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TIME MINIMAL CONTROL OF BATCH REACTORS

B. BONNARD AND G. LAUNAY

ABSTRACT. In this article we consider a control system modelling a
batch reactor in which three species X1, X5, X3 are reacting according
to the scheme X1 — X5 — X3, each reaction being irreversible. The
control is the temperature T' of the reactions or the derivative of this
temperature with respect to time. The terminal constraint is to obtain
a given concentration of the product X, at the end of the batch. The
objective of our study is to introduce and to apply all the mathematical
tools to compute the time optimal control as a closed-loop function.
This work can be used to optimize the yield of chemical batch reactors.

1. INTRODUCTION

Until now, the chemical batch reactors are mainly operating at constant
temperature. Substantial gain in the yield of such reactors can obviously
be obtained by controlling the temperature during the batch. This leads to
optimal control problems. Recent developments in geometric optimal control
allow to handle the mathematical complexity of such problems.

In [3], the authors consider the time minimal problem for a batch reactor
in which three species X1, X5, X3 are reacting according to the scheme X; —
X5 — X3, each reaction being irreversible and of the first order, while the
final constraint is to obtain a given ratio of the two concentrations of Xy, X,
and the control is the derivative of the temperature with respect to time.
Due to symmetry the problem can be reduced to a time minimal control
problem for a planar system and the time minimal control is computed as
a closed-loop function. The objective of this article is to generalize this
analysis for a network of the form X; — X35 — X3, each reaction being
irreversible but of any order, while the terminal constraint is now to obtain
a desired production of the intermediate specie Xo. If the control is the
derivative of the temperature with respect to time, this leads to a time
minimal control problem for a system in R® much more complex than a
planar one.

The main objective of our study is to present general techniques and
results to handle the problem; they are mainly threefold:
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408 B. BONNARD AND G. LAUNAY

e first we compute the time optimal control as a closed-loop function near
the terminal constraint. This analysis is intricated; it has motivated
and it uses the mathematical developments of [5], [14],

e secondly we need global estimates concerning the number of switchings
of an optimal control,

e endly we have to introduce the concept of focal points and give an
algorithm to compute such points. This part is related to techniques
introduced in [4].

The combination of the three previous analysis with numerical simulations
allows to compute the optimal synthesis in many situations. Also it can
be applied to more general reaction scheme to get closed-loop sub-optimal
control laws.

This work was motivated by practical control problem and is currently
implemented on a batch reactor located at Caen, France. Preliminary simu-
lations indicate that in our experiment the gain of the optimal law is about
15% with respect to a constant operating temperature.

In order to present our main results we need to introduce precisely our
problem.

1.1. STATEMENT OF THE PROBLEM

1.1.1. CHEMICAL KINETICS. In this article, we shall restrict our study to
a batch reactor in which three species X1, X5, X3 are reacting according to
the scheme X; — X5 — X3, where the two reactions are irreversible and
of the n;-th order with respect to the species X;, ¢ = 1,2. Assuming that
the reactions are at constant volume, denote by ¢;, 1 < j < 3 the molar
concentration of X; and by T the temperature of the reactions; from the
laws of chemical kinetics [7] we know that they satisfy:

él = —klc?l
62 = klc?l — kQC;2 (11)
63 = kQC;2

d
where ¢ denotes —(¢)

The parameters k; are depending on T according to Arrhenius law
ki = Ajexp(—L;/RT) , i=1,2 (1.2)

where A;, F/; are respectively the frequency factor and the activation energy
of the i-th reaction and R is the gas constant; all these parameters are
positive. Similar equations can be obtained when dealing with a network
of two simple reactions n1X; — ny Xy — n3Xs, where the n;’s are the
stoichiometric coeflicients of the reactions.

Our optimal control problem is the following: minimize the batch time
when a desired production quantity is fixed for a batch. The desired product
can be z = ¢3/cq (problems of index 1) or ¢ (problems of index 2). Hence
we shall solve time minimal problems with final constraint z(tp) = d; (resp.
c2(tp) = dy), where tr is the batch time, and with initial condition z(0) < d;
(resp. ¢2(0) < dg).
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TIME MINIMAL CONTROL OF BATCH REACTORS 409

1.1.2. CoNTROLS. Two mathematical controls are possible:

T, subject to constraints T, < T < Tjs; the associated problems are Py
(target z = dy) and Py (target c; = dy)

or

u = T, subject to constraints u_ < u < wuy with u— < 0 < uy; the
associated problems are Py (target z = dy) and P, (target cq = da).

e The choice of the temperature as control is clearly related to the chemical
process. If we introduce

UIlCh OéIEQ/Eh ﬁ:AQ/A? (13)
then system (1.1) becomes:
¢ = —vef!
¢y = vt — Povel? (1.4)
é3 = pocy?

and v can be taken as the control, since v is an increasing one-to-one function
of T, the constraints T,,, < T < Tas being equivalent to v,, < v < vy
Observe that system (1.4) is affine with respect to v if and only if & = 1; in
this particular case the ratio dey/dey does not depend on v and the system
is not controllable. Since in general the system is not affine with respect to
the input it may happen that there is no admissible time optimal control
law; this is due to a relaxation phenomenon analyzed in [6].

e [f we cannot directly track the optimal temperature profile in the previous
system (1.4), we choose u = T" as the control and we get the following system
(which is affine with respect to u):

¢ = —vef!
é2 = UC?1 — ﬁUaCSQ (1 5)
é3 = pucy?

o = h(v)u with h(v) = (Rv/E;)In?(v/A;)

By considering u = T as a control law, we compute an optimal law related
only to the chemical network; this choice is an idealization and the tem-
perature can become negative. To handle this difficulty we must introduce
constraint on the state- coordinate v; this problem will not be considered in
our study.

1.1.3. PHYSICAL sPACE. The physical space P of our problem is defined as
follows:
c1 >0, cg >0 [cz(t) > 0if ¢ is not the initial time], ¢5 > 0,
z < dy or cg < dy except at final time, (1.6)
0 <v< Apsincev="k; = Ayexp(—F1/RT) with T > 0.
Then the following inequality:
h(v) >0 (1.7)

comes from (1.5) and (1.6).
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410 B. BONNARD AND G. LAUNAY

1.1.4. AN EXAMPLE. The main properties of our study can be well under-
stood by considering the following example. Notice that according to system
(1.1), z = ¢/ c; satisfies:

= (v )T = puemee !

Therefore % is independant of ¢; if and only if ny = ngy = 1. In this case ny =
ng = 1 the structure of Py and Py is particular and allows simplifications.
This introduces the lightning analysis of the next section.

1.2. SOLVING PROBLEM P; IN THE CASE nq =mno = 1

1.2.1. CoMPUTATIONS. According to section 1.1, problem P is the time
minimal problem of reaching the target (z = dy) from an initial value zy €
[0, dq[ of = for the dynamical system (1.4) which becomes in the coordinates
c1,%,c3 when nqy = ng = 1:

él = —vUC
2 =v+4uvz— vz (1.8)
63 = ﬁUaCQ

the variable v such that v, < v < vps being considered as the control.
Note that the optimal law is: maximize Z subject to v,, < v < vp. Note
also that the target (z = dy) is not accessible from zy € [0, d;[ such that

max Z < 0, where max 2 is the maximum of Z for any v € [v,,, vas] and for
v, v,

any time t.
Consider then H (e, z,v) = Z. From (1.8) it comes
H =0 whenv=20 (1.9)
oH
= 142 —afv* !tz (1.10)
O*H
907 = —afa — 1) %2 (1.11)

So if @ # 1, H is a non-linear function of v such that there exists a single

o . ... 0H .
positive value v of v satisfying — = 0 and so corresponding to an extremum
of H, which is from (1.11):

e a maximum (positive since (1.9) holds) if o > 1,
e a minimum (negative since (1.9) holds) if a < 1.

Let us introduce GG (resp. S) the set of points (v > 0, z > 0) such that
H
H =0 (resp. 88— =0). From (1.8), (¢ is defined by z(Bv>~! — 1) = 1, and
v
from (1.10), S is defined by z(afv®~! — 1) =1l:soif a#1,GNS = 0.

1.2.2. REsurTs. Figure 1 shows G and S in the cases o < 1, @ > 1 and
a careful observation of this figure gives the optimal trajectories. In order
to describe these optimal trajectories, let us denote by 7., (resp. ~var,¥)
any arc satisfying (1.8) with control v, (resp. vas, 0). Then, for v,, Vs, 7e
in {Ym, Y0, ¥}, YaYpYe denotes the concatenation of a v, arc followed by a
~p arc and then ended by a 7. arc where each arc of the sequence may be
empty.
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TIME MINIMAL CONTROL OF BATCH REACTORS 411

z
d :
1 bA 1 v 1 {)‘1 vr‘n UM v
o (ap)7 g O (ag)™ pat
v =Up v =Up V=10 V= Uy,
° z o vt =
Figure 1 (i) : @ < 1 Figure 1 (ii) : o > 1
Figure 1
CAsE a < 1. For any zp in [0, d4],
Bdy \ T

o if vpr < vy, where vy = is the v-coordinate of G'N (z =

1+d;
dy), the target (z = dy) is not accessible,
o if vpr > w4, optimal trajectories are ;.

CASE a > 1. For any zp in [0, d4],

Oéﬁdl
14 dy
optimal trajectories are vy,

o if v, < 01 < vy, optimal trajectories are yp9, vasr being empty if and
only if zg > 2Zp; where 23y = 1/(04ﬁvj'\“[1 — 1) is the z-coordinate of
SN (v=wvum),

o if ) <, < ﬁﬁ, optimal trajectories are yaryvm, Yar being empty
if and only if zg > Zps, and yp%y being empty if and only if zg > 2,
where 2, = 1/(aBv2™ — 1) is the z-coordinate of SN (v = v,,),

o if v, > §T-= the target (z = dy) is not accessible.

1
T—a
e if upy < 0y, where 6 = ( ) is the v-coordinate of SN(z = dy),

1.2.3. ConcLusioN. This example shows the following phenomenon. The
value @ = 1 is a bifurcation value for the parameter o which is the ratio of
activation energies 11 /F5 (cf. (1.3) in section 1.1.2); the optimal law appears
to be radically different in the case o < 1 and & > 1. More precisely, the
optimal policy when the target is accessible is:
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412 B. BONNARD AND G. LAUNAY

e when o < 1, to apply the maximal temperature Ty

e whereas if & > 1, there exists an intermediate optimal heat law in some
domain of the state space which is neither T}, nor Th;. Such a law is
called a singular optimal control, see [3]; it plays an important role in
our problem; it is related to the convexity of the function v — H = 2
and all the analysis relies on the behavior of H.

1.3. MAXIMUM PRINCIPLE AND EXTREMALS

In order to make this article self-contained and to give the results as clearly
as possible, let us recall some basic concepts and results about Pontryagin’s
Maximum Principle (in brief PMP) and extremals.

1.3.1. STATEMENT OF PMP. Consider a system of the form
i) = f(a(t), ul), o(t) €R”, u(t) € R” (1.12)

where f is an analytic mapping from R” x R to R™ and where the set U/
of admissible controls is the set of measurable mappings u(-) defined on
an interval [to(u),0] of R~ and taking their values in [uy, uz]. Let N be a
regular analytic submanifold of R™. The PMP asserts that if u*(¢), t € [, 0]
is an optimal control for the time minimal control problem with terminal
manifold N, then there exists a so-called adjoint vector p*(t) € R™\{Ogn}
with p* absolutely continuous, such that the following equations are satisfied
almost everywhere on [¢};, 0]:

d oH d oH

. b i b sk b . sk - _ b sk b 1‘13
H(a", p* u") = M(a7, p) (1.14)
where H(z,p,u) = (p, f(z,u)), (-,-) being the canonical inner product in R”
and where M (z,p) = rflax H(z,p,u). Moreover we have:
wE|u1,u2
t— M(z"(t),p"(t)) is constant and non-negative (1.15)

and at the final time 0 the so-called transversality conditions are satisfied:
2*(0) € N, p*(0) is orthogonal to Tox)N (1.16)
where T, N denotes the tangent space to N at z.

1.3.2. DEFINITIONS.

e System (1.13) is called the hamiltonian lift of (1.12), and H is called
the Hamiltonian.

e Any (z,p,u) solution to (1.13), (1.14) and (1.15) is called an extremal
(sometimes the adjoint state p will be omitted).

e Any extremal (z, p, u) that satisfies the transversality conditions (1.16)
is called a BC-extremal.

e Any extremal (z,p, u) such that M (z,p) = 0 is called exceptional.

e An extremal (z,p,u) is called regular if and only if for almost all ¢,
u(t) is equal to uy or to ug; if moreover u is piecewise constant, the
extremal is called bang-bang.

e An extremal (z,p,u) is called singular if and only if for every time

OH
%(%ZLU)—O
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TIME MINIMAL CONTROL OF BATCH REACTORS 413

e Let (z,p,u) be an extremal. A time 7 is called a switching time if and
only if 7 belongs to the closure of the set of times where 2 is not C!;
the corresponding point (1) is then called a switching point.

1.3.3. NOTATION. As in section 1.2.2, if v, and 73 are two arcs solutions
to system (1.12), 7,75 denotes the concatenation of v, followed by 7 (this
corresponds to the concatenation of the controls associated to v, and then

to 73).
1.3.4. SINGULAR EXTREMALS. By definition a singular extremal (z, p, u) is

oH
a solution to (1.13), (1.14) and (1.15) satisfying 0 = 0; from (1.14) it has
u
2

to satisfy the Legendre condition < 0; if this inequality is strict

2 |(1’,p,u)
for every time ¢, it is called the strong Legendre condition. Then by the
implicit function theorem the singular control can be locally computed as a

function of (2, p) by solving — = 0; equivalently the singular control can

be obtained as solution to the Cauchy problem for the differential equation

d OH
dt du
solution.

Recall that, in order to be admissible, the singular control has to belong
to [uy, uz]. Any point of a singular extremal where the singular control is
equal to uq or to us is called a saturation point.

= 0, the strong Legendre condition implying the existence of such a

1.4. STATEMENT OF THE MAIN RESULTS

We shall give the main results of our article. To simplify the presentation
we shall assume that each reaction is of first order, i.e. that ny = ny = 1.

1.4.1. PROBLEM 751 IN THE CASE ny = ng = 1. According to section 1.1, 751
is the time minimal control problem of reaching the target (z = d;) from an
initial value zg € [0, dq[ of z for the dynamical system (1.5) and for control
u such that u_ < wu < uy with u_ < 0 < ug. When ny = ny = 1, system
(1.5) becomes in the state-coordinates ¢y, z, ¢, v:

él = —vUC
Z =v4vz— fvz (1.17)
63 = ﬁUaCQ ’

o = h(v)u with h(v) = (Rv/E;)In?(v/A;)

We shall prove subsequently (cf. section 3.1) that we can restrict our study
to the planar system:

{2 =v+4uvz— fvz

v = h(v)u with h(v) = (Rv/E;)In%(v/Ap) (1.18)

Let us discuss the corresponding optimal synthesis.
We introduce the following notations:
Let u, be the singular control, and let us denote by v_ (resp. ~v4,7s) any
arc satisfying (1.18) with control u_ (resp. uy,us).
Let A be the set of the points of the target (z = dy) that are accessible from
ESAIM: Cocv, DECEMBER 1998, VoL. 3, 407-467



414 B. BONNARD AND G. LAUNAY

(Z < dl)
Let G be the set of the points (z > 0, v €]0, A4[) such that Z = 0.

d O0H
Let S be the set of the points (z > 0, v €]0, A1) such that %88— =0,
u

where H denotes the Hamiltonian corresponding to system (1.18) and let
S1 = SN N. From section 1.3.4, S contains all the singular extremals.
Computations show that the singular control u, is negative and that there
is on S at most one saturation point Sgu;, Wwhere ug, = u_.

