � 	
 this implies that S� � A � 	 �A � A� was proved in
section ������ and thus there is no singular BC�extremal arriving on N �
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Lemma ���� Let us assume that � � � and c� � �� Along any singular
BC�extremal arriving on N the singular control is


us � �
n�
�

cn�� v�

c�h�v�
� � �����

and specially at the arrival point x��� � S�� the �nal singular control is


us jt��� �n��d
n���
�

v����	�

h�v����
� � �����

Then v��� 
� us jt�� relates biunivoquely and decreasingly ��� A�� onto
� � �� ��	 so there exists a single point of S� �denoted by Ssat as in sec�
tion ������ where us jt��� u��

Proof� Equation ����� comes from section ��
 applied to problem �P �� with
a�ne single�input system �����
 indeed we �nd���

��
D � ���� ���cn�� v���h��v�

D� � ��� ���n�c
n�
� cn���� v�h��v�

D�� � ��� ���cn�� v�h��v�

�����

Since � � � from section ���� c� � � and v � � from ����� in section ������
h�v� � � from ����� in section ����� and since we assume that � � � and
c� � �� it comes D �� � and then ����� when applying section ��
 again�

Equation ����� comes from ����� considered at time �� knowing from
Lemma ��� that x��� � S��

Then from the value of h�v� �cf� ����� in section ������ and from ����� we
get

us jt��� �
n�E��

R
dn����

v����

ln��v����A��

which is a function of v��� ���� A�� such that

lim
v��
���

us jt��� �� lim
v��
�A

�

�

us jt��� ��

and

d

dv���
�us jt��� � �

n�E��

R
dn����

�� ln�v����A��� ��v������

ln��v����A��
� �

since v ���� A���
E��

R
� � and d� � � from section ���� So we get the result�

specially for Ssat since u� is negative�

Lemma ���� Let us assume that � � � and c� � ��
Along the singular arc �denoted by 
sat� arriving at Ssat� us � u� at any

negative time close enough to �
 so 
sat is not extremal�
Any singular BC�extremal arriving onN �with admissible singular control

us� is hyperbolic and arrives at a point �c� � ��v���d�� d�� v� of S� such
that v � vsat� where vsat denotes the v�coordinate of Ssat�

Any point �c� � ��v���d�� d�� v� of S� such that v � vsat is a parabolic
fold point�
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Proof� From ����� it comes DD�� � ���������c�n�� v����h��v� which implies
that DD�� � � since v ���� A�� and � � � from section ���� h�v� � � from
����� in section ����� and since we assume that � � � and c� � ��
Then we know from Corollary ��� and from section ��� that any point of
S� is an hyperbolic �resp� parabolic� fold point if us jt����u�� u	� �resp�
us jt�� �� �u�� u	���
So Lemma ��� yields the result claimed about points of S� that are not Ssat�

The singular arc 
sat arrives at Ssat with saturated �nal control us jt���
u�
 the local synthesis near such points is described in section ����� of ����
Notice that in the case where singular arcs arriving on N are hyperbolic
when the singular control is admissible �cf� sections ����� and ����
 of �����
which is just proved to be considered case� the study of the synthesis splits
into two subcases� depending on the admissibility of the singular control
along the trajectory that arrives at the saturation point	 to �nd out about
it� let us study the sign of hX�Ssat� � u�Y �Ssat�� �rxus��Ssat�i
 it appears
that if this sign is plus us � u� along 
sat at any negative time close enough
to ��

Indeed at any point �c� � �� c� � �� v ���� A���� with x � �x�� c�� v�t and
x� related to c� by ����� �cf� section ������� it comes


hX�x� � u� Y �x��rxusi �
n�
�

�
n�
c�n����

c�
�
c�n��

c��

�
v�

h�v�
�

n�
�

�
�cn�� cn����

v�	�

h�v�
� u�

cn��
c�

v

�
��

�

ln�v�A��

�	

So for x � Ssat such that c� � d� �since Ssat � N�� cn�� � ��dn�� v��� �since

Ssat � S� and from Lemma ���� and �n��d
n���
�

v�	�

h�v�
� u� �since us � u�

at Ssat and from ����� in section ������ it comes


hX�Ssat� � u� Y �Ssat�� �rxu
�Ssat�i �

�
n�u�v

�

�
n�
n��

c�n���� v���

dn��
�

��� ��cn��
n�d�

�
cn��
d�

�
��

�

ln�v�A��

��

which is positive since c� � �� d� � �� v ���� A��� u� � � and � � � from
section ��� and since we are in the case � � ��

������ Regular BC�extremals� Any point of A�nE strictly above �resp�
under� S� is the arrival point of a BC�extremal with �nal control u	 �resp
u���

Proof� Let a � �c�� d�� v� be any point of A�nE � Then we know �from the
proof of section ������ that for any u� � �u�� u	� H�a� p���� u�� � �� And
���� � � �from section ����
�	 so Corollary ��� implies that if ����� �� � there
is only one BC�extremal arriving at a� the control being locally u� with
� � �sign� ������� Then comes the result� from the value of ����� �cf� �����
in section ����� and ����� in section ����
� and from the equation of S� �cf�
Lemma �����
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������ Exceptional case�

Lemma ��
� Let E be the exceptional locus� de�ned as the set of �nal points
of BC�extremal trajectories tangent to N � Then E is included in E �de�ned
in section ����� as the frontier of A��� If � � � �resp� � � �� the �nal
control on E is u	 �resp� u��� And as S� � E � 	 there is no singular
exceptional BC�extremal arriving on N �

Proof� For a BC�extremal �x� p� u�� we are in the exceptional case if and only
if the Hamiltonian H is zero� i�e� �from PMP� if and only if H jt��� � which
from ����� and ����� in section ����� is equivalent to v���cn�� �����v����dn�� �
�
 thus the arrival point x��� belongs to E de�ned in section ����� since
v��� ���� A�� is not zero�

Similarly as in section ������ it turns out that� when arriving on E� the
extremal control is locally u� with � � �sign� ������ � � �resp� �� if � � �
�resp� � � �� since S� is under �resp� above� E �
S� � E � 	 from equations of E �cf� section ������ and S� �cf� Lemma

����� So comes the result since we just proved that any exceptional BC�
extremal arriving on N arrives on E and since from Lemma ��� any singular
BC�extremal arriving on N arrives on S��

Lemma ���� There exists a single point of E 
denoted as in section �����
E	 �resp� E�� when � � � �resp� � � ��� such that the exceptional arc
arriving at this point has with N a contact of order greater than two	 and
the exceptional locus E is the set of points of E such that v	 � v � A� �resp�
v� � v � A��� where v	 �resp� v�� denotes the v�coordinate of E	 �resp�
E���

Proof� At any point a � �c�� d�� v� of E � we have �c� jx�a� � i�e� cn�� �
�v���dn�� �cf� section ������� And from Lemma ��
� if a BC�extremal arrives
at a� the �nal control is u� with � � sign�� � ��� Thus at �nal time � �i�e�
at point a� it comes from ����� in section �����


c
��

� ��� � �dn�� v�%�v� with

%�v� � �����u�
R

E�
ln�
�
v

A�

�
�n��

�� �

n� d
n����

�

n�



� v
�	 �

n�
����


� Then� since

E�

R
� �� � � �� � � �� v ���� A�� from section ��� and since

��� ��u� � ��
lim
v���

%�v� � ���

lim
v�A�

�

%�v� � �n��
�� �

n� d
n����

�

n�



� A
�	 �

n�
����


� � � and

d

dv
%�v� ����� ��u�

R

E�v
ln

�
v

A�

�

� n��
�� �

n� d
n����

�

n�



�

�
�

n�
� �

�
��

�

n�

��
v
����
��� �

n�


� ��

So there exists a single value v� of v ���� A�� such that c
��

� ��� � �	 and for

any v ���� v�� �resp� �v�� A��� c
��

� ��� � � �resp� c

��

� ��� � ��
 thus the 
� arc

arriving at a is locally in �c� � d�� �resp� in �c� � d��� from the expansion
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of c� at time � to the second order with c���� � d� and �c���� � �� and so
comes the result at any point a of E such that a �� E��

And for a � E�� the expansion of c� at time � to the third order with

c���� � d� and �c���� � c
��

� ��� � � implies that at any negative time t close

enough to � sign�c��t��d�� � �sign�c
��

� ����� Computations give in this case

c
��

� ��� � �u�d

n�
� v�h�v�

d

dv
%�v� and so� since � � �� sign�u�� � �� v ���� A��

from section ���� h�v� � � from ����� in section ����� and since
d

dv
%�v� � ��

sign�c��t�� d�� � �� Thus� since � � sign��� ��� if � � � �resp� � � �� the

� arc arriving at E� is locally included in �c� � d�� �resp� �c� � d����

����
� Stratification of N � Figure �� summarizes the previous results
about �nal control on the target N � where &A� denotes the complementary of
A� in the physical domain �c� � �� v ���� A��� of N �

���� Local synthesis

������ Case � � �� Locally �near the target N�� the synthesis is shown by
Figure � in section �����

Proof� Lemma ���� sections ����� and ����� give all the BC�extremals� which
are 
	 trajectories arriving on A � �A�nE��f�c� � �� d�� v� � E 	 vE� � v �
A�g� Since E	 is not accessible from �c� � d�� �cf� Lemma ���� we have to
refer to Figure � in section � of ��
�

������ Case � � �� Locally �near the target N�� the synthesis is shown by
Figures � and � in section ������

Proof� As noticed in the proof of Lemma ���� the local synthesis near S� is
described in section ����� of ��� and specially is shown by Figure �� since
the singular control is not admissible along the trajectory that arrives at the
saturation point� So the synthesis near S� is shown by Figure � in section
��
���
Since �according to Lemma ���� E� is accessible from �c� � d�� we have to
refer to Figure � in section � of ��
�	 and since the synthesis near E is formed
of 
� arcs �cf� Lemma ��
�� it is shown by Figure � in section ��
���

��
� Global switching results in the case � � �

��
��� Switching result for 
	 extremal arcs� Let 
	� de�ned for
times t � �t�� t��� be a non�empty subarc of a BC�extremal trajectory	 then�
if t� is a switching time� t� cannot be a switching time�

Proof� From section ������ 
	 satis�es ��t� � � at any time t ��t�� t��	
moreover� if t� and t� are switching times� ��t�� � ��t�� � � �cf� Corollary

����� and so we should have ���t�� � � and ���t�� � ��
Let us consider � � ���h�v�� Then� from ����� in section ������ we should

have ��t�� � � and ��t�� � �� And computations taking into account ���
�
and ����� in section ����
� ����� in section ����� and ����� in section �����
yield � � p� � cn�� p� � ��cn�� v���p�� and


�� � ��� ����n�c
n�
� cn���� v� � �ucn�� v���h�v��p� ������

ESAIM� Cocv� December ����� Vol� 	� 
��

��



��� B� BONNARD AND G� LAUNAY

v

E

S�

v	

S�c� E

E�

O

Figure �� �i� 
 � � �

A�

on E � with E	 non�accessiblenon�accessible points
 and

vvsat

u� � us jt��

us jt��� u�

hyperbolic case

parabolic case

us jt��� u�
E

Ssat

S�

v�

c�

E
�

O A�

Figure �� �ii� 
 � � �

non�accessible points
 and on E � with E� accessible

E &A� u � u	 u � u�

Figure ��

with u � u	 along 
	� So� since �� � ��� � � �from section ��� and since
� � ��� v � �� c� � �� c� � �� u	 � � �from section ����� h�v� � � �from �����

in section ������ and p� � � �from section ������� it comes �� � � along 
	

this is contradictory with ��t�� � � and ��t�� � � knowing that t� � t��

��
��� Optimal trajectories� except when n� � � and n� � ��
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Theorem ���� Let us assume that the positive integers n�� n� do not satisfy
�n� � � and n� � ���
Each optimal control law has at most two switchings and each optimal tra�
jectory is of the form 
	
�
s� where each arc of this sequence may be empty�
So we have the following result

� For optimal trajectories arriving near S�� the synthesis can be topologically
described by an invariant foliation �v � v��� Let vsat denote the v�coordinate
of the saturation point Ssat	 the syntheses in each leaf �v � v�� are shown
by Figure � in section �����


if v� � vsat� optimal trajectories are of the form 
	
�
s �see Figure � �i��
if v� � vsat� optimal trajectories are of the form 
	
� �see Figure � �ii��

where each arc of these sequences may be empty�
� For optimal trajectories arriving near E� the situation is intricated� Let v�
denote the v�coordinate of E� de�ned in Lemma ���� Near a point E� �� E�
of E� the optimal synthesis is described by a C� invariant foliation F 
 v � v�
the leaves of which are given by Figures � �i� and �ii�	 near E� there is no
such foliation and the synthesis is given by Figure � �iii��

To prove this theorem� we have to set preliminary lemmas� which hold for
any positive integers n�� n��

Lemma ���� To prove Theorem ���� it is su�cient to show that no sequence

s
� �with 
s and 
� non�empty� can appear in a BC�extremal trajectory�

Proof� Consider sections ����� and ��
���

Lemma ���� Let 
s
� �with 
s and 
� non�empty� be a sequence appearing
in a BC�extremal trajectory according to Figure ��

�s
x�t��

x�t��

x�t��x�t��� � Usat

��

Figure ��

where t� and t� are switching times�
Consider the saturating set �us � u�� denoted by Usat� Then� on the consid�

ered arc 
�� lim
t�t

�
�

���t� � � and there exists t�� ��t�� t�� such that ���t��� � ��

i�e� x�t��� � Usat�

Proof� From ������ in section ��
��� we know that along 
�� at any time in
�t�� t��

�� � ��� ���cn���� v����n�c
n�
� v� � �u�c�h�v��p��
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Moreover� since x�t�� � 
s� us�t�� is admissible and thus us�t�� � u�� that

is �
n�
�

cn�� v�

c�h�v�
� u� �cf� ����� in section ������� Hence we get lim

t�t�
�

���t� � �

since � � �� c� � �� v � � from section ���� p� � � from section ����� and
since we assume � � ��

Since x�t�� � 
s� ��t�� � ���t�� � �	 and ��t�� � � since t� is a switching
time�

Then� � being C� on the considered BC�extremal� Rolle�s Theorem yields
the existence of t� in �t�� t�� such that ���t�� � � since ��t�� � ��t�� � �� So

we get from � � ���h�v� �cf� proof of section ��
��� that ��t�� � ��t�� � ��
Then� � being continuous on the considered BC�extremal and di�eren�

tiable except at switching points� Rolle�s Theorem yields the existence of t��
in �t�� t����t�� t�� such that ���t��� � ��

Finally we get the result� since it comes from ������ in section ��
�� and
����� in section ����� that


along 
� �where u � u�� �� � ��� � ���cn�� v����u� � us�h�v� ������

and since � � �� c� � �� v � � from section ��� �indeed the initial time is
lower than t��� h�v� � � �cf� ����� in section ������ and since we assume
� � ��

Lemma ���� Any singular arc of a BC�extremal trajectory satis�es �c� � ��

Proof� Along any singular extremal �� 
 � �cf� section ����
 and ����� in

section ������ that is� from the value of �� �cf� ����� in section ����
� and
from ����� in section �����


p� � �cn�� � ��v���cn�� �p� ������

Then
� at any negative time� since p� � � and p� � � �cf� section ������� it

comes cn�� � ��v���cn�� � �� which implies in the considered case � � ��
�c� � v�cn�� � �v���cn�� � � � �indeed c� � � and v � � from ����� in section
������
� at time � �eventually�� ������ becomes cn�� ��� � ��v������dn�� �cf�

����� in section ������ which implies in the considered case � � �� �c���� �
v����cn�� ��� � �v������dn�� � � � �indeed d� � � and v��� � � from section
�����

Lemma ����� Consider the adapted coordinate


y � c��c
n�
� ������

introduced because of the saturating set Usat de�ned in the previous Lemma
���� the equation �us � u�� of which becomes


y � n���v� with ��v� � �
v�

�u�h�v�
����
�

Then

�y �
�c�
cn��

� n�
c�
c�
v ������
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Proof� Equation ����
� comes from the value of us �cf� ����� in section ������
and equation ������ comes from ������ and from system ����� in section
������

Proof of Theorem ���� Let us assume that the positive integers n�� n� do
not satisfy �n� � � and n� � ���

Let us consider 
s
� as in Lemma ��� and let us prove that ���t� � � along

� at any time t ��t�� t��� which is contradictory with ���t��� � �
 thus we
prove that such a sequence 
s
� cannot exist� and from Lemma ��� the
theorem is proved�
Indeed 
s satis�es �c� � � �cf� Lemma ���� and so �c��t�� � �� which implies
�y�t�� � � �cf� ������ in Lemma ����� with c� � �� c� � �� v � � from �����
in section ������� Let us then prove that �y � � along 
� by proving that the
existence of � ��t�� t�� with �y��� � � is impossible�
Indeed� if such a � exists� there exists � � ��t�� � � such that �y�� �� � � and
�y � � on �� �� � � since �y is a continuous function of time with �y�t�� � � and
�y��� � �	 and this is impossible since �y�� �� � � with � � ��t�� t�� implies that
y��
�� �� � � �and so at any time t � � � close enough to � �� �y�� �� � ��
 indeed�
from ������ and ������ in Lemma ���� and from ����� in section �����

�y � v��� �yn�c
n��n���

� v��� � n�yc

n���
� �

and so� at time � � ��t�� t�� such that �y�� �� � �� computations yield

y��
�� �� � n��n��n� � ��� �n� � ���cn���� �� ��c���
��v��� ��

� n��n� � ��cn���� �� ��v��� ��� ��� ���
cn�� �� ��

cn�� �� ��
v����� ��h�v�� ���u�

and so y��
�� �� � � since � � �� u� � �� c���
�� � �� c���

�� � �� v�� �� � �
from section ��� �indeed the initial time is lower than t��� h�v��

��� � � �cf�
����� in section ������ and since n��n������n���� � � under the assumption
that the positive integers n�� n� do not satisfy n� � � and n� � ��
Then

� since we know from ������ that along 
�� sign� ��� � sign�u� � us� with


u� � us � u� �
n�E�

�R

v

y ln��v�A��

from ����� in section ������
� since we just proved that �y � � along 
�� and since

d

dt

�
v

ln��v�A��

�
�

�ln�v�A��� ��h�v�u�

ln��v�A��
� �

with v ���� A�� and y � �� so that along 
�� u��us is a decreasing function
of time�
� since from Lemma ��� lim

t�t
�
�

���t� � � it �nally turns out that at any time

t ��t�� t�� ���t� � � �see Figure ����
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v
A�

y

�� � � for u � u�

�

t�

t�

�� � � for u � u�

Usat � �� � � for u � u�

��� �y � �� �v � ��

Figure ��

�� Conjugate and focal point along a singular extremal

���� Preliminaries

In this section we present the results of ���� �
� concerning the concept and
the computation of conjugate and focal point� Our aim is to apply this
theory to chemical batch reactors� hence for simplicity we restrict our study
to systems of the form