In the following figures (Figures 2 and 3) we assume that v4 < Ay, where
v4 denotes the v-coordinate of G'N (z = dy); if A; < vy, these figures have
to be restricted to (v < Ay).

CaAsE o« < 1. Near the target, every optimal trajectory is of the form ~4
and the local synthesis is given by Figure 2.

U:x A'1 v

A, empty if and only if A1 < vy
Figure 2

CASE « > 1. In this case we can describe the global synthesis. Let zguy
denote the z-coordinate of the saturation point S, We have two situations:
o if 244y > dy, optimal trajectories are y4v_ and the synthesis is represented
on Figure 3(i),

o if 2y, < dy, optimal trajectories are y4v_v,s and the synthesis is given by
Figure 3(ii)

where each arc of these sequences may be empty

1.4.2. PROBLEM P35 IN THE CASE ny = ny = 1. According to section 1.1,
Py is the time minimal problem of reaching the target (cz = dz) from an
initial value (¢3)p € [0, dy[ of ¢y for the system (1.4) where the control is v
such that v, < v < wvy.

We shall prove subsequently (cf. section 3.1) that we can restrict our study
to the planar system:

{él - e (1.19)

¢ = wvep — Buv¥ey

Let us denote by ¢ the singular control and by ~,, (resp. ~var,¥) any arc
satisfying (1.19) with control v, (resp. vas, 0).

Let A be the set of the points of the target (c; = dz) that are accessible
from (cg < dy).

Let F,, (resp. Ej) be the point of target such that é¢; = 0 when v = v,
(resp. v = vpr).
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TIME MINIMAL CONTROL OF BATCH REACTORS 415

z S G(: =0)
ant.

(11

O VUsat U VA

A] v

Figure 3(1) : zaue > d4

0 v Vsat va Ay v

Figure 3(ii) : zgat < di

,,,,,,,,,, A, — = = set of switching points for y;v_ ,
..... set of first switching points for y,v_~;,
Figure 3
. oH
Let S, (resp. Sas) be the point of the target such that 0 = o [P
v
. . oH ) R .
ie. vy =0 |4=0 (resp. 0 = —— |y=yy,, 1.€. UM = ¥ |4=0) Where H is the
v

Hamiltonian (recall that, from section 1.3.4, the singular control ¢ is solution

oH
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416 B. BONNARD AND G. LAUNAY

CAsSE « < 1. Each optimal trajectory is of the form +3; and the synthesis
is represented on Figure 4.

C2

Far

a
Figure 4

CASE « > 1. Results are threefold:

e Near the target, each optimal policy has at most one switching.

e Each optimal trajectory is of the form vp;97.,,, where each arc of the
sequence may be empty, and each open-loop control is C°.

o Numerical simulations (cf. section 8) show that the optimal synthesis
is given by Figure 5.

]
Figure 5

1.4.3. PROBLEM 752 IN THE CASE ny = ng = 1. According to section 1.1, 752
is the time minimal problem of reaching the target (¢ = d3) from an initial
value (c2)o € [0,ds] of ¢y for the control system (1.5) where the control u
satisfies u_ < u < uy with u_ < 0 < uy.

We shall prove subsequently (cf. section 3.1) that we can restrict our study
to the three dimensional system:

él = —vUC
Ca = vep — PFuPey (1.20)
o = h(v)u with h(v) = (Rv/E;) In*(v/A;)
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TIME MINIMAL CONTROL OF BATCH REACTORS 417

Let us denote by u, the singular control and by v_ (resp. v4,7s) any arc
satisfying (1.20) with control u_ (resp. uy, us).

The set A of the points of the target (c; = d3) that are accessible from
(ca < dj) is included in the set A of the points of the target such that
¢9 > 0, the frontier of which is the set £ of the points of the target such that
¢y = 0.

d oH
Let S5 be the set of the points of the target such that %—88 =0, where H
U

denotes the Hamiltonian (from section 1.3.4 any singular extremal satisfies
this condition). It turns out that at the final time the singular control is neg-
ative and that there is on Sy one saturation point Sg¢, where u_ = ug |¢=o.

On Figure 6 we describe the stratification of the target by the optimal
control in the (v,e¢q) coordinates; it is deduced from the equations of the
Maximum Principle, except near the set & where the situation is intricated
because of accessibility problems.

(8] 52 g

v
O Ay
Figure 6 (i) : a < 1
non-accessible points: and ... on &, with &4 non-accessible
]
52
)
Ssat g
U_ < Us |1=0 :
------- . v
Usat
O A
Figure 6 (ii) : o > 1
non-accessible points: and ... on &, with £_ accessible

Figure 6 : stratification of the target
ESAIM: Cocv, DECEMBER 1998, VoL. 3, 407-467



418 B. BONNARD AND G. LAUNAY

CaAsE o < 1. It turns out that near the target the optimal policy is v = u.
2

d
Moreover there exists one point &4 on & such that w(@) = 0; near this
point the local synthesis is given by Figure 7

(8] g
e fs
T+
T+ €
v
O Ay
non-accessible points: and ... on &, with &4 non-accessible

Figure 7 : local synthesis near &4 when o < 1

CASE a > 1. We got the following local and global results:

Local synthesis Near the target the optimal synthesis is described as fol-
lows:
e For optimal trajectories arriving near S,, the synthesis can be topologically
described by an invariant foliation (v = vg). Let vga denote the v-coordinate
of the saturation point Sgu; the syntheses in each leaf (v = vg) are shown
by Figure 8:

if vg < Vgat, optimal trajectories are of the form vy;v_~; (see Figure 8 (i))

if vg > vsat, Optimal trajectories are of the form vy;v_ (see Figure 8 (ii))
where each arc of these sequences may be empty.
e For optimal trajectories arriving near &, the situation is intricated. Near

the target, close enough to &, the optimal policy is w = u_. Moreover there
2

exists one point £_ on & where d—z(CQ) = 0; let v_ denote the v-coordinate
of £_. Near a point & # E_ of &, the optimal synthesis is described by a
C? invariant foliation F: (v = vg) the leaves of which are given by Figures 9
(i) and (ii); near £_ there is no such foliation and the synthesis is given by
Figure 9 (iii).

Global switching rules Each optimal control law has at most two switch-
ings and each optimal trajectory is of the form y,vy_vs, where each arc of
this sequence may be empty.

1.5. SUMMARY

This paper is organized as follows. In section 2 we recall extremality
results for time minimal problems with single input affine systems. In section
3 we introduce the concepts of projected and reduced problems, which are
straightforward but important tools in our study. The use of projected
problems is related to symmetry properties of our systems. The concept of
ESAIM: Cocv, DECEMBER 1998, VoL. 3, 407-467



TIME MINIMAL CONTROL OF BATCH REACTORS 419

(c2 = dy) (c2 = dy)

9]
e L ¥ L ¥
Figure 8 (i) : vg < Vsat Figure 8 (ii) : vg > vsat
_____ set of switching points for yyv_
........ set, of first switching points for yyv_7s

Figure 8 : local synthesis near .55 in the leaf v = vg when o > 1

reduced problem is more acute; it is related to Goh’s transformation and
lightens the relationship between problems P; (with control T) and P; (with
control T)7 1 = 1,2. In section 4 we analyze problem Psy; first we solve Ps
near the target when av # 1; secondly we find global bounds on the number of
switchings. In section 5 (resp. 6) we apply results of [5] and [14] to compute
in the case a # 1 the closed-loop optimal control near the target for problem
P, when ny = ny = 1 (resp. problem P, for any ni,ng); secondly in the
case a > 1, we find global switching rules for 751 when ny; = ny = 1 (resp.
7.727 except when ny = 1 and n; > 2). Section 7 deals with the concept
of conjugate and focal points. Endly, section 8 is an appendix regrouping
commented numerical experiments.

2. EXTREMALS FOR TIME MINIMAL PROBLEMS WITH SINGLE INPUT
AFFINE SYSTEMS

2.1. DEFINITIONS AND ELEMENTARY RESULTS

2.1.1. STATEMENT OF THE PROBLEM. Throughout this section 2, the con-
sidered system is:

()= X(@®)+u@®)Y(x(t)) , «@) eR™ and u(t) eR (2.1)

where X and Y are analytic vector fields. As in section 1.3.1, the set U
of admissible controls is the set of measurable mappings u(-) defined on
an interval [to(u),0] of R™ and taking their values in [ug,us3]; and again
N denotes a regular analytic submanifold of R”, which is the target to be

reached within minimal time.
This problem is said to be flat if and only if Y is everywhere tangent to
N. Note that problems 751 and 752 defined in section 1.1 match the above
ESAIM: Cocv, DECEMBER 1998, VoL. 3, 407-467



420 B. BONNARD AND G. LAUNAY

50 50

Figure 9 (i): vg < v_ Figure 9 (ii): vg > v_

no optimal
trajectory

local synthesis near & = £ N (v = vg) in the leaf v = vo when a > 1

1

v

non-accessible points: and ... on &, with £_ accessible

Figure 9 (iii): local synthesis near £&_ when a > 1

Figure 9

conditions and are both flat.

NoTaTIONS Let us denote by u, the singular control and by v (resp. v2,vs)

any arc satisfying (2.1) with control u; (resp. ug, us).

2.1.2. SWITCHING FUNCTION. For any extremal (z, p, v) the Hamiltonian is
H(z,p,u)=(p, X(2)+uY(z)) (from section 1.3.1 applied to system (2.1)).

Hence the equation — = 0 (which is satisfied by any singular extremal) is

equivalent to (p, Y (z)) = 0. The mapping:
@t (p(t), Y (2(1)))

evaluated along (z,p) is called the switching function.
Computing we get:

(1) = (p(t), [X, Y](2(1))
and along any smooth extremal:

®(t) = (p(t), ad®X (V) (2 (1)) — u(t)ad?¥ (X)(x(1)))
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where the Lie bracket of two analytic vector fields 71, Z5 is computed with

the convention: [Z1, Z3](z) = %(w)Zl(x) — %(x)Zg(w), and where
x x

adZ1(Z3) is the mapping defined by adZ(%3) = [Z1, Z3].

2.1.3. ELEMENTARY REGULAR CASES.

ProposITION 2.1. Let zg = (x0,po) € R™ x (R"\{Ogn}) be such that
(po,Y (z0)) # 0. In a neighborhood of zy, any extremal is a v1 (resp. 72)
arc if and only if (po,Y (z0)) is negative (resp. positive).

Proof. From PMP any extremal maximizes the Hamiltonian. O

COROLLARY 2.2. Let (x,p,u) be an extremal with switching time 7; then
necessarily (p(7),Y (z(7))) =0, i.e. &(7) =0.

PROPOSITION 2.3. Let zg = (20, po) € R"X(R"\{Ogn}) be such thatY (zq) #
0, (po,Y (z0)) = 0 and (po,[X,Y](z0)) # 0: such a point zy is called a
normal switching point. Then close enough to zy there is only one extremal
containing zo, which is yay1 (resp. y17v2) if and only if (po,[X,Y](x0)) is
negative (resp. positive), xo being the switching point.

Proof. Consider (z,p,u) an extremal that contains zp, and let 7 be the
time such that zo = (2(70),p(70)). Since (po,[X,Y](zo)) # 0 i.e. (from
(2.3)) ®(10) # 0, close enough to zg the considered extremal has no singular
arc (indeed, from section 2.1.2, any singular arc satisfies & = 0). Then the
result comes from the maximization of the Hamiltonian (cf. PMP) after

expanding ® at 7¢ up to the first order. O
2.1.4. SINGULAR EXTREMALS: GENERALITIES.

DEFINITIONS AND NOTATIONS. A point (z, p) is called ordinary if and only
if (p,ad?Y (X)(z)) # 0; let 6 be the set of non-ordinary points. A singular
extremal (z,p,u) such that (z(¢),p(t)) € R?*"\@ is said to be of order 2.
Let ¥ be the variety {(z,p) € R” x (R™"\{Opn});(p,Y(2z)) = 0} and let
S = {(2,p) € R x (R\{0}); (p, V(2)) = (p, [X, Y)(2)) = 0} included in
3.
Let H; be the restriction to X'\# of the mapping: (z,p) — {(p, X(z) +
us(z, p)Y (2)), where:
2
(o) = X)) 0
(p,ad?Y (X)(2))

PROPOSITION 2.4. Any singular extremal (x,p, u) is such that (x(t), p(t)) €
Y. Moreover the singular extremals (x,p,u) of order 2 are defined by:

u(t) = us(z(t), p(t)) where us(x,p) is defined in (2.5),

and (x,p) is a solution to the ordinary differential analytic system:
de  OH, dp OH,
= P )
dt dp dt oz

with the following admissibility constraints:

(z,p) and

U S U5($7p) S Uz
Proof. See [4]. O
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DEFINITIONS. Let (z,p,u) be a singular extremal of order 2 and let h be
the value of the Hamiltonian (non-negative constant from PMP) along this
extremal.

The considered extremal is exceptional if and only if b = 0 (cf. section
1.3.2).

If h > 0, the considered extremal is called hyperbolic (resp. elliptic) if and
only if (p(t),ad?Y (X)(z(t))) is negative (resp. positive).

2.2. OPTIMALITY OF SINGULAR EXTREMALS FOR LIMIT-PROBLEM

2.2.1. STATEMENT OF LIMIT-PROBLEM. Limit-problem associated to the
problem stated in section 2.1.1 is a time minimal problem with the same
single input affine system (2.1), but where

e the boundary constraints u € [uy, ug] on the control are relaxed and we
admit a specific class of impulse controls. More precisely a trajectory is a
finite concatenation of arcs corresponding to bounded measurable controls
and finite jumps in the Y direction; it is associated to a set of admissible
controls which will be denoted by ¢/,

and where

e the terminal manifold is a point.

The optimality status of singular extremals of order 2 for such limit-problems
was studied in [4] under the following assumptions:

2.2.2. AssumpTIONs. Consider (z, p, u) asingular extremal defined on [¢g, 0]
and assume that:
(HE) t — x(t) is one-to-one.
Since the concept of singular extremal is feedback-invariant (see [4]) one may
set w = 0. Let us then introduce K(t) = Span{ad*X (Y)(z(t)) ; k € N}.
Since (z,p, u) is a singular extremal, it is known ([10]) that the codimension
of K(t) is not zero. Moreover let us then assume that:
(Hf) Vt € [to,0], K(t) is of codimension one, and K(t) is spanned by the
vectors ad* X (Y)(z(t)), k= 0,...,n — 2.
(HS) Yt € [to, 0], ad?Y (X)(2(t)) € K(2).
(HS) If n = 2, Vt € [to, 0]X (z(t)) and Y (z(t)) are linearly independent.
Ifn > 3,Vt € [to,0]X (z(t)) € Span{ad*X (Y)(z(t)); k=0,...,n—3}.

2.2.3. RESULTS.

THEOREM 2.5. Let (x,p,u) be a singular extremal defined on [tg, 0] and sat-
isfying (H§)-(HYS). Note that the adjoint vector p is then unique up to a
non-zero factor, and that for any t in [to,0], p(t) is orthogonal to K(t); so
(z(t),p(t)) € '\O and thus (z,p,u) is of order 2. Then there exists a C°-
neighborhood U of x such that x is a time-minimizing (resp. mazimizing)
trajectory with respect to all the solutions to (2.1) contained in U and join-
ing z(to) to xz(0) [the set of admissible controls being U’ defined in section
2.2.1] if (x,p,u) is exceptional or hyperbolic (resp. elliptic) and if t;. < 0,
where t1. is the first conjugate time to to along x. Note that if (z,p,u) is
hyperbolic and if t;. > 0, the trajectory is not even C'-time-minimizing.

Proof. See [4]. O
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This theorem solves the time minimality problem for singular trajectories
satisfying (HJ)-(HS) when any bounded measurable control is admissible
and when the terminal manifold is a point; it has to be adapted to deal
with problems P, and P, defined in section 1.1 where the control is subject
to boundary constraints and where the terminal manifold is of codimension
one.

2.3. FOLD CASE
Consider zy = (20, po) € ¥’ (defined in section 2.1.4) such that:

Y (zo), [X,Y](xo) are linearly independent,
fori € {1,2}, \; = (po, ad®* X (Y)(wo) — u; ad?Y (X)(wo))is not zero

Such a point zg is called a fold point; and from [12] and [4] the extremals
near zg for the problem defined in section 2.1 are of the form:

o if A\; Ay > 0 (parabolic case): v1y271 or Y27172

e if \; < 0and Ay >0 (hyperbolic case): v;vsv; with (4,7) € {1,2}?

o if Ay > 0and Ay < 0 (elliptic case): bang-bang extremals, with no uni-
form bounds on the number of switchings on any compact containing
zg, but with a finite number of switchings for any extremal

where each arc of these sequences may be empty.

Proof. The behavior of regular extremals near zy has been classified in [12]
and is shown by Figure 10, where z; denotes z = (z,p) for control u,,
t=1,2. O

2 m m
; E 2 20
21

hyperbolic case parabolic case elliptic case
Figure 10

In the parabolic case, elementary computations show that us & [uy, us]
and so wug is not admissible. Moreover, if we assume that the singular ex-
tremal arc passing through zo satisfies assumptions (HE)-(HS) (defined in
section 2.2.2) we know from [4] that it is fast (resp. slow) for limit-problem
in the hyperbolic (resp. elliptic) case.

2.4. SINGULAR EXTREMALS IN THE CASE n = 3

Considering the problem defined in section 2.1 when n = 3, let us define:
D = —det(Y,[X,Y],ad?Y (X)), D' = det(Y,[X,Y],ad’X (Y)) and D" =
det(Y,[X,Y], X).

The singular extremals (z,p,u) satisfying D # 0 are clearly of order 2;
moreover x satisfies:
D/
&= X(x)+us(x)Y(z) with u, = )
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Proof. Since & = (p,Y(z)) is zero at any time along any singular ex-
tremal, (2.3) and (2.4) (cf. section 2.1.2) imply (p,[X,Y](z)) = 0 and
(p,ad?X (Y)(2) — v ad?Y (X)(2)) = 0; so we get D' + uD = 0 since p is
never zero. U

COROLLARY 2.6. The singular extremals included in RN\{D = 0} satisfy
(H!)-(HE) (defined in section 2.2.2); they are hyperbolic (resp. elliptic) if
and only if D"D > 0 (resp. D"D < 0); they are exceptional if and only if
D" =0.

3. PROJECTED PROBLEM. REDUCED PROBLEM
3.1. PROJECTED PROBLEM

3.1.1. STATEMENT OF THE PROBLEMS. Every object is supposed to be real
analytic. Let M and M’ be two manifolds, let © denote a submersion from

M into M'. Let N (resp. N') be a regular submanifold of M (resp. M').
Consider a system of the form:

()= f(z(t), u(t)) , «(t)eM and u(t) eQCR (3.1)
Let us assume that:

(i) for each admissible control u(:), the differential system (3.1) is com-
plete,
(ii) for each fixed w in €, the differential system (3.1) can be 7-projected
on M’,
(i) N =71 (N').

Note that when considering local coordinates, assumptions (ii) and (iii)
mean that there exist coordinates @ = (2/,2”) on M such that # is the
projection M — M, N being identified to the set of all (N’,2"). and

(' 2") =2
such that (3.1) can be written as:

' = fl(a’,u) and 2" = f"(x,u)

Let us denote by P (resp. P’) the time minimal problem associated to the
system & = f(x,u) (resp. &' = f'(a',u)) with terminal manifold N (resp.
N'): P is called the projected problem associated to P. Then let us denote
by a(t, zg,u) the solution to & = f(z,u) initiating at initial time ¢y from
xo € M, and by 2/(t, z(, u) the solution to &’ = f’(a’,u) initiating at initial
time to from af = w(xg) € M'.

3.1.2. RESULTS FOR THE PROBLEMS STATED IN SECTION 3.1.1.

LEMMA 3.1. The trajectory x(t, zo,u) defined on [to(u),0] is a solution to
P if and only if o' (t, x(, u) is a solution to P" on [to(u),0].

Proof. From assumptions (i) and (ii) in section 3.1.1, one has at any time ¢
such that the right hand member of (3.1) is defined:

2 (t, v, u) = w(x(t, zo, u))
Moreover N = 7~ !(N') from (iii) in section 3.1.1. O
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LEMMA 3.2. Every BC-extremal (2',p', u) of the projected problem P’ can be
lifted into a BC-extremal (x, p,u) of the original problem P with x = (', 2")
and p = (p,0).

Proof. We know from section 3.1.1 that system (3.1) can be locally written
as:

i = f'(a’',u) and 3" = f"(x,u) with z = (2/,2").

Moreover the adjoint vector p = (p/, p”) of any extremal (x, p, u) of P satis-

fies:

) df Y id ) af"
p/ _ _p/%(xl7 u) _ p// o (x/7 x//7 u) and p// _ _p// o (x/7 x//7 u)

Since any extremal (2/, p’, u) of P’ satisfies:

.1 1ot ./ /af/ /

&' = f'(z',u) and p' = —p %(x L u),
it can be lifted into (z = (2/,2"),p = (p',0),u) [where 2" is any solution to
" = f"(2', 2", w)] which is an extremal of P.
Moreover for both extremals (', p/, u) of P" and (z = (2/,2"),p = (p/,0), u)
of P the transversality conditions are:

2'(0) € N and p'(0) is orthogonal to TN’
since NN is identified to the set of all (N, 2"). O

REMARK 3.3. Not every extremal of problem P can be projected onto an
extremal of problem P’. So, although from Lemma 3.2 problems P and P’
are equivalent, studying the solutions of the PMP for P’ is simpler than for
P because there are less extremals.

3.1.3. APPLICATIONS.

e Py in the case ny = ngy = 1 is the time minimal problem associated to
the system (1.17) (cf. section 1.4.1) with terminal manifold (2 = dy). Then
from section 3.1.2 we can consider the equivalent time minimal projected
problem P! associated to the system (1.18) (cf. section 1.4.1) with terminal
manifold (z = dy) and control u such that u_ < u < uy and u_ <0 < uyg.

e P; is, according to section 1.1, the time minimal problem associated to
the system (1.4) with terminal manifold (¢; = d3). Consider the adapted
coordinate:

Ine; if ny =1
T = 3.2
! {1_17“ ci_”l it nqy > 1 (32)

System (1.4) becomes in the state-coordinates 1, ¢z, c3:
il = —0
vert — fu%ey? if ng =1

_ -
{v[(l —np)aq)Tm = fotey? if ng > 1
é3 = fu%ey?

(3.3)
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Then from section 3.1.2 we can consider the equivalent time minimal pro-
jected problem P} associated to the system:

il = —0

) ve™l — fv¥ey? if np =1 (3.4)
C = n
? v[(1 - nl)xl]l—;l — Bv2ey? if ng > 1

with terminal manifold (cz = dz) and control v such that v, <v < vy

o P, is, according to section 1.1, the time minimal problem associated to
the system (1.5) with terminal manifold (c; = d3). System (1.5) becomes
in the state-coordinates x1, ¢y, cs, v system (3.3) with the supplementary
equation © = h(v)u. Then from section 3.1.2 we can consider the equivalent
time minimal projected problem 775 associated to the system:

il = —0
) vert — fu%ey? if ng =1
Cy = ™
v[(1 = np)aq]=m = fotey? if ng > 1
o = h(v)u with h(v) = (Rv/Ey)In?(v/A;)

(3.5)

with terminal manifold (¢z = d3) and control u such that u_ < u < uy and
u_ <0< ug.

3.2. REDUCED PROBLEM

3.2.1. PRELIMINARY. Consider the time minimal problem stated in section
2.1.1 with affine single input system (2.1) in R” (n > 2) and with flatness
hypothesis.

For batch reactors:

e it was already noticed in section 2.1.1 that problems P; and P, (with
control T') defined in section 1.1 meet all these conditions. Then T' (or
equivalently v) is a state variable,

e on the contrary, for problems P; and Py (defined also in section 1.1)
the dynamical system is not affine with respect to the control T (or
equivalently v) when o # 1.

The aim of this section 3.2 is to relate singular extremals in both cases.
Indeed, a general system of the form: & = f(2,u) can be interpreted as
an affine system with respect to the new control %, u becoming a state-
variable. Let us study the converse transformation, which is called Goh’s
transformation.

3.2.2. RESULTS FOR LIMIT-PROBLEM.

DEFINITIONS AND NOTATIONS. According to section 2.2.1, consider the
limit-problem associated to the problem stated in section 2.1.1 with the
same single input affine system (2.1) in R*(n > 2) : ¢ = X(z) +u Y (x)
where the boundary constraints on the control u are relaxed and where the
terminal manifold is a point (so the flatness hypothesis does not make sense
any more).
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Take 2o € R" such that Y (zg) # 0. Hence, from the flow-box theorem, there
exists an open neighborhood U of zg and local coordinates (x!,... 2") in

U such that Y [y= ——. Introducing = (', ...2""")" and X such that:

Oz

X() = Y X (@) g = X () o X7 ()5

=1

the restriction of & = X (2) + u Y (z) to U becomes:
E=X(E2") , i"=X"(#2")+u (3.6)

Then the system & = X(i, x™) is called a reduced system associated to the
original affine system & = X (2)+ u Y (z), 2" being the control variable and
i belonging to U open subset of R*~!. Note that such a reduced system is
not, unique.

For the original (resp. reduced) problem, let p = (py,...,p,)" (resp. p =
(P1y .-+ ,Pn—1)" be the dual variables of the state variables z (resp. &

let H(z,p,u) = (p, X (x) +u Y(z)) (vesp. H(Z,p,2") = (p, X(&,2"))) be
the Hamiltonian.

LEmMMA 3.4. The pair (x,p) is the projection on the space of state and ad-
joint variables of a solution (z,p,u) to:

oH oH oH -
95—8—])(907297%) c b= e(npu) =00 (3)

if and only if p, =0 and (2,p= (p1,-..,pu-1)",2") is a solution to:

oH _ . 0H, _ OH ,_ . ..
a—i)(w,p,w) , p_—%(x,p,x) , axn(w,p,w)zo (3.8)

T =

and then the following relations are satisfied:

%%—IZ (2 p)= (D, [X, Y](2)) = —gg |(2,5,0m) (3.9)
B = 00 () (@) = = 0L gy (30
Proof. System (3.7) can be written as:
&= X(&a"), &"=X"(&2")+u e &= %—IZ(JC,]), )]
Vie{l,...,n}p; = — Zz:;pi%)(i(i,xn) [le. p= —%—Z(x,p, )]
Pn=0 [i.e. %—Z(a@,p, u) = 0]

which is equivalent,when omitting u, to:
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pn = 0 and
=X (&2"), le &= %(i,ﬁ, ")
n—1 .
Vie{l,...,n—1}p; = —;pi%){i(i,x”), ie. p= —%—Ig(aﬁ,ﬁ, ")
Spi%){i(i,xn) =0, ie. gg(i,ﬁ, ") =0 with p= (p1,...,Pa1)’

that is p, = 0 and (3.8) with p = (p1,...,pn_1)"

oH
From section 2.1.2 we know that, if ® = T |(zp0)= (P, Y (2)) denotes the
u

switching function of the affine system & = X (2) + uY (2),

. d OH
d é—d—za—Hl = (p,ad’X (Y)(2) d*Y (X)(2)) (cf. (2.4))
an = 7 gy @™ (P2 ) —ua z)) (cf. (2.
o0 d* oH 5
0 %W% |(1’,p,u): _<p7 ad Y(X)($)>
Moreover (3.7) implies (after computations with Y = G Pn = 0 and
xn
]3 = (Ph s 7pn—1)t):
oH ) o*H
<P7 [X, Y]($)> = O |(i’,g§,x") and <P7 ad Y(X)($)> = —W |(i’,]§,x")7
so (3.9) and (3.10) are proved. O
DEFINITION 3.5. A singular extremal (z, p, u) for the original affine system
d*> oH
satisfies the Legendre-Clebsch condition if and only if i_@_ > 0 along
Ou dt? Ou

(z,p,u).

COROLLARY 3.6. Relation (3.10) implies that, if (x,p,u) is a singular ex-
tremal for the original affine system, the Legenre-Clebsch condition along
(x,p,u) is equivalent to the Legendre condition (defined in section 1.3.4)
along the associated singular extremal for the reduced system.

LEMMA 3.7 (singular controls). Since the concept of singular extremal is
feedback-invariant (see [4]) one may set X™ = 0. Thus the restriction of
t=X(z)+uY(zx) toU (cf. (3.6)) is:

r=X(z,2") , i"=u (3.11)
Consider (z,p,u) a singular extremal of order 2 for this affine system and
assume that:
o o
Ju dt? ou
Then the singular control u is given by (2.5) (cf. section 2.1.4):
(p, ad X (Y)(2))
(p, ad?Y (X)(z))

>0 along (x,p,u) (3.12)

U= U5($7p) =
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Moreover, relation (3.10) implies that (3.12) is equivalent to the strong Le-
gendre condition (defined in section 1.3.4) along the associated singular ex-
tremal (%,p,2") for the reduced system. Then, as noticed in section 1.3.4,
we know from the implicit function theorem that the singular control x™ can

H
be locally computed as a function of (%,p) by solving g— = 0; equivalently
ks ~

x™ can be obtained as solution to the Cauchy problem for i@_H =0, which

dt dxm
< 0 holds along (z,p,z").

2

(0m)?
Finally, it comes from (3.11) that: " = u.