�v � X�v� � uY �v� � u�t� � R �����

where X� Y are analytic vector �elds in R� and where v � �x� y� z�� but
the results can be easily extended to single�input systems in Rn� The class
of admissible controls is the set U de�ned in section ������ Let 
 be a
reference singular extremal de�ned on ���tF �	 we assume that 
 satis�es
the assumptions �H�

����H
�
�� de�ned in section ������ Moreover we suppose

that 
 is hyperbolic� Using the notations D � � det�Y� �X� Y �� ad�Y �X���
D� � det�Y� �X� Y �� ad�X�Y �� and D�� � det�Y� �X� Y �� X� introduced in
section ��
� 
 is solution to the di�erential equation in R�

�v � S�v� �����

where S�v� � X�v��us�v�Y �v�� us�v� � �D��v��D�v� is the singular control
feedback and 
 is contained in the set D���v�D�v� � ��

According to theorem ��� we denote by t�c the �rst conjugate time along

� that is 
�t�c� is the �rst point where 
 ceases to be a time�minimizer in
the C� topology with respect to the set of curves having the same initial and
�nal points� In ��� we describe an algorithm to compute such a point� We
can generalize this algorithm to deal with general end�points problems and
this leads to the concept of focal point�
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���� First method of computing conjugate points

We brie�y recall the method of ���� �
� to compute the conjugate points in
the hyperbolic situation

������ Normal form� Using adapted coordinates and a feedback� the sys�
tem ����� can be written ���

��
�x � � � Q��x� y� z�

�y � z � Q��x� y� z�

�z � u

�����

where the Qi�s are power series of the variable �y� z� with coe�cients in R�x�
and containing monomials of degree � �� the reference trajectory 
 being
identi�ed to t 
� �t� �� �� and corresponding to the zero control� We write
Q��x� y� z� � a�x�z� � �b�x�yz � c�x�y� �R where the remaining term R is
of the form o�y� z��� and we introduce L�t� y� z� � a�t�z� � �b�t�yz� c�t�y��

By assumption 
 is hyperbolic and hence a�t� � � for t � ��� tF �� From �
��
to characterize the optimality of the reference trajectory 
 we can restrict
our study to the model
 ���

��
�x � �� L�t� y� z�

�y � z

�z � u

���
�

������ Basic fact� By de�nition 
 
 t 
� �t� �� �� is time optimal on ���tF �
if for any t � ��� tF � the point �t� �� �� is not accessible from ��� �� �� in a time
t� � t�

Hence� let v�t� � �t� �� �����t� with � � ���� ��� ��� be a solution to the
model ���
�� then ��t� is solution to

��� � L�t� ��� ��� � ��� � �� � ��� � u �����

Observe that the condition v�t�� � �t� �� �� implies ���t
�� � ���t

�� � � and
hence 
 is a time minimizer on ��� tF � if and only if the functional

J�t� �

Z t

�
�a�s���� � �b�s����� � c�s�����ds

satis�es J�t� � � for any t � ��� tF � when evaluated on the set of curves
��� �� solutions to the equations
 ��� � ��� ��� � u with the boundary
conditions
 ����� � ����� � ���tF � � ���tF � � ��

Now� since u � R� the variable �� can be taken as the control �this
corresponds to the concept of reduced system de�ned in section ���� and we
have to study the sign of J on the set C of non�zero smooth curves �� with
��� � �� �control� and satisfying the boundary conditions
 ����� � ���tF � �
� �the constraints on �� have been relaxed��

������ Definition� Let t�c be the �rst time t ���� tF � such that the maxi�
mum of J�t� on C is zero�
According to classical calculus of variations we have
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Lemma ���� If t � t�c then J�t� � � on C and if t � t�c the maximum of
J�t� on C is ��� In particular if t � t�c then 
 is a time minimizer on
��� tF � and if t � t�c 
 is no more a minimizer� Hence 
�t�c� is the �rst
conjugate point to 
���� The time t�c is the �rst time t � � such that there
exists a non�trivial solution �� to Euler�Lagrange equation


d

ds

	L

	 ���
�

	L

	��
� � �����

with ����� � ���tF � � � and L�s� ��� ���� � a�s� ���
� � �b�s��� ��� � c�s����

���� Conjugate points and the synthesis problem

������ Preliminaries� Let � � M � �� and consider now the control
system �v � X � uY � where the set of admissible controls is the set UM of
measurable mappings taking their values in ��M�M ��
Recall that S � X� �D��D� Y is the vector �eld whose non�periodic trajec�
tories are singular extremals satisfying �H�

����H
�
��� Let 
 be such a reference

trajectory de�ned on ��� tF � and corresponding to a control taking its values
in ��M�M �	 and let us assume that 
 is hyperbolic� Let V �t�� t � ��� tF � be
the solution to the variational equation