LEMMA 3.8 (Optimality). Theorem 2.5 gives the optimality status of any
singular extremal (x,p,u) satisfying (HS)-(HS) for the original affine limit-
problem. The associated singular extremal (Z,p, ") for the reduced problem
considered in the previous lemma 3.7 has the same optimality status when
changing C°-optimality of (z,p,u) into Ct-optimality of (%, p,a").

exists since the strong Legendre condition

Proof. See [4]. Indeed, if v = (#,2") and 2’ = (&’,2"") are in a C°
neighborhood, then z” and 2" are in a C%neighborhood; and z™, 2™ are
the control variables for the considered reduced systems. O

3.2.3. RESULTS FOR FLAT MINIMAL-TIME PROBLEM WITH A TARGET OF
CODIMENSION ONE IN DIMENSION GREATER THAN TWO.

STATEMENT OF THE PROBLEM. According to the preliminary 3.2.1 let us
consider the time minimal problem stated in section 2.1.1 with:
e an affine single-input system (2.1): ¢ = X (2) + v Y(2) in R” (n > 3),
the boundary constraints on the control u being relaxed
e atarget NV which is a regular analytic submanifold of R™ of codimension
one
e Y everywhere tangent to N (flatness hypothesis).
This problem is denoted by P, ;.
Let 77 be a normal vector to N pointing outwards the half-space where
the considered trajectories lie. Let Sx be the subset of NV defined by

Sy =A{x e N; (i, [X,Y](x)) = 0}
ASSUMPTIONS. Take a point xzg of Sn as the origin and assume that:
(H5) Y (0) # 0.

Hence, from the flow-box theorem, there exists an open neighborhood U of

0 in R” and local coordinates (z',...2") in U such that Y |y= For Let us
introduce # = (2',...,2" N and & = (22,...,2" 1)
(H}) N is identified to (z! = 0).
= ox' - .
Then Sy ={(0,z,2") € N ; W(O,$,$n) =0}, so Sy is defined on N by

an equation ¢(,2") = 0 with ¢(Ogn-1) = 0 since Opn € Sy
(H}) Y (0) is not included in Sy.
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This implies that ¢(Ogn-2,2™) # 0. So, considering the equation c,o(é, W)=
0 for Z in €2 and W in C, we know that W is of finite order k € N* at
Ocn—1 i.e. that there exists an analytic function ¢y such that ¢(0—2, W) =
Wkp (W) with ¢1(0) # 0. Then from the Weierstrass Preparation Theorem
there exist analytic functions ay, ..., ax, ¢ defined on a neighborhood U’

of Ognot in €' such that o(Z, W) = P(Z,W)ga(Z, W) with o, never
k

vanishing in U’ and P(é7 W)= Wk—l—z ai(é)Wk_i. Soon U, 99(27 W)=0
=1

is equivalent to P(é7 W) = 0 which is polynomial in W.

(H}) For any (20, W) in U’ where éo # Ocn—2 is fixed, there are k distinct
solutions to the polynomial equation in W: P(Zo, W) = 0.

So the restriction of 7: (2, W) — 7 to {(27 W)eU; P(é,W) =0}isa
covering map (with branch-point Ocn-2 ) which is k-sheeted above Z # Ocn—2;
any of these k sheets is transverse to Y for U’ small enough. So comes the

following:

ProposITION 3.9. Let (X,Y,N) satisfying (H}) — (H5) and let G be the
pseudo-group of local diffeomorphisms that keep invariant the distribution
RY and any point of N close enough to o = Opn € N (so specially Ogn
is invariant). For the equation p(z,2") = 0 of Sy C N near o € Sy
(where N is identified to x' = 0 and where & = (22,..., 2"~ 1)), 2" is of
finite order k € N* at Opn-1, this order k being invariant under the action of
G. And there exists a neighborhood U’ of Ocn—1 such that, if © denotes the

projection from Cr2%x C onto cr2 defined by ﬁ'(Z, W)= Z, the restriction
of @ to {(Z7 W)yeU'; Z # Ocn— and c,o(Z, W) =0} is a k-sheeted covering

map.

If moreover (X,Y, N) satisfies at xo the so-called strong Legendre-Clebsch
0 d* OH
ou dt? ou
the transversality condition (cf. section 1.3.1) and from computations (see
the proof of Lemma 3.4) (i, ad?Y (X)(z0)) < 0, it comes k = 1. Then

c,o(Z, W) = 0 is an analytic submanifold of C*~1, and Sy C N can be
locally (near xg = Opn € Sy ) identified to x* = 0 as shown by Figure 11 for
n=3

condition > 0 (where H denotes the Hamiltonian) i.e. from

In the general case, for any o € R\ {0pn—2} close enough to Ogn—> and
for 2" in a compact subset C' of R, there exists U" neighborhood of %o in
R"=2 above which Sy is the union of k' regular submanifolds of N transverse
toY, with k' <k (see Figure 12 forn =3 and k' =2)

COROLLARY 3.10. Assume that, for the considered flat problem Pyyy with
target N, (X, Y, N) satisfies (H{ )-(HY%). Let 7 be the projection defined from
R™* ! xR onto R"™! by w(&,2") = &. Using 7, one can generically relate bi-
univoquely the singular extremals for the original problem P, y; (with target
N ) and for an associated reduced problem (with target #(N)).
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Proof. Since (X,Y, N) satisfies (H})-(H}), the restriction of & = X(z) +
u Y (z) to a neighborhood U of z¢g = Ogpn» with local adapted coordinates
(@ =(at,... 2"t 2") is:

E=X(E2") , i"=X"(#2")+u
and as in Lemma 3.7, one can set X” = 0 since the concept of singular

extremal is feedback invariant.
At final time 0, singular trajectories for P, arrive on

Sy = NN (7 [X, Y](z)) = 0)

Indeed, any singular extremal (z,p,u) for P,s; satisfies: (p,Y(z)) =
(p, [X,Y](z)) = 0 (cf. section 2.1.4) and the transversality conditions:
2(0) € N and p(0), @ are colinear (cf. section 1.3.1). Since in U open
neighborhood of Ogn, N is (z' = 0), @ normal vector to N is colinear to
(1,0,...,0)" € R" and so the transversality conditions are:

2'(0) =0 and pa(0)=---=p,(0) =0 (3.13)

Let us associate to P,y the time minimal reduced problem P,..; with
system & = X (&,2"), control 2 and target 7(N). Computing as in Lemma
3.4, since any singular extremal (z,p,u) for P, satisfies (3.7) and (3.13),
we find that (z,p = (p1,...,pa1)’, ") satisfies (3.8) and that p,, = 0; so the
Hamiltonians H (z,p, u) = (p, X (z)+uY (2)) and H (%, p, 2") = (p, X (&, 2"))
are equal. Moreover the transversality conditions for P,.4 are: z(0) € ©(N)
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and p(0) is normal to 7(N), i.e. (since in 7 (U) open neighborhood of Opn-1,
m(N) is (2! = 0)) 2'(0) = 0 and pa(0) = .-+ = p,—1(0) = 0, which is
equivalent to (3.13) when p, = 0.

So (z,p,u) is a singular extremal for P,z if and only if (x(z), 7 (p),z")
is a singular extremal for P,.q
It appears that P,;s is a desingularization of P4 (see Figure 13 for n = 3
and &' = 2) and that, when &’ > 1, local maxima of the Hamiltonian H for

P,ed may compete at some points of 7(Sn). O
xn
N
%s
> - . =1z
\\ \
~ (s
p . (7s)
)
s’
,,,,,,,, SN
Figure 13

3.2.4. APPLICATIONS. )

e Let us consider the flat problem P} in dimension 3 and the associated

reduced problem P} (P} and P, are defined in section 3.1.3). Corollary 3.10
relates biunivoquely the singular extremals for P} and P5.
We shall prove subsequently (cf. Lemma 6.1 in section 6.2.1 and Figure
17) that for P}, on the target N : (c; = dy), there exists a single smooth
singular curve transverse to Y: such a flat optimal control problem is said
to be simple.

Indeed, keeping the original coordinates (cy,¢3), it comes from sections
1.1 and 3.1 that 775 is the time minimal problem associated to the system:

¢ = —vef!
¢y = vt — Povel?
T = u which is the control for P}, while T is the control for P}

with (cf. equations (1.2) and (1.3))
v=Arexp(—E1/RT), a=Ey)/E, [=A/A7

Then assumptions (H(j)-(H}) are satisfied when:
choosing a point 29 = (10, d2, Tp) of

Sy =1z =(c1,c0=4d3,T) € N;a%(vc?l - ﬁvac§2) =0}

with 8%(1}) = Eyw/RT? and so
S ={o = (er,e = o, T) € N3 (6" — @B 1el?) = o},
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and then considering coordinates (2!, 22, 2%) = (¢3 — da, ¢; — ¢10, T — Tp).
Finally v (and so #?) is of order 1 at Op> for the equation of Sy:

c,o(xz, 363) = (x2 + c10)™ — oeﬁva_ldgz’ =0

Thus we just proved that the problem 775 is simple.

e Let us then consider the time minimal problem for a batch reactor in
which three species X1, X5, X3 are reacting according to the scheme

X1:X2—>X3

each reaction being of the first order, while the final constraint is to obtain
a given concentration ds of X5.
Similarly as in section 1.1, chemical laws yield the following system:

b !

1 = —kian+ ke

¢y =k — k/102 — kacy
¢z = kacy

with, according to Arrhenius law:

k; = Ajexp(—F;/RT), i=1,2and k'y = A’y exp(—F'1/RT)
So, when introducing

v="ti, a=Ey/E, = AyJAS o/ = E'1/E,, 3’ = A'1/AY

and when considering the associated projected problem (cf. section 3.1)
with control T', we get the following dynamical system

. I
{01 = —veyr + v ¢

¢y = vey — oY ey — Bues

whereas the choice of T’ as control u gives the supplementary state-variable
T satisfying the equation T = u.

Then assumptions (Hj)-(H}) are satisfied when:

choosing a point 29 = (10, d2, Tp) of

J ,
Sy = {$ = (61702 = d27T) € N;a—T(UCI _ ﬁ’va o — ﬁUaCQ) _ 0}

with 8%(1}) = Fyv/RT? and so

Sy ={x = (c1,c0=4d3,T) € Njc1 — O/ﬁ'va/_lcQ — afv* ey = 0},
and then considering coordinates (21,22, 23) = (¢ — da, ¢1 — ¢10, T — Tp).
Finally the equation of Sy becomes:

(2?2 = 22 4 c0 — (B0 +aBo*Ndy =0

So v (and so z°) is of order 2 at O for this equation of Sy when we choose
a = 2 and o' = 3; thus we just proved that in that case the considered
problem is not simple.
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4. TIME MINIMAIL SYNTHESIS FOR 732 NEAR THE TARGET
4.1. GENERALITIES

4.1.1. DEFINITIONS AND NOTATIONS. According to section 3.1.3 we can
consider instead of Py the equivalent time minimal projected problem P}
with system (3.4), control v € [vy,, vy] and terminal manifold N: (¢; = dg)
to be reached from an initial value (c2)o € [0,dy[. So the state-vector is
& := (x1,¢)", x1 being related to the original variable ¢; by (3.2). Note
that if nq > 1 it comes 27 < 0 since (cf. (1.6) in section 1.1.3) ¢; > 0.

Let us denote by ¢ the singular control, and by ~v,, (resp. var, %) any arc
satisfying (3.4) with control v, (resp. vas, 0).

4.1.2. ADJOINT-STATE. Along any BC-extremal (%, p, v), the adjoint-vector
p = (p1,p2)" associated to & = (w1, c2)" satisfies (when taking (3.2) into
account):

p1o= _nlvcfm_lp? (4.1)
Pa = nafvc py

the corresponding Hamiltonian being:

H(&,p,v) = —vpy + (ve]t — pv¥el?)ps (4.2)

At final time 0 we can take
p(0) = (0, 1) (4.3)
and at any negative time t, py(t) > 0 and p2(t) > 0.

Proof. Since the target N : (c; = d3) has to be reached from the domain
(c2 € 10,dy[), the PMP (maximization of the Hamiltonian and transversality
conditions) implies in the non-exceptional case that p(0) is a normal vector
to N pointing outwards (c; < dz); so we can take p(0) = (0, 1).

Note that in the exceptional case (i.e. [cf. section 1.3.2] when the Hamil-
tonian is zero, or equivalently when the trajectory is tangent to N at final
time 0) PMP allows p(0) = (0, —1) as well as p(0) = (0, 1); the value (0,-1)
is discarded for optimal trajectories (this result is proved in the same way
as the orientation principle [2]).

t
From (4.1), at any time ¢, po(t) = [exp/ ngﬁva(u)cgz’_l(u)du] p2(0);
0

and from (4.3) p2(0) =1 > 0, so pa(¢) > 0: this implies that at any negative
time ¢ py(¢t) < 0 (from (4.1), with ¢;(¢) > 0 from (1.6) in section 1.1.3,
0 < vy, < w(t)); so, since from (4.3) py(0) = 0, it comes pq () > 0. O

4.1.3. ACCESSIBILITY. Let A be the set of points of the target N : (ca = d3)

that are accessible from (c; > dy). When o < 1 (resp. o> 1), A is included

in A" = {(c1,d2) € N ; ¢y > cipr (resp. cim)} where ¢ipp = (ﬁd;%f{[l)ﬁ
1

(resp. cipm = (Bdy?ve 1)1 ) (see Figures 4 and 5 in section 1.4.2).

Proof. For any vy € [0, vamr] (so vg > 0), any point a = (z1, dz) of A reached

with final control vy has to satisfy H(a,p(0),vo) > 0, i.e. (from (4.2) and

D
(4.3) in section 4.1.2) vocy' — Bugdy? > 0, i.e. ¢ > (Bdy?vg™1)»1, and so
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comes the result since & — 1 < 0 and 0 < vy < vps (resp. since « — 1 > 0
and 0 < v, < vg). O

4.1.4. SINGULAR BC-EXTREMALS. There is no singular BC-extremal when
a < 1; indeed the (necessary) Legendre condition is satisfied if and only if
o> 1.

Proof. From section 1.3.4 and (4.2) any singular BC-extremal has to satisfy
)

the Legendre condition ——- [ ;.,)< 0,1.e. —a(a—1)5v~" 2¢y?py < 0, which

is true if and only if o > 1 since at any non-positive time ¢ po(t) > 0 (cf.

section 4.1.2), v(t) > v, > 0, and ¢3(t) > 0 from (1.6) in section 1.1.3 with

c2(t) > 0 if ¢ is not the initial time. O

4.2. LOCAL SYNTHESIS FOR o < 1

THEOREM 4.1. Locally (near the target N ), as shown by Figure / in section
1.4.2, the optimal trajectories are the yar arcs arriving on A" = {(c1, ds) €
N 5 ¢1 > ey} defined in section J.1.3. Note that the point Eyy defined in
section 1.4.2 as the point of the target such that ¢o = 0 when v = vy, is
En = (e1m, d2) arrival point of an optimal exceptional trajectory vas.

Proof. When o < 1, we know from section 4.1.4 that any BC-extremal
(%, p,v) is regular.

Let us assume that ¢; > 0, which is not restrictive in this local study near
N :(eg=4dy>0).
Moreover, for any BC-extremal (Z, p,v), it comes from (4.2) in section 4.1.2:

ol .
o l@sn= —p1 + (et — afv®” 1 52 ) P2 (4.4)
with

—p1+eci'p2 >0 (4.5)

since H (2, p,v) = v(=p1 + I'pa) — Bo¥cPpa < v(=p1 + ¢[*py) [indeed
v > v, > 0, we assumed that ¢o > 0, and ps is positive valued from 4.1.2]
and [from PMP] H(%,p,v) > 0 with v > v,, > 0.

Let us then introduce

1 a1
= (-] (0

S . . oH ,_
which is the solution to the equation in v : —(&, p,v) = 0.
v

Let us consider a fixed (Z, p) satisfying (4.5) and such that ¢; > 0, ¢3 > 0,
p1 > 0 and py > 0; let us look then for the variations of v — H (%, p, v) for
v>0:
from (4.2) in section 4.1.2 it comes

lim H(z,p,v) =0
v—0t
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and, since moreover o < 1, we get:

o

Sz (8:5,0) = —a(a = 1) v e} py > 0
UETOO f{(jvﬁv v) = UETOO v[=p1 +ci'p2 — ﬁva_lc;2p2] = +o0

So comes the following table 1 which gives the variations of v — f{(i,ﬁ, v)
for v > 0.

Table 1

Computing as in the proof of result 4.1.3, we find that at any point
a = (c1,dy) of A" with p(0) = (0,1) according to (4.3) in section 4.1.2,
H{(a,p(0),vp) > 0 and that H(a,p(0),var) = 0 if and only if ¢; = ¢1m.
Then:

e for any point @ = (c1,d3) of A’ such that ¢; > c;p we know from
Table 1 that vas > ©(a, p(0)) and that vy maximizes v — H(a, p(0),v)
for v € [vy,vpr]. So locally the vys trajectory arriving at a is BC-
extremal.

e since p(0) = (0, 1), H (a,p(0), var) is equal to ¢ at point a with v = vpy;
s0 (c1a1, dz) is the point of the target such that ¢; = 0 with v = vy, i.e.
(c1pm,d2) = Fpr introduced in section 1.4.2; and the arc yps arriving
at Eyr is tangent to V.

And since H(Eps, p(0),var) = 0, we know from Table 1 that #(Eys, p(0)) =
vps and that vyy maximizes v — IN{(EM,]B(O)7 v) for v € [V, var].

Moreover, in that case, é3(0) = 0 with v = vas and Z(0) = Epy, ie. (cf. sec-
tion 4.1.3) ¢1(0) = c1pr and ¢2(0) = dy. So, since from (1.4) in section 1.1.2

— 1
¢ = —vdf L (2 S .
b — e Gpaen which implies cg ) = —nvie™ T = Bu¥ngcl? ey, it
2 =vey Bve;
comes cgz)(O) = —nyud Tt < 0. Since ¢(0) = 0 and cgz)(O) < 0, we get

from Taylor’s expansion of ¢y at time 0 that for any time ¢ close enough to
0 CQ(t) < CQ(O) = dg.

So the yps trajectory arriving at Fyy is locally BC-extremal.
Recapitulating, we get the result. O
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4.3. LOCAL SYNTHESIS FOR o > 1

4.3.1. STRATIFICATION OF THE TARGET N. Locally (near the target N ) as
shown by Figure 5 in section 1.4.2 any point of A" = {(¢1,d3) € N ; ¢
c1m ) defined in section 4.1.3 is the arrival point of a BC'-extremal trajectory.
The point E,,, defined in section 1.4.2 as the point of N such that é3 = 0
when v = vy, is B, = (cim, d2) arrival point of an exceptional BC'-extremal
trajectory with final control v,,.

The point S,, (resp. Sar) is, as in section 1.4.2, the point of N where the
final singular control is v, (resp. var).

The final control of the BC'-extremal trajectories arriving on N is then shown
by Figure 14

C2

Sur

k.,
7 I P
; N\ A\ U|t Oevmva[AM

1

Figure 14

Proof. As in the proof of Theorem 4.1:
We assume that ¢z > 0,that any BC-extremal (z, p, v) satisfies (4.4) and
(4.5), and we consider ¢ defined by (4.6) which is the solution to the equation
H
in v: 8@ (z,p,v) = 0.
v
Let us consider a fixed (Z, p) satisfying (4.5) and such that ¢; > 0, ¢3 > 0,
p1 > 0 and pp > 0; let us look then for the variations of v — H(Z, p,v) for
v > 0:

from (4.2) in section 4.1.2 it comes lim H (&, p,v) = 0; and since moreover
v—0t
o> 1, we get:

O°H . o
ov? ($7p7 U) = —04(04 - 1)ﬁ a2 2p2 <0
Jim H(3,pv) = Tim v*[=fc}?py + 0! (=p1+ o' py)] = —o0

So comes the following table 2 which gives the variations of v — f{(i,ﬁ, v)
for v > 0.

Computing as in the proof of result 4.1.3, we find that at any point a =
(c1,dy) of A, with p(0) = (0,1) according to (4.3) in section 4.1.2,
H(a,p(0),v,,) > 0 and that H(a,p(0),v,,) = 0 if and only if ¢; = ¢1p.

nl e
. . ~ . o A ~ . C a—1
Moreover (4.6) implies that ¥ |;=q, which is ¢(a, p(0)), is equal to ( ﬁldnz))
x
2
and so is an increasing function of ¢;.
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Table 2

Then for any point @ = (c¢1,ds) of A’ such that ¢; > ¢, we know from
Table 2 that v,, < o(a,p(0)) and that v — H(a, p(0),v) for v € [v,, var] s
maximized by:

o v, if O |i=0< vy, Lee. if a €]E,,, S, ]

o U |t:0 if o |t:0€]vm7 U]M[7 ie.ifa E]SWN SM[

e vy if O |4=0> var, i.e. if a is on the right of Sy;.
The proof of the results claimed about F,, is similar to the proof given in
section 4.2 about Fjy. O

4.3.2. SYNTHESIS.

THEOREM 4.2. Fach optimal trajectory is of the form vyryvym, where each
arc of the sequence may be empty, and each open-loop control is CO.
Numerical simulations (cf. section 8) show that the optimal synthesis is
given by Figure 5 in section 1.4.2.

Proof. As in the proofs of sections 4.2 and 4.3.1 we assume that ¢ > 0.
Along any BC-extremal (Z,p, v), let us study the variations of the singular
control ¢ (cf. (4.6) in section 4.2) which are the same as the variations of
W = afo*! since @ > 1 and 3 > 0.
1
From (4.6) it comes @ = —=(c}"' — ZA) and so computations taking into
Cy P2
account (1.4) in section 1.1.2 and (4.1), (4.2) in section 4.1.2 yield:

ffi_ﬁ) _ _w (4.7)
t 022 P2

Moreover we know that: ¢; > 0 (cf. (1.6) in section 1.1.3), p; > 0 (cf.
section 4.1.2) and that ¢ — H(i(t), p(t), v(t)) is a non-negative constant (cf.
PMP). And we assumed that ¢z > 0.

If H(%,p,v) = 0, which (from section 4.3.1) occurs only for the exceptional
BC-extremal arriving at Iv, with final control v,,, ¥ is constant along this
BC-extremal and so does ©. So, considering Table 2 in section 4.3.1, at
any non-positive time ¢ close enough to 0, 0 < wv,, since 0 |=o< v, =
O(E,, p(0)); and so v, = 0(2(t), p(t)) maximizes v — H(&(t), p(t),v). Thus
F,, is the arrival point of an optimal exceptional trajectory 7.,.
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If H(&,p,v) > 0, which (from section 4.3.1) occurs for BC-extremals ar-
riving on N strictly on the right of F,,, @ is a decreasing function of time
along any of these BC-extremals and so does ©.

We already noticed in section 4.1.4 that ¢3 > 0 with ez(t) > 0 if ¢ is
not the initial time ¢y (from (1.6) in section 1.1.3); and we assumed in
sections 4.2 and 4.3 that ¢3 > 0. If c2(tg) = 0, it comes from section
4.1.2 and (4.6) that 1im+ 0(2(t),p(t)) = +oo; otherwise let us prove that

t—td

1im+ v(z(t), p(t)) = +oo with tp = —o0, so that we can conclude in any case
t—td

that ¢ relates biunivoquely and decreasingly the considered times Jty, 0] onto
[0 |¢=0, +00]. Indeed at any time ¢ < 0:

e in the considered case t — H ((t), p(t), v(t)) is a positive constant (say
H); and ¢y(t) > 0;

e moreover ¢1(t) > 0 [from (1.6) in section 1.1.3]; and p;(¢) > 0, pa(t) > 0
[from section 4.1.2].

e So (1.4) in section 1.1.2, (4.1) and (4.2) in section 4.1.2 imply that
ér(t) < 0, pa(t) > 0,0 < H < ép(t)pe(t) and so é(t) > 0. Thus, since
p2(0) = 1 from (4.3) in section 4.1.2, it comes from (4.7):

which is a negative constant

dw _ ot (0 H
dt = (o)

so we get lim w(z(¢),p(t)) = +oo0, and so lim o(Z(t),p(t)) = +oo.
t——00 t——00

Finally we find the following results:

o if 0 |;=0> vas, which (from section 4.3.1) occurs for BC-extremals arriv-
ing on the right of Sy, at any time ¢ €]tg, 0] close enough to 0, © > vas and
so (from Table 2 in section 4.3.1) vay maximizes v — H(2(t), p(t),v). Thus
any point on the right of Sys is the arrival point of an optimal trajectory
YM

o if 0 |;=0€ [Vm,vm[, which (from section 4.3.1) occurs for BC-extremal
arriving on [Sy,, Sy, there exists a single time tps €]to, 0 such that ¢ |4=¢,,=
vpr. And at any time ¢ €]tg, 0] close enough to 0: for ¢t < tps (resp. t > tar),
0 > v (resp. O € [vy,, vp[) and so (from Table 2 in section 4.3.1) vps (resp.
) maximizes v — H(#(t), p(t), v). Thus any point of [S,,, Sx[ is the arrival
point of an optimal trajectory yas¥,

o if 0 |;=0< vy, which (from section 4.3.1) occurs in the considered case
for BC-extremals arriving on |E,,, S,,[, there exists a single time s (resp.
tm) in Jto, 0] such that o |i=¢,,= vas (resp. 0 |¢=t,,= vy ). And at any time
t €]to, 0], close enough to 0: for ¢t < tps (resp. ¢ €Jtar, taml, t > b)), 0 > vpmr
(resp. U €Jvg,vam], © < v,) and so (from Table 2 in section 4.3.1), v
(resp. © €]vg, var], Um) maximizes v — H(#(t), p(t),v). Thus any point of
|Eyy Spm] is the arrival point of an optimal trajectory yas9vum. O
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5. TIME MINIMAL SYNTHESIS FOR P; IN THE CASE n; = ngy = 1
5.1. (RENERALITIES

5.1.1. DEFINITIONS AND NOTATIONS. According to section 3.1.3 we can
consider instead of 751 in the case ny = ny = 1 the equivalent time min-
imal projected problem P} with system (1.18) (cf. section 1.4.1), control
w € [u_,us] with u— < 0 < uy and terminal manifold N : (z = d;) to be
reached from an initial value zg € [0,d;[. So the state-vector is z = (z,v)",
with v €]0, A4[ (cf. (1.6) in section 1.1.3). Let us denote by u, the singular
control and by v_ (resp. 74, 7s) any arc satisfying (1.18) with control u_

(resp. U4, us).

5.1.2. ADJOINT-STATE. Along any BC-extremal (z, p, u), the adjoint vector
p= (p1,p2)! associated to x = (z,v)! satisfies:

P = (ﬁva - U)pl

pr = (@Bl —z— 1)p — %(v)upg (51
the corresponding Hamiltonian being
H(z,p,u)= (v+vz— Bv¥z)p; + h(v)ups (5.2)
At final time 0, we can take
p(0) = (1,0) (5.3)

and at any non positive time t,py(t) > 0.

Proof. Equations (5.1), (5.2) come from section 1.3.1 applied to the optimal
control problem Pj stated in section 5.1.1.
The proof of (5.3) is similar to the proof of p(0) = (0,1) in section

t

4.1.2. And from (5.1), at any non-positive time ¢, py(t) = [exp/ (Bv*(u) —
0

v(u))du] p1(0) with p1(0) =1 > 0, so py(t) > 0. O

5.1.3. ACCESSIBILITY. Let A be the set of points of the target N : (z = dy)
that are accessible from (z < dy). Let G be the set of points (z > 0,v €
10, A4[) such that 2 =0 (cf. (1.18) in section 1.4.1) as in section 1.4.1.
When a < 1 (resp. a > 1), A is included in A" = {(dy,v €]0,A4]) €
1

By
1+d;
of GN (z=dy). Note that when ov < 1 and vy > Ay, A" is empty and so A
1s empty.

l—a
N v>wys (resp. v <wva)} where vqg = ( ) s the v-coordinate

Proof. For any ug € [u_,u4], any point @ = (dy,v) of A reached with final
control ug has to satisfy H (a, p(0),up) > 0, i.e. from (5.2), (5.3) in section
5.1.2 v+ vdy — fv®dy > 0 ie. (since Sdy > 0 from section 1.1 and since

14+d
v > 0 from (1.6) in section 1.1.3) v*~! < ﬂ—ti L and so comes the result
1
according to the sign of @ — 1. Note that v 4+ vdy; — fv*dy = 2 |;=, and so
v = v4 is equivalent to z = 0 at the arrival point a. O
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5.1.4. SWITCHING FUNCTION. The switching function of 75{ 15
Gt h(v(t))pa(t) (5.4)

Thus (5.3) in section 5.1.2 implies that ®(0) = 0. Indeed we can notice that
problem Py is flat.
Then at any time:

d=—h(v)(14 2z —afv*L2)p (5.5)

Proof. Computations, applying equations (2.2)-(2.4) of section 2.1.2 to prob-
lem Py stated in section 5.1.1 with affine single-input system (1.18). O

5.1.5. SINGULAR BC-EXTREMALS. As in section 1.4.1, let S be the set of
d OH
int 0 0,A h that —— = 0.
points (z > 0,v €]0, A4[) such tha e
LEMMA 5.1. Any singular arc vs of a BC-extremal trajectory is included in
S, with S = {(z > 0,v €]0, A[) such that z(aBv*~! — 1) = 1}; the singular
2

control is us = — < 0 and so v is a decreasing function of time along
azh(v)
Vs-

d OH
Proof. From section 1.3.4 any singular BC-extremal has to satisfy o=
U

0, so v, is included in S.

From (5.2) in section 5.1.2, %8—5 = 0 is equivalent to %(h(v)pg) =0
which is equivalent from (1.18) in section 1.4.1 and (5.1) in section 5.1.2 to
(apv®~tz —z—1)h(v)p; = 0. We thus find the expected equation of S since
h(v) is always positive (from (1.7) in section 1.1.3) and since p; is never zero
(from section 5.1.2).

Applying (2.5) (cf. section 2.1.4) to system (1.18), we get the value of
the singular control u, which is negative since o > 0 (from section 1.1) and
v2zh(v) > 0 (from (1.6), (1.7) in section 1.1.3). Finally, since 0 = h(v)u (cf.
(1.18)) with h(v) > 0 (from (1.7) in section 1.1.3), u, < 0 implies © < 0
along ;. O

LEMMA 5.2. Let us consider 51 = SN N as in section 1.4.1.

o Ifaw < 1, as shown by Figure 2 in section 1.4.1, Sy is notl accessible from
(Z < dl)

o Ifa > 1, any singular BC-extremal arriving on N (with admissible sin-
gular control us) arrives at Sy and is hyperbolic. Along S, us relates biuni-
voquely and decreasingly the considered v E](aﬁ)ﬁ, Aq[ onto | — 00, 0[; so
there exists a single point of S (denoted by S, as in section 1.4.1) where
us = u_. And there is no exceptional singular BC -extremal arriving on N.