� �v�t� �
	S

	v
�
�t�� �v�t� �����

with initial condition V ��� � Y �
�����
If Z is a vector �eld� we denote by exp tZ the local one�parameter group

associated to Z� Let �� �� � �� and let g be the mapping


g 
 �t�� t�� t�� �� �
�� 
� exp t��X���MY � � exp t�S � exp t��X���MY ��
����

From section ���� since 
 is hyperbolic� such a trajectory is an extremal for
t�� t� � � and small� Let F be the image of g for t� � ��� tF � and t�� t�
su�ciently small�

According to ��� if det�V �
�t��� Y �
�t��� S�
�t��� is never vanishing on
��� tF � then F is an extremal �eld about the arc 
 in the following sense

there exists a C��neighborhood U of 
 such that each point of U is the image
of an unique �t�� t�� t�� �� ���� Moreover it is the time optimal synthesis in a
neighborhood of the reference trajectory for the �xed end point problem�

������ Notation� Let us denote by t��c the �rst time t ���� tF � such that
det�V �
�t��� Y �
�t��� S�
�t��� vanishes� The following lemma is proved in
����

Lemma ���� We have the following results


�i� V �t� � SpanfY �
�t�� � �X� Y ��
�t��g
�ii� det�V �
�t��� Y �
�t��� S�
�t��� � � for t ���� tF � if and only if V �t� and

Y �
�t�� are colinear
�iii� t�c � t��c

������ Curvature� Assume that the system is in the normal form described
in section ������ where 
 is identi�ed to t 
� �t� �� �� and corresponds to the
zero control� The variational equation along 
 takes the form


� �x � � � � �y � �z � � �z �
c� �b

a
�y �

�a

a
�z �����
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and the last two equations can be written as the second�order di�erential
equation

� y �
�a

a
� �y �

�b� c

a
�y � � �����

The existence of conjugate point means that there exists a non trivial solu�

tion to ����� satisfying �y��� � �y�t�c� � �� If we set A �
�a

a
� B �

�b� c

a
and

�y�t� � C�t� J�t� where C�t� � exp

Z t

�
�
A�s�

�
ds the previous equation can

be written in the normal form


 Y � KY � � ������

where K �  C � A �C � BC � C � ��
p
jaj� K being de�ned on the set

D D�� � � and corresponds to the concept of curvature in the hyperbolic
case�

����
� Geometric interpretation� First� let us assume that the system
coincides with the model


�x � � � L�t� y� z� � �y � z � �z � u

and the associated reduced system de�ned in section ��� is then


�x � �� L�t� y� z� � �y � z

where z is the control� By de�nition of t�c there exists a curve &y such that

�&y��� � � � y��� � y�t�c� � � � &y�t� �� � on ���t�c� and

Z t�c

�
L�t� y� &y�dt �

�� Hence the corresponding solution �&x� &y� initiating from ����� satis�es
x�t�c� � t�c and �&x� &y� intersects the set ����t�c���� only at �t�c����

Let � � R and let &x� be the solution starting from � and corresponding
to the control z � �&y� Our analysis shows that the family of curves �&x�� �&y�
intersects ����t�c���� only at �t�c����

Consider now the system ����� written in the normal form ����� where

Y is identi�ed to
	

	z
and 
 to t 
� �t� �� ��� Let ' be the projection

�x� y� z� 
� �x� y�� Let � � R and let �#x�� #y�� be the solution initiating from
� and corresponding to the control z � �&y� Our study shows that the point
�t�c� �� � '�
��t�c� is the limit point of the intersections of curves �#x�� #y��
with the axis y � �� This corresponds to the geometric interpretation of
conjugate points in classical calculus of variations 
 '�
��t�c� is the limit
point of the intersections of the extremals in a neighborhood of the reference
extremal for the reduced system�

��
� Focal points

We can extend the previous concept of conjugate point to deal with opti�
mal problems where the end point belongs to a manifold� For simplicity we
restrict our study to a terminal manifold of codimension one�
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��
��� Normal form� We consider system ����� �v � X�v� � uY �v� and
we suppose now that the admissible controls are the measurable mappings
satisfying juj � �� We assume that the terminal manifold is a regular sub�
manifold of codimension one and moreover we suppose that Y is tangent
everywhere to N ��at case�� Let 
 be an extremal satisfying the assump�
tions �H�

����H
�
��	 and let us assume that 
 is hyperbolic and that the singular

control us corresponding to 
 is such that us j���� ������ We identify the
terminal point 
��� to � and we assume that 
 is a BC�extremal� that is
it satis�es the transversality condition which takes the form
 the tangent
space to N at � is spanned by Y ���� �X� Y ����� Moreover we assume that
the set of points where �X�Y� is tangent to N is near � the image of a simple
curve � 
 � 
� R