Proof. From the equation of S given in Lemma 5.1, S; = (dy, v1) satisfies:
1 + d1 - aﬁdlvf_l =0 (56)

Soif o < 1, 57 ¢ A’ (defined in section 5.1.3) which contains the points of
N that are accessible from (z < dy).
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From Lemma 5.1, any singular BC-extremal arriving on [V arrives at NNS =
S1; moreover its Hamiltonian is H (S, p(0), us |1=0) = v1 + vidy — Bv1“dy
(from (5.2), (5.3) in section 5.1.2) and so is positive when a > 1 from (5.6).

Then in that case o > 1, according to the definition recalled in section
2.1.4, 75 is hyperbolic if and only if (p,ad?Y (X)) < 0; and indeed, since 7,
is included in S (cf. Lemma 5.1), computations give:

(p,ad®Y (X)) = —a(a = 1)Bv" "2k (0)py

with a(e — 1)8 > 0 (from section 1.1 and since a > 1), v*"2zh%(v) > 0
(from (1.6) and (1.7) in section 1.1.3) and p; > 0 (from section 5.1.2). So
7vs is hyperbolic, with positive Hamiltonian (thus v, is not exceptional).

1
Finally, according to Lemma 5.1, at any point (z = — v) of

aprel— 17
_ﬂv(aﬁva_l - 1)
aR  In?(v/A;)
and v €]0, A1[) such that lim u, =0, lim u, = —o0 and
v—)(aﬁ)ﬁ v Ap

S, us = is a function of v E](aﬁ)ﬁ, Aq[ (indeed z > 0

d E1 2 a—1 a—1
%(us) = T aRInF(o/AT) [(a?Bvo~! = 1) In(v/A1) = 2(afv™! = 1)]

F
so (since v €]0, Aq], fl > 0 and § > 0 from section 1.1 and since o > 1),

d by 1
— (s _— TR Ap) —2
dv(u ) < &RK%S(U/Al) (Oéﬁ?] )[H(U/ 1) ]
1
which has the sign of —(afv*~! — 1) < 0 since on S, z = —————is
afve—l —1
positive. So we get the result, specially for Ss,¢ since u_ is negative. U

5.1.6. REGULAR BC-EXTREMALS.

LEMMA 5.3. e If a < 1, any point (di,v €]0, A1]) of N such that v > vy
[va is defined in section 5.1.3] is the arrival point of a BC-extremal with
final control u,.

o [fao> 1, any point (dy,v €]0, A1[) of N such that 0 < v < vy
(resp. v1 < v < wva) [v1 is defined in section 5.1.5] is the arrival point of a
BC'-extremal with final control uy (resp. u_).

Proof. Let a = (dy,v) be any point of N belonging to A" with v # va:
then we know (from the proof of section 5.1.3) that for any ug € [u_,u],
H(a,p(0),u0) > 0. And ¢(0) =0 (cf. 5.1.4); so Corollary 2.2 implies that
if ®(0) # 0 there is only one BC-extremal arriving at a, the control being
locally u. with ¢ = —sign(®(0)). Then comes the result according to the
sign of a — 1, since ®(0) = —h(v)(1 + dy — afdiv>~1) (cf. (5.3) in section
5.1.2 and (5.5) in section 5.1.4) and h(v) > 0 (cf. (1.7) in section 1.1.3) with
vy satisfying (5.6) in section 5.1.5. O

LEMMA 5.4. If it exists, the point GOAN = (dy,v4 €]0, A1]) is not accessible
from (z < dy). So A= {(d1,v) € A"; v#va}, A and vs being defined in
section 5.1.3.
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Proof. Let a; = (dy,v4 €]0, A1[) be G N N if it exists. From the proof of
section 5.1.3, vy is defined so that, for any ug € [u—, u4], H (a1, p(0), ug) = 0.

And similarly as in Lemma 5.3 it turns out that, when arriving at a4,
the extremal control is locally u. with ¢ = —sign(®(0)) = sign(1 4 d; —
aﬁdlvj_l); thus, since (from section 5.1.3) 1 + d; = ﬁdlvj_l and since
14 dy > 0, it comes £ = sign(1 — «).

But here we are in the exceptional case, so we have to check the position
of the considered 7. arc arriving at a; with respect to N: indeed for this
arc z(0) = dy, 2(0) = 0 (cf. section 5.1.3) and so the expansion of z at time
0 to the second order implies that locally sign(z(t) — d;) = sign(2(2)(0)).
Moreover (1.18) (cf. section 1.4.1), with v = u., 2(0) = (d1,v4)" and so
£(0) = 0, implies 2)(0) = h(va)u(1 — @)(1+dy). So 2D (0) > 0 since we
know that ¢ = sign(l — «), since ¢ = sign(u.) [indeed u_ < 0 < uy was
recalled in section 5.1.1] and since h(vy) > 0 from (1.7) in section 1.1.3.
Finally we get for any time ¢ close enough to 0: z(¢) — dy > 0 and so comes
the result. O

5.2. LOCAL SYNTHESIS

In this section 5.2 we shall asume that v4 < Ay [v4 is the v-coordinate
of (£ =0)N N defined in section 5.1.3]; note that if this assumption does
not hold (i.e. if Ay < wy), the corresponding synthesis is simply obtained
by restricting the following results to (v < Ay).

5.2.1. Case a < 1. Locally (near the target N), as shown by Figure 2
in section 1.4.1, the optimal trajectories are the BC-extremal trajectories
arriving on A = {(dy,v €]0, A1[) € N ; v > v4} which are y4 arcs.

Proof. Lemmas 5.2 and 5.4 in the case a < 1 give all the BC-extremals,
which are y4 trajectories arriving on A. O

5.2.2. CASE a > 1. Locally (near the target N ), the synthesis is shown by
Figure 15.

Proof. The synthesis near G N N is formed by v_ arcs according to Lemma
5.3. Since from Lemma 5.4, G N N is not accessible from (z < dy), Figure
10 in section 5.3 of [5] in the case X3(0) < 1 shows the corresponding
local synthesis (indeed, it is the case where the exceptional trajectory is not
admissible).

If zgat > dy, we know from Lemma 5.2 that uy; < w_ at any point of
SN (z < dy) which is included in SN (v > vgat); 80 any singular arc, included
in S from Lemma 5.1, is parabolic (cf. section 2.3). The synthesis near Sy
is shown by Figure 15(i) according to Lemma 5.3 and to Figure 9 in section
5.2.4 of [5] in the case a < 0 (indeed we know from section 5.2.1 of [5] that
a < 0 is the case where the singular arc arriving on N is hyperbolic when
the singular control is admissible, which is the considered case from Lemma
5.2).

If zeat < dy, we know from Lemma 5.2 that uy; < w_ at any point of
SN (2 < zeat) = SN (V> Vsar), that us €Ju_, 0[Clu—, uy[ at any point of
SN (zsat < 2 < dp) = 95N (v1 < v < vgat) and that any singular arc included
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Zoal

dy

O Usat 01 V4 1

Figure 15(i) : z50¢ > dy

dy

Zoal

) U1 Usat VA 1
Figure 15(ii) : 250t < dy

,,,,,,,,,, A, — = = set of switching points for yyv_
Figure 15

in the arc (Ssat51) of S is hyperbolic. The synthesis near Sy is thus shown
by Figure 15(ii) according to section 5.2.2 of [5]. O
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5.3. GLOBAL SWITCHING RESULTS IN THE CASE « > 1

5.3.1. SWITCHING RESULT FOR <4 EXTREMAL ARCS. Let v4, defined for
times t € [ty,t2], be a non-empty subarc of a BC-extremal trajectory; then,
if to is a switching time, t1 cannot be a switching time.

Proof. From section 2.1.3 v, satisfies ®(¢) > 0 at any time ¢ €]t1, t3[; more-
over, if ¢1 and t; are switching times, ®(¢;) = ®(t2) = 0 (cf. Corollary 2.2),
and so we should have ®(t;) > 0 and ®(t,) < 0.

Let us consider ¢ = ®/h(v). Then, since h(v) > 0 (cf. (1.7) in section
1.1.3), we should have ®¥(¢t;) > 0 and %(t2) < 0. And computations taking
into account (5.5) in section 5.1.4 and (1.18) in section 1.4.1 yield ¢ =
(o —1)pv*2[v2 + azh(v)ui]ps; so, since (a—1)3 > 0 (from section 1.1 and
since @ > 1), v > 0, 2 > 0, h(v) > 0, ux > 0 (from section 1.1) and p; > 0
(from section 5.1.2), it comes zb > 0 along v4: this is contradictory with
P(t1) > 0 and ¥ (t2) < 0 knowing that ¢; < 5. O

5.3.2. OPTIMAL TRAJECTORIES. Optimal trajectories are shown by Figure
3 in section 1.4.1.

Indeed, z;, denoting the z-coordinate of the unique point Sgu: of S where
us = u_ (cf. section 5.1.5), optimal trajectories are:

o if zgq > dy: yyy— (see Figure 3(i))

o if zoq < dy: yyy_7ys (see Figure 3(ii))
where each arc of these sequences may be empty.
Notice that if zs, > dy, the optimal policy is just an extension of the local
synthesis described in section 5.2.2; whereas if z;, < di a supplementary
switch may occur for yv_ arcs when globalizing.

Proof. e If zg,t > dy, sections 5.2.2 and 5.3.1 imply that any optimal tra-
jectory is v4v— (where each arc of this sequence may be empty) and that
these optimal trajectories are shown by Figure 3(i).

o If z,¢ < dy, from sections 5.2.2, 5.3.1 and section 6.2.7 of [5], a
sufficient condition for the result is that no sequence vsvy_ (with v, and v_
non-empty) can appear in a BC-extremal trajectory.

Indeed in that case zgy¢ < dy, if there exists an extremal sequence 7ysy_
(with v, and y_ non-empty), let us denote by ¢ = (z,,v,) the switching
point from v; to y_ and {, the corresponding switching time. Then, as
shown by Figure 16:

the point o belongs necessarily to the open arc (Sgat51) of S from Lemma 5.2,
with o # Sy (resp. Seat) for v_ (resp. v;) not to be empty; so us |,=»€]u—,0[;
thus from (1.18) in section 1.4.1, it comes for the extremal sequence ~,v_
at the switching time ¢, : limF 0(t) = h(vy)um < lim o(t) = h(ve)Us |p=c

t—=tg —+ta

while Z is continuous at time {,; so at any time ¢ > t, close enough to ¢,,
the arc vy_ starting from point ¢ is on the left of S

but from section 5.2.2 and section 6.2.7 of [5], the arc (Sst.S1) of S separates
optimal arcs v4 (on the left of S) and y_ (on the right of S);

so no extremal arc v_ can be found on the left of .S near o.

Thus, optimal trajectories are shown by Figure 3(ii). O
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Zsad

0 vy Usat Ay v
Figure 16

6. TIME MINIMAL SYNTHESIS FOR 752
6.1. (RENERALITIES

6.1.1. DEFINITIONS AND NOTATIONS. According to section 3.1.3, we can
consider instead of P, the equivalent time minimal projected problem 775
with system (3.5), control v € [u_,uy] with u_ < 0 < u4 and terminal
manifold N : (¢z = dz) to be reached from an initial value (¢3)g € [0, dz[. So
the state-vector is @ = (21, c9, v)’, z1 being related to the original variable
c1 by (3.2). Note that if ny > 1 it comes 2; < 0 since (cf. (1.6) in section
113) c > 0.

Let us denote by u, the singular control and by v_ (resp. v4,7s) any arc
satisfying (3.5) with control u_ (resp. uy, uy).

6.1.2. ADJOINT STATE. Along any BC-extremal (z,p, ), the adjoint vector
p = (p1,p2, p3)' associated to v = (x1,c2,v)" satisfies (when taking (3.2)
into account):

. _ 2711—1
P11 = —mve P2
P2 = nafvcs? py (6.1)
. n a—1_n dh
s =pit (=t + o™ )ps — o (v)ups
the corresponding Hamiltonian being:
H(z,p,u) = —vp; + (vey? — Bv“cy?)pa + h(v)ups (6.2)
At final time 0, we can take
p(0) = (0,1,0) (6.3)
and at any negative time t, py(t) > 0 and p2(t) > 0.
Proof. Similar to the proof of section 4.1.2. O
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6.1.3. ACCESSIBILITY. Let A be the set of points of the target N : (co = d3)
that are accessible from (c; < d3). Then A is included in A" = {( cr >
0,da, v €]0, A1[) € N 5 ' — pvo~tdy? > 0}, the frontier of which is €& =

{(e1 > 0,d2,v €]0, A1) € N ; ' — v dy? = 0 d.e. ¢ =0},

Proof. For any ug € [u_, uy] any point @ = (¢q, dg, v) of A reached with final
control ug has to satisfy H(a,p(0),ug) > 0 i.e., from (6.2), (6.3) in section
6.1.2 velt — pv@dy? > 0, and so comes the result since v > 0 from (1.6) in
section 1.1.3. O

6.1.4. SWITCHING FUNCTION. The switching function of 775 15

Gt h(v(t))ps(t) (6.4)
So (1.7) in section 1.1.3 implies that

P(t) =0 p3(t) =0 (6.5)

And at time 0, ®(0) = 0 (c¢f. (6.3) in section 6.1.2). Indeed we can notice
that problem P} is flat.

Moreover

@ = [p1 + (=" + B e palh() (6.6)

Proof. Computations, applying equations (2.2), (2.3) of section 2.1.2 to
problem P} stated in section 6.1.1 with affine single-input system (3.5). O

6.2. STRATIFICATION OF THE TARGET N

6.2.1. SINGULAR BC-EXTREMALS.
LEMMA 6.1. As in section 1.4.3, let Sy be the set of points (¢; > 0,dy, v €

d OH
10, A4[) of N such that — pri = 0. Then Sy = {(c1 > 0,d2,v €]0, A4]) €

N ' — apv=tdy? = 0}. And any singular BC-extremal arriving on N
arrives on Sy. So, when o < 1, since So N A" = 0, there is no singular
BC'-extremal arriving on N.

8H
Proof. From section 1.3.4 any singular BC-extremal has to satisfy — 7 Ju

0, so any singular BC-extremal arriving on N arrives on .95.
d OH
From (6.2) in section 6.1.2, & 9u
which is equivalent from (3.5) in section 3.1.3 and (6.1) in section 6.1.2 to
h(v)[ci'pr — (et — aBv®~tey?)ps] = 0. We thus find the expected result
from (1.7) in section 1.1.3, (6.3) in section 6.1.2 and ¢3(0) = d since we
assume that the considered trajectory arrives on N at ﬁnal time 0.
Finally, when a < 1, any point (c1,dz, v) of Sy satisfies ¢! — fvo~1d}? < 0
and so Se N A" = (: this implies that S, N A =0 (A C A’ was proved in
section 6.1.3) and thus there is no singular BC-extremal arriving on N. O

d
= 0 is equivalent to %(h(v)pg) =0
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LEMMA 6.2. Let us assume that o > 1 and cg > 0. Along any singular

BC'-extremal arriving on N the singular control is:
ny o’

Uy = ——
a c2h(v)

<0 (6.7)

and specially at the arrival point x(0) € Sq, the final singular control is:

_ nQ—IU(O)a—I—l
Us |t:0— —nzﬁdz W

Then v(0) — us |i=¢ relates biunivoquely and decreasingly 10, A1[ onto
] — 00,0[; so there exists a single point of Sy (denoted by Ssut as in sec-
tion 1.4.3) where us |1=o= u_.

<0 (6.8)

Proof. Equation (6.7) comes from section 2.4 applied to problem 775 with
affine single-input system (3.5): indeed we find

D =ala—1)pcy?v 2k (v)
D' = (a—1)fnyci e~ oo h3 (v) (6.9)
D" = (a—1)8cy?vh*(v)

Since 5 > 0 from section 1.1, ¢; > 0 and v > 0 from (1.6) in section 1.1.3,
h(v) > 0 from (1.7) in section 1.1.3 and since we assume that o > 1 and
c3 > 0, it comes D # 0 and then (6.7) when applying section 2.4 again.
Equation (6.8) comes from (6.7) considered at time 0, knowing from
Lemma 6.2 that 2(0) € 5;.
Then from the value of A(v) (cf. (3.5) in section 3.1.3) and from (6.8) we
get

o omkEp L w(0)”
Us |t:0_ - d2 2
R In(v(0)/A1)

which is a function of v(0) €]0, A;[ such that

lim g |t=0= 0, lim g |t=o= —00

v(0)—=0F v(0)— AT
and
d E In(v(0)/A;) — 2]v* (0
(us |t:0) — _n2 1ﬁd;2_1 I:Oé H(U( )3/ 1) ]U ( ) < 0
dv(0) R In”(v(0)/A1)

: Eqp .
since v €]0, A;[, —— > 0 and dy > 0 from section 1.1. So we get the result,
specially for Sgy¢ since u_ is negative. O

LEMMA 6.3. Let us assume that o > 1 and ¢y > 0.

Along the singular arc (denoted by vsa) arriving at Ssu, us < u_ at any
negative time close enough to 0: $0 v is not extremal.

Any singular BC-extremal arriving on N (with admissible singular control
us) is hyperbolic and arrives at a point (¢; = afv " 1dy, dy,v) of Sy such
that v < vy, where vyy denotes the v-coordinate of S4;.

Any point (¢; = afv®ldy, dy,v) of Sy such that v > v,y is a parabolic
fold point.
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Proof. From (6.9) it comes DD" = a(a—1)%3%¢5"v?* =248 (v) which implies
that DD” > 0 since v €]0, A4 and 3 > 0 from section 1.1, h(v) > 0 from
(1.7) in section 1.1.3 and since we assume that > 1 and ¢; > 0.
Then we know from Corollary 2.6 and from section 2.3 that any point of
Sy is an hyperbolic (resp. parabolic) fold point if us |;=0€]u—_, uy[ (resp.
Us |t:0€ [u—7 u-l—])
So Lemma 6.2 yields the result claimed about points of S5 that are not Sg,y.

The singular arc 4, arrives at Sgae with saturated final control us |;—p=
u_: the local synthesis near such points is described in section 6.2.7 of [5].
Notice that in the case where singular arcs arriving on N are hyperbolic
when the singular control is admissible (cf. sections 6.2.3 and 6.2.4 of [5]),
which is just proved to be considered case, the study of the synthesis splits
into two subcases, depending on the admissibility of the singular control
along the trajectory that arrives at the saturation point; to find out about
it, let us study the sign of (X (Ssat) + u—Y (Ssat), (Vaus)(Ssat)): it appears
that if this sign is plus us < u_ along s, at any negative time close enough
to 0.

Indeed at any point (¢; > 0,¢2 > 0,v €]0, A1[), with & = (21, ¢z, v)" and
zq related to ¢y by (3.2) (cf. section 3.1.3), it comes:

C9 (654

a+2 71
2 ny n2—2"Y G — 2
a |7 h(v) - 2 ’ (1 ln(v/Al))]

So for & = Seu¢ such that c; = dy (since Sgat € N),f;fl = afdy*v*~! (since
UOZ

n9 62711—1 02711 U3
(X (2)+u_ Y(x),Vyus) = = (nl 1 + 5 ) _

Ssat € S2 and from Lemma 6.1) and —ngﬁdgz’_l = u_ (since us; = u_

h(v)
at Ssat and from (6.8) in section 6.2.1) it comes:
<X(Ssat) +u_ Y(Ssat)7 (Vacu) (Ssat)> =
Comu_v | m c%nl_;fl_a N (a—1)et? N ot L 2
(87 ngﬁ d2 n2d2 d2 111(?]/141)

which is positive since ¢; > 0, dy > 0, v €]0, A4[, u— < 0 and § > 0 from
section 1.1 and since we are in the case o > 1. O

6.2.2. REGULAR BC-EXTREMALS. Any point of A\E strictly above (resp.
under) Sy is the arrival point of a BC-extremal with final control uy (resp

u_).

Proof. Let a = (c¢1,ds,v) be any point of A’\E. Then we know (from the
proof of section 6.1.3) that for any ug € [u—_,uy]| H(a,p(0),up) > 0. And
®(0) = 0 (from section 6.1.4); so Corollary 2.2 implies that if ®(0) # 0 there
is only one BC-extremal arriving at a, the control being locally u. with
£ = —sign(®(0)). Then comes the result, from the value of ®(0) (cf. (6.3)
in section 6.1.2 and (6.6) in section 6.1.4) and from the equation of Sy (cf.
Lemma 6.1). O
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6.2.3. EXCEPTIONAL CASE.

LEMMA 6.4. Let F be the exceptional locus, defined as the set of final points
of BC-extremal trajectories tangent to N. Then E is included in £ (defined
in section 6.1.3 as the frontier of A'). If o < 1 (resp. a > 1) the final
control on E is uy (resp. u_). And as Sy NE = ( there is no singular
exceptional BC'-extremal arriving on N.

Proof. For a BC-extremal (z, p,u), we are in the exceptional case if and only
if the Hamiltonian H is zero, i.e. (from PMP) if and only if H |¢=o= 0 which
from (6.2) and (6.3) in section 6.1.2 is equivalent to v(0)c;* (0) — Sv*(0)dy? =
0: thus the arrival point z(0) belongs to & defined in section 6.1.3 since
v(0) €]0, A;[ is not zero.

Similarly as in section 6.2.2, it turns out that, when arriving on F, the
extremal control is locally u. with ¢ = —sign(®(0)) = + (resp. —) if a < 1
(resp. a > 1) since Sy is under (resp. above) &.

Sy N & = 0 from equations of & (cf. section 6.1.3) and S3 (cf. Lemma
6.1). So comes the result since we just proved that any exceptional BC-
extremal arriving on N arrives on £ and since from Lemma 6.1 any singular
B(C-extremal arriving on N arrives on Sj. O

LEMMA 6.5. There exists a single point of £ [denoted as in section 1.4.3
E (resp. ) when o < 1 (resp. « > 1)] such that the exceptional arc
arriving at this point has with N a contact of order greater than two; and
the exceptional locus E' is the set of points of £ such that vy < v < Ay (resp.
v_ < v < Ayp), where vy (resp. v_) denotes the v-coordinate of £ (resp.

E_).
Proof. At any point ¢ = (cq,dz,v) of £, we have ¢y |y,=q= 0 le. ¢ =
Bv~tdy? (cf. section 6.1.3). And from Lemma 6.4, if a BC-extremal arrives

at a, the final control is u. with ¢ = sign(1 — «). Thus at final time 0 (i.e.
at point a) it comes from (3.5) in section 3.1.3:

A2(0) = Bd22voT (v) with

1 np (=g at+—(1—-«
I'(v) = (1—04)U5E£1H2 (AL)—nlﬂl_"ll d22( "1)11 o ), Then, since
1 1
Ey

m > 0, « > 0, § > 0, v €]0,A4] from section 1.1 and since
(1—a)u. >0,

lim I'(v) = 400,
v—0t ) .
_ 1 no(l—— at+—(1—«o
lim ['(v) = —ny 3 " d22( "1)A1 (179 < 0 and
v— AT

d R v
— nlﬁl_"l_ld;rz(l_a) (i + « (1 — i)) v(a_l)(l_"l_l) < 0.

So there exists a single value v. of v €]0, A;[ such that cg2)(0) = 0; and for

any v €]0, v.[ (resp. Jv., A1]) ng)(O) > 0 (resp. cgz)(O) < 0): thus the 7. arc
arriving at a is locally in (cg > dg) (resp. in (cg < dg)) from the expansion
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of ¢y at time 0 to the second order with ¢3(0) = dy and ¢é2(0) = 0, and so
comes the result at any point a of £ such that a # &..

And for @ = &, the expansion of ¢; at time 0 to the third order with
c2(0) = dg and é,(0) = cgz)(O) = 0 implies that at any negative time ¢ close

enough to 0 sign(cy(t) —dy) = —sign(C(QS)(O)). Computations give in this case

d
023)(0) = ﬁusdgz)vah(v)%F(U) and so, since § > 0, sign(u.) = ¢, v €]0, 44]

d
from section 1.1, A(v) > 0 from (1.7) in section 1.1.3 and since d—F(v) <0,
v

sign(cy(t) — dg) = . Thus, since € = sign(1 — ), if o < 1 (resp. a > 1) the
v. arc arriving at & is locally included in (¢ > dy) (resp. (c2 < d3)). O

6.2.4. STRATIFICATION OF N. Figure 17 summarizes the previous results
about final control on the target N, where A’ denotes the complementary of
A" in the physical domain (¢ > 0,v €]0, A1]) of N.

6.3. LOCAL SYNTHESIS

6.3.1. Case a < 1. Locally (near the target N ), the synthesis is shown by
Figure 7 in section 1.4.3

Proof. Lemma 6.1, sections 6.2.2 and 6.2.3 give all the BC'-extremals, which
are v4 trajectories arriving on A = (A'\E)U{(c; > 0,da,v) € €5 vg, <v <
Ay}, Since &4 is not accessible from (¢ < d3) (cf. Lemma 6.5) we have to
refer to Figure 8 in section 3 of [14] O

6.3.2. CASE a > 1. Locally (near the target N ), the synthesis is shown by
Figures 8 and 9 in section 1.4.3.

Proof. As noticed in the proof of Lemma 6.3, the local synthesis near 53 is
described in section 6.2.7 of [5] and specially is shown by Figure 17 since
the singular control is not admissible along the trajectory that arrives at the
saturation point. So the synthesis near .S; is shown by Figure 8 in section
1.4.3.

Since (according to Lemma 6.5) £_ is accessible from (c; < dg) we have to
refer to Figure 5 in section 3 of [14]; and since the synthesis near £ is formed
of v_ arcs (cf. Lemma 6.4), it is shown by Figure 9 in section 1.4.3. O

6.4. GLOBAL SWITCHING RESULTS IN THE CASE « > 1

6.4.1. SWITCHING RESULT FOR 74 EXTREMAL ARCS. Let v, defined for
times t € [ty,t3], be a non-empty subarc of a BC-extremal trajectory; then,
if 5 is a switching time, ¢; cannot be a switching time.

Proof. From section 2.1.3, vy satisfies ®(¢) > 0 at any time ¢ €]t1,t2;
moreover, if ¢; and ¢y are switching times, ®(¢;) = ®(¢t2) = 0 (cf. Corollary
2.2), and so we should have ®(t;) > 0 and ®(t,) < 0.

Let us consider ) = ®/h(v). Then, from (1.7) in section 1.1.3, we should
have ¥(t1) > 0 and ¥ (t3) < 0. And computations taking into account (6.4)
and (6.6) in section 6.1.4, (3.5) in section 3.1.3 and (6.1) in section 6.1.2

n2,a—1

yield o = py — ' ps + afcy? v py, and:
= (a —1)B[nac! >0 + auci?vo2h(v)]py (6.10)
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(8] Szg

d v
O U4 Al
Figure 17 (i) : e < 1
non-accessible points: and ... on &, with &4 non-accessible
G
52
Ug |t:0< U_
parabolic cas
N
K
Us |1=0= u_
U_ < Us |e=0
hyperbolic case
— &
—= 4 v
O U— Vgat A,

Figure 17 (ii) : o > 1

non-accessible points: and ... on &, with £_ accessible

e ) A U= Uy I:] U= u_
Figure 17

with u = uy along v4. So, since (v — 1) > 0 (from section 1.1 and since
a>1),v>0,c3>0,¢; >0, ur >0 (from section 1.1), h(v) > 0 (from (1.7)
in section 1.1.3) and py > 0 (from section 6.1.2), it comes ¢ > 0 along ~,:
this is contradictory with 1(¢1) > 0 and 1 (t3) < 0 knowing that t; < ;. O

6.4.2. OPTIMAL TRAJECTORIES, EXCEPT WHEN ng = 1 AND nq > 2.
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THEOREM 6.6. Let us assume that the positive integers ny, ny do not satisfy
(ng =1 and ny > 2).
Fach optimal control law has at most two switchings and each optimal tra-
jectory is of the form vivy_~s, where each arc of this sequence may be empty.
So we have the following result:
e For optimal trajectories arriving near Sq, the synthesis can be topologically
described by an invariant foliation (v = vg). Let vsqe denote the v-coordinate
of the saturation point Ss.; the syntheses in each leaf (v = vg) are shown
by Figure 8 in section 1.4.3:
if vo < Vsat, optimal trajectories are of the form yyy_~ys (see Figure 8 (i))
if vo > Vsar, optimal trajectories are of the form yiv_ (see Figure 8 (ii))
where each arc of these sequences may be empty.
o For opltimal trajectories arriving near £, the situation is intricated. Let v_
denote the v-coordinate of £_ defined in Lemma 6.5. Near a point &y # E_
of £, the optimal synthesis is described by a C° invariant foliation F: v = vy
the leaves of which are given by Figures 9 (i) and (ii); near E_ there is no
such foliation and the synthesis is given by Figure 9 (iii).

To prove this theorem, we have to set preliminary lemmas, which hold for
any positive integers nq, ns.

LEMMA 6.7. To prove Theorem 6.6, it is sufficient to show that no sequence
YsV— (with vs and y— non-empty) can appear in a BC-extremal trajectory.

Proof. Consider sections 6.3.2 and 6.4.1. U

LEMMA 6.8. Let vsy— (with vs and v— non-empty) be a sequence appearing
in a BC-extremal trajectory according to Figure 18

x(th)

Figure 18

where t9 and t3 are switching times.
Consider the saturating set (us = u_) denoted by Usy. Then, on the consid-

ered arc y_, 1im+ P(t) < 0 and there exists th, €lta, t3] such that ¢(t’2) =0,
t—t3

ie. x(th) € Usas.

Proof. From (6.10) in section 6.4.1, we know that along v_, at any time in
]t27 t3[ .
¥ = (= 1) B2 02 g v? 4 au_cyh(v)]ps.
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Moreover, since z(t2) € 7vs, us(tz) is admissible and thus us(t2) > u_, that
. 9 071“112
is ——=

> u_ (cf. (6.7) in section 6.2.1). Hence we get 1im+ (1) <0
>t

since 8 > 0, ¢ > 0, v > 0 from section 1.1, p; > 0 from section 6.1.2 and
since we assume « > 1.