� � ���� � �� transverse to Y � Straightforward computa�
tions show that the system can be written in a tubular neighborhood of 

in adapted coordinates in the following normal form
���

��
�x � � � a�x�z� � �b�x�yz� c�x�y�� R�

�y � d�x� � e���z �R�

�z � �u� us j� �x�� � f�x�y � g���z� R�

������

where b��� � �� e��� �� � and R� �resp� R�� R�� are remaining terms of
order � � �resp� � �� in �y� z�� The reference extremal 
 is identi�ed to
t 
� �t� �� ��� the target N to x � � and the image of � to the axis �y� Since

 is hyperbolic we have a�x� � � for x � �t�� ���

��
��� Optimal synthesis and focal points� From the classi�cation of
���� 
��� � � is an hyperbolic point and the optimal synthesis for the time
minimal problem with terminal manifold N can be easily described near ��
We shall extend this synthesis to a tubular neighborhood of 
� For t � ��
let !t be the set of BC�singular extremals ending on Im � in a time jsj�

� � s � t� It can be written as !t �
�

��s�t

�exp sS��Im �� where S is the

vector �eld de�ned in section ��� whose solutions are the singular extremals�
For t small enough� !t is a smooth surface� By assumption W � �����
belongs to SpanfY ��� � �X� Y ����g� Let 
�� 
� be two scalars such that
W � 
� Y ��� � 
� �X� Y ���� and let Z be the vector �eld 
� Y � 
� �X� Y ��
Let t be �xed� the derivative at � of the curve � 
� �t��� � �exp tS������� is
denoted W �t� and is given by


W �t� �
d

d�
j��� �exp tS � exp �Z����

For t � �t�� ��� 
�t� � exp tS��� and we can write exp tS � exp �Z��� �
exp tS � exp �Z � exp � tS�
�t�� and computing the derivative at � � �� we
get

W �t� �
X
k��

����k
tk

k(
adkS�Z��
�t��

Since S is the singular vector �eld and Y� �X� Y � are independant along 

we have


adkS�Y � j�� SpanfY � �X� Y �g j� for k � �

We have the following lemma
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Lemma ���� The vector W �t� is solution to the variational equation


� �v�t� �
	S

	v
�
�t�� �v

with initial condition W ��� � 
� Y ��� � 
� �X� Y ���� tangent vector to �
at 
��� � �� It belongs to SpanfY �
�t�� � �X� Y ��
�t��g

��
��� Definition� Let t�f be the �rst time t � �t�� �� such that

det�W �t� Y �
�t��� S�
�t��� � �

Then 
�t�f� is called the �rst focal point along 
�
As for the �xed end point problem we have the following result


Proposition ��
� Let � � t � t�f � then !t is along 
 j
��t� a smooth surface

separating R� into two domains� On a tubular neighborhood of 
� the opti�
mal synthesis using the normal coordinates of section ����� is the following

on the surface !t we apply the singular control� otherwise in the domain
containing x � y � �� z � � �resp� z � �� the optimal control is u � ��
�resp� u � ���

��
�
� Geometric interpretation� Assume Y identi�ed to
	

	z
and let

' be the projection �x� y� z� 
� �x� y�� At t � t�c the vector W �t� becomes
colinear to Y �
�t�� and hence the surface '�!t� has a singular point� The
point '�
�t�c�� is the limit point of the intersections of the singular extremals
of the reduced system with the reference extremal� This corresponds to
concept of focal point in classical calculus of variations�

As in �
� we can prove� using the normal form� the following result


Proposition ���� At t � t�f the reference trajectory '�
� of the reduced
system ceases to be optimal�

��
��� Algorithms� We have the following algorithms to compute conju�
gate and focal points�
� conjugate point At t � tc� V �T � becomes colinear to Y �
�t��
� focal point At t � tf � W �T � becomes colinear to Y �
�t��

��
��� Example for batch reactors� Consider problem �P� when n� �
n� � �� The analysis of section � shows that '�!t� is a smooth surface along
a reference singular extremal for each time t and the problem is without
focal point� This explains the simplicity of the closed loop optimal control�
On the contrary� numerical computations given in ��� show the existence of
conjugate points in a domain of the state space�

�� Numerical simulations

���� Problem P�

According to section ��� problem P� is the time�minimal problem of reaching
the target �c� � d�� from an initial value �c��� � ��� d�� for the system ���
�
where the control is v � A� exp��E��RT � with Tm � T � TM and so

vm � A� exp��E��RTm� � v � vM � A� exp��E��RTM�
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From section ��� we know that P� is equivalent to the projected problem P ��
obtained by restricting our study to the planar system�

�c� � �vcn��
�c� � vcn�� � �v�cn��

�����

Then the adjoint vector p � �p�� p�� associated to the state vector x �
�c�� c�� satis�es �

�p� � �n�vc
n���
� �p� � p��

�p� � n��v
�cn���� p�

�����

with at �nal time �

p��� � ��� �� �����

the corresponding Hamiltonian being


H�x� p� v� � �vcn�� p� � �vcn�� � �v�cn�� �p�

So the singular control �v solution to the equation in v 

	H

	v
�x� p� v� � �

satis�es


�v �

�
cn�� �p� � p��

��cn�� p�

	 �

���

As in sections ��
�� and 
����� let us consider on the target �c� � d�� the
points


� Em � ���dn�� v���m �
�

n� � d�� such that �c� � � when v � vm

� Sm � ����dn�� v���m �
�

n� � d�� such that the �nal singular control is vm

� SM � ����dn�� v���M �
�
n� � d�� such that the �nal singular control is vM

Giving particular values to constants and solving systems according to the
joined Scilab� �le p��s we found Figure ��� which corroborates Figure � in
the whole physical space�

���� Problem �P�

������ Near the singular locus� According to section ��� problem �P�
is the time�minimal problem of reaching the target �c� � d�� from an initial

value �c��� � ��� d�� for the system ����� where the control is u � �T with
u� � u � u	 and u� � � � u	 From section ��� we know that �P� is
equivalent to the projected problem �P �� obtained by restricting our study to
the system ���

��
�c� � �vcn��
�c� � vcn�� � �v�cn��
�v � h�v�u with h�v� � �Rv�E�� ln

��v�A��

���
�

�Scilab is a package available on the Web site http���www�rocq�inria�fr�scilab
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Figure ��
 �
 are black� 
m are blue�
M are red and switching curves are
yellow

Then the adjoint vector p � �p�� p�� p�� associated to the state vector x �
�c�� c�� v� satis�es����

���
�p� � n�vc

n���
� �p� � p��

�p� � n��v
�cn���� p�

�p� � cn�� p� � ��cn�� � ��v���cn�� �p� �
dh

dv
�v�up�

�����

with at �nal time �

p��� � ��� �� �� �����

the corresponding Hamiltonian being


H�x� p� v� � �vcn�� p� � �vcn�� � �v�cn�� �p� � h�v�up� �����

Then� as in Lemma ��� in section ������ computations applying section ��

to the dynamical system ���
� give the singular control us


us � �
n�
�

cn�� v�

c�h�v�
� � �����

As in Lemma ��� in section ������ let us consider on the target �c� � d�� the

set S� of points �c� � �� d�� v ���� A��� satisfying
d

dt

	H

	u
� �� so that any

singular BC�extremal arriving on N arrives on S�� Taking ���
������� into
account� we get


S� � f�c� � �� d�� v ���� A��� � N 	 cn�� � ��v���dn�� � �g �����
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Let us then consider �as in in Lemma ��� in section ������ the point Ssat of
S� where the �nal singular control is equal to u�� From ����� and ����� it
comes


Ssat � ����v���sat d
n�
� �

�

n� � d�� vsat� such that u� � �n��d
n���
�

v�	�sat

h�vsat�

Giving particular values to constants we computed saturation points on
singular trajectories and switching points on 
� and 
	 arcs �cf� the joined
Scilab �le sing�s�
 these computations corroborate in the whole physical
space the time minimal synthesis found in section � and shown by Figures �
and ���ii�	 in particular we found that there is no switch on 
	 arcs� Figure
�� �obtained when executing the joined Scilab �le plsing�s after sing�s� shows
the surface separating �u� � u�� from �u� � u	�� where u� denotes the
optimal control
 this surface is constituted of singular trajectories �black��
of switching points for 
	 
� trajectories �blue �resp� green� when the initial
point is in the parabolic �resp� hyperbolic� domain� and of �rst switching
points for 
	 
� 
s trajectories �red��

Note that
�X

i��

ci�t� is constant� So� for the sake of simplicity� as we chose n� �

n� � �� we considered relative concentrations c�i � ci�

�X
i��

ci���� i�����Then

the state system ���
� becomes
���
��
�c�� � �vc��
�c�� � vc�� � �v�c��
�v � h�v�u with h�v� � �Rv�E�� ln

��v�A��

with c�� � c�� � �

������ Near the exceptional locus� Keeping the same values� we solved
dynamical and adjoint systems near the exceptional locus� de�ned as in
Lemma ��
 in section ����� as the set of �nal points of BC�extremal trajec�
tories tangent to the target N 
 �c� � d��� included in E � f�c� � �� d�� v �
��� A��� � N 	 cn�� � �v���dn�� � �g the set of points of N such that �c� � ��
As in Lemma ��� in section ��� we consider the point E� of E such that the
exceptional arc arriving at this point has with N a contact of order greater
than two� It comes


E� � ���v���� dn�� �
�

n� � d�� v�� such that

��� ��u�
R

E�
ln�
�
v�
A�

�
� n��

�� �

n� d
n����

�

n�



� v
�	 �

n�
����


�

Then� according to the joined Scilab �le exc�s we found Figure �� �excep�
tional trajectories� and Figure �� �
� trajectory� which corroborate Figure
��iii��
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