Since z(t3) € 75, ©(t2) = ®(t2) = 0; and ®(¢3) = 0 since t3 is a switching
time.

Then, ® being C' on the considered BC-extremal, Rolle’s Theorem yields
the existence of ¢’ in ]ta, t3[ such that @(¢') = 0 since ®(ty) = ®(t3) = 0. So
we get from 1) = ®/h(v) (cf. proof of section 6.4.1) that (t5) = ¥ (t') = 0.

Then, 1 being continuous on the considered BC-extremal and differen-
tiable except at switching points, Rolle’s Theorem yields the existence of ¢,
in Jto, t'[Clts, ts[ such that ¢(t}) = 0.

Finally we get the result, since it comes from (6.10) in section 6.4.1 and
(6.7) in section 6.2.1 that:

along y_ [where u = u_] % = a(a — 1)Bc22v" 2 (u_ — u)h(v)  (6.11)

and since 3 > 0, ¢z > 0, v > 0 from section 1.1 (indeed the initial time is
lower than ¢3), h(v) > 0 (cf. (1.7) in section 1.1.3) and since we assume
a > 1. O

LEMMA 6.9. Any singular arc of a BC-extremal trajectory satisfies ¢o > 0.

Proof. Along any singular extremal ® = 0 (cf. section 2.1.4 and (2.3) in
section 2.1.2) that is, from the value of ® (cf. (6.6) in section 6.1.4) and
from (1.7) in section 1.1.3:

1= (] — aBvo el py (6.12)
Then

e at any negative time, since p; > 0 and py > 0 (cf. section 6.1.2), it
comes ¢t — afv*1el? > 0, which implies in the considered case o > 1,
éa = v(cft — B> teh?) > 0 (indeed ¢ > 0 and v > 0 from (1.6) in section
1.1.3)

e at time 0 (eventually), (6.12) becomes c]*(0) = afv®~'(0)d5? (cf.
(6.3) in section 6.1.2) which implies in the considered case o > 1, é2(0) =
v(0)(cf1(0) — Bv*~1(0)d5?) > 0 (indeed dy > 0 and v(0) > 0 from section
1.1). O

LEMMA 6.10. Consider the adapted coordinate:
y=cy/c)? (6.13)
introduced because of the saturating set Usye defined in the previous Lemma

6.8, the equation (us = u_) of which becomes:

U2

Yy = HQO'(U) with O'(U) = —m (614)
Then
. ¢ c
y= Tzl—l—nl—zv (6.15)
(&) (4]
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Proof. Equation (6.14) comes from the value of us (cf. (6.7) in section 6.2.1)
and equation (6.15) comes from (6.13) and from system (1.5) in section
1.1.2. O

Proof of Theorem 6.6. Let us assume that the positive integers nq, ny do
not satisfy (ng =1 and ny > 2).

Let us consider y,v- as in Lemma 6.8 and let us prove that lb(t) < 0 along
v— at any time t €]ty,t3], which is contradictory with Qb(t’z) = 0: thus we
prove that such a sequence 7s;v_ cannot exist, and from Lemma 6.7 the
theorem is proved.

Indeed v, satisfies é3 > 0 (cf. Lemma 6.9) and so é;(t2) > 0, which implies
y(tz) > 0 (cf. (6.15) in Lemma 6.10, with ¢4 > 0, ¢ > 0, v > 0 from (1.6)
in section 1.1.3). Let us then prove that § > 0 along v_ by proving that the
existence of 7 €]tq, t3] with y(r) < 0 is impossible.

Indeed, if such a 7 exists, there exists 7/ €]ts, 7[ such that g(7') = 0 and
y < 0 on |7/, 7] since y is a continuous function of time with y(¢2) > 0 and
y(7) < 0; and this is impossible since y(7’) = 0 with 7/ €]t3, t3[ implies that
¥y (r') > 0 [and so at any time ¢t > 7/ close enough to 7/, §(') > 0]: indeed,
from (6.13) and (6.15) in Lemma 6.10 and from (1.5) in section 1.1.2

= ol1 = By e e
and so, at time 7/ €]ty, t3[ such that g(7’) = 0, computations yield
(2)(7_/)_n( 1) - )M T2 (4 N2 (!
y =ni(n1(ny — 1) = (na = 1))ei" 77 () ea(7) 07 ()

()

(= e @) o= DA G T ()

and so y@ (1) > 0 since B > 0, u_ < 0, ¢ (7') > 0, e2(7') > 0, v(r') > 0
from section 1.1 (indeed the initial time is lower than t3), h(v(7")) > 0 (cf.
(1.7) in section 1.1.3) and since nq (ng—1)—(n1—1) > 0 under the assumption
that the positive integers ny, ny do not satisfy ny = 1 and ny > 2.

Then: )

e since we know from (6.11) that along ~v_, sign(v) = sign(u_ — u,) with:

U_ — Usg = U_ +

from (6.7) in section 6.2.1.
e since we just proved that y > 0 along v_, and since

d( v ) (In(v/A1) — 2)h(v)u_

dt \In2(v/Ay)) In®(v/A;) <

with v €]0, A;[ and y > 0, so that along v_, u_ — uy is a decreasing function

of time, )

e since from Lemma 6.8 1im+ P(t) < 01it finally turns out that at any time
t—t]

t €]ta, ts] ¥(t) < 0 (see Figure 19). O

ESAIM: Cocv, DECEMBER 1998, VoL. 3, 407-467



456 B. BONNARD AND G. LAUNAY

Yy .
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e >0 for u=u_
v
0 Ay
,,,,,, Ugat :p =0 for u = u_
Figure 19

7. CONJUGATE AND FOCAL POINT ALONG A SINGULAR EXTREMAL
7.1. PRELIMINARIES

In this section we present the results of [3], [4] concerning the concept and
the computation of conjugate and focal point. Our aim is to apply this
theory to chemical batch reactors, hence for simplicity we restrict our study
to systems of the form

v=X(w)+uY(v) , u(t)eR (7.1)

where X, Y are analytic vector fields in R® and where v = (z,y,2), but
the results can be easily extended to single-input systems in R™. The class
of admissible controls is the set ¢/ defined in section 2.1.1. Let v be a
reference singular extremal defined on [0,fr]; we assume that v satisfies
the assumptions (HE)-(HS) defined in section 2.2.2. Moreover we suppose
that v is hyperbolic. Using the notations D = —det(Y,[X, Y], ad?Y (X)),
D' = det(Y,[X,Y],ad’X (Y)) and D" = det(Y,[X,Y], X) introduced in

section 2.4, v is solution to the differential equation in R3
v =85(v) (7.2)

where S(v) = X (v)+us(v)Y (v), us(v) = —D'(v)/D(v) is the singular control
feedback and v is contained in the set D”(v)D(v) > 0.

According to theorem 2.5 we denote by ¢, the first conjugate time along
v, that is y(¢1.) is the first point where v ceases to be a time-minimizer in
the C° topology with respect to the set of curves having the same initial and
final points. In [3] we describe an algorithm to compute such a point. We
can generalize this algorithm to deal with general end-points problems and
this leads to the concept of focal point.
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7.2. FIRST METHOD OF COMPUTING CONJUGATE POINTS

We briefly recall the method of [3], [4] to compute the conjugate points in
the hyperbolic situation

7.2.1. NoRMAL FORM. Using adapted coordinates and a feedback, the sys-
tem (7.1) can be written

T :1+Q1($7y72)
y ==z+ Q2($7y72) (73)
z

=1Uu

where the ;s are power series of the variable (y, z) with coefficients in R[z]
and containing monomials of degree > 2, the reference trajectory + being
identified to t — (¢,0,0) and corresponding to the zero control. We write
Q1(z,y,2) = a(x)z* + 2b(x)yz + c(z)y? + R where the remaining term R is
of the form o(y, 2)?, and we introduce L(t,y, z) = a(t)z* + 2b(t)yz + c(t)y>.

By assumption v is hyperbolic and hence a(t) < 0 for ¢ € [0, ¢x]. From [4],
to characterize the optimality of the reference trajectory v we can restrict
our study to the model:

& =14 L(ty,=2)
y =z (7.4)

zZ =u

7.2.2. Basic FacT. By definition v : ¢~ (¢,0,0) is time optimal on [0,¢5]
if for any ¢ € [0, ¢x] the point (¢, 0, 0) is not accessible from (0,0,0) in a time
th<t.

Hence, let v(t) = (¢,0,0) 4+ ¢(t) with ¢ = (p1, @2, ¢3) be a solution to the
model (7.4), then ¢(¢) is solution to

V1 =Lt p2,03), $2=13, F3=1u (7.5)

Observe that the condition v(t) = (¢,0,0) implies ¢3(t') = ¢3(t') = 0 and
hence v is a time minimizer on [0,¢] if and only if the functional

a0 = | (a(s) 2 + 20(5) papa + e(s) g2 ds

satisfies J(t) < 0 for any ¢ € [0,tr] when evaluated on the set of curves
2, 3 solutions to the equations: ¢ = s, ¢3 = w with the boundary
conditions: 3(0) = ¢3(0) = @2(tr) = ps(tr) = 0.

Now, since u € R, the variable @3 can be taken as the control (this
corresponds to the concept of reduced system defined in section 3.2) and we
have to study the sign of J on the set C of non-zero smooth curves @3 with
$2 = 3 (control) and satisfying the boundary conditions: ¢9(0) = a(tr) =
0 (the constraints on ¢3 have been relaxed).

7.2.3. DEFINITION. Let t;. be the first time t €]0,¢r] such that the maxi-
mum of J(t) on C is zero.
According to classical calculus of variations we have:
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LEMMA 7.1. Ift < ty. then J(t) < 0 on C and if t > ti. the mazimum of
J(t) on C is +oo. In particular if t < t1. then v is a time minimizer on
[0,tr] and if t > ti1. v is no more a minimizer. Hence v(t1.) is the first
conjugate point to v(0). The time t1. is the first time t > 0 such that there
exists a non-trivial solution @4 to Fuler-Lagrange equation:
d oL oL
dsdpy  Opy
with $2(0) = 2{tr) = 0 and L(s, 92, é2) = a(s)82? + 26()eas + ()93

0 (7.6)

7.3. CONJUGATE POINTS AND THE SYNTHESIS PROBLEM

7.3.1. PRELIMINARIES. Let 0 < M < 400 and consider now the control
system © = X 4+ uY, where the set of admissible controls is the set Uy; of
measurable mappings taking their values in [—M, M].

Recall that S = X — (D'/D) Y is the vector field whose non-periodic trajec-
tories are singular extremals satisfying (H§)-(HS). Let v be such a reference
trajectory defined on [0, x| and corresponding to a control taking its values
in | — M, M[; and let us assume that v is hyperbolic. Let V(¢),t € [0,¢x] be
the solution to the variational equation

. a9
(1) = 92 (4(0)) bl (.7
with initial condition V' (0) = Y (v(0)).
If 7 is a vector field, we denote by exzp tZ the local one-parameter group
associated to Z. Let ¢,/ = £1 and let g be the mapping;:

g : (t,te,t5,2,8") > expts(X+'MY) . exp 25 . exp ty (X +"MY)(7(0))

From section 2.3, since v is hyperbolic, such a trajectory is an extremal for
t1, t3 > 0 and small. Let F be the image of g for t3 € [0,tr] and ¢, t3
sufficiently small.

According to [3] if det(V(v(t)),Y(v(¢)),S(v(t))) is never vanishing on
10,¢x] then F is an extremal field about the arc 74 in the following sense:
there exists a C%-neighborhood U of 4 such that each point of U is the image
of an unique (t1,%3,%3,2,¢’). Moreover it is the time optimal synthesis in a
neighborhood of the reference trajectory for the fized end point problem.

7.3.2. NOTATION. Let us denote by t|. the first time ¢ €]0,¢r] such that
det(V(v(1)),Y(v(t)), S(v(t))) vanishes. The following lemma is proved in
[3]-
LEMMA 7.2. We have the following results:

(1) V(1) € Span{Y (v(1)) , [X,Y](v(1))}

(i) det(V(y(1)), Y (v(t)), S(v(t))) = 0 for t €]0,tF] if and only if V(L) and

Y (y(t)) are colinear

(iii) tro = £},

7.3.3. CURVATURE. Assume that the system is in the normal form described

in section 7.2.1, where = is identified to ¢ — (¢,0,0) and corresponds to the
zero control. The variational equation along + takes the form:

_c—b

§i=0, =205z, &3 Sy — 262 (7.8)
a
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and the last two equations can be written as the second-order differential
equation

. a .. b—c
0 + =0y + dy=0 (7.9)
a a
The existence of conjugate point means that there exists a non trivial solu-
. i _
tion to (7.9) satisfying dy(0) = dy(ti.) = 0. If we set A = g, B = £ and
a a

A(s)

t
dy(t) = C(t) J(t) where C'(t) = exp / —Tds the previous equation can
0

be written in the normal form:

Y 4+ KY =0 (7.10)

where K = C' + AC' 4+ BC , C = 1/+y/]a], K being defined on the set
D D" > 0 and corresponds to the concept of curvature in the hyperbolic
case.

7.3.4. GEOMETRIC INTERPRETATION. First, let us assume that the system
coincides with the model:

t=14+L{ty,z),y=2, 2=u
and the associated reduced system defined in section 3.2 is then:
=14 L(t,y,z), y==2
where z is the control. By definition of ¢;. there exists a curve 7y such that

y(0) =1, y(0) = y(ti.) = 0, y(t) # 0 on ]0,t1.[ and /0 1cL(t,y,@)dt =

0. Hence the corresponding solution (Z,y) initiating from (0,0) satisfies
z(tic) =ty and (Z,7y) intersects the set (]0,t1.],0) only at (¢4.,0).

Let € € R and let z. be the solution starting from 0 and corresponding
to the control z = ey. Our analysis shows that the family of curves (z., <)
intersects (]0,¢1.],0) only at (£1.,0).

Consider now the system (7.1) written in the normal form (7.3) where

Y is identified to g and v to t — (£,0,0). Let Il be the projection

(,y,2z) — (z,y). Letzs € R and let (Z.,7.) be the solution initiating from
0 and corresponding to the control z = gy. Our study shows that the point
(t16,0) = II(7y)(t1c) is the limit point of the intersections of curves (Z.,y.)
with the axis y = 0. This corresponds to the geometric interpretation of
conjugate points in classical calculus of variations : II(vy)(#1.) is the limit
point of the intersections of the extremals in a neighborhood of the reference
extremal for the reduced system.

7.4. FOCAL POINTS

We can extend the previous concept of conjugate point to deal with opti-
mal problems where the end point belongs to a manifold. For simplicity we
restrict our study to a terminal manifold of codimension one.
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7.4.1. NormAL rOorRM. We consider system (7.1) v = X(v) 4+ uY (v) and
we suppose now that the admissible controls are the measurable mappings
satisfying |u| < 1. We assume that the terminal manifold is a regular sub-
manifold of codimension one and moreover we suppose that Y is tangent
everywhere to N (flat case). Let v be an extremal satisfying the assump-
tions (HS)-(HS5); and let us assume that v is hyperbolic and that the singular
control us corresponding to « is such that us |,€] — 1,4+1[. We identify the
terminal point (0) to 0 and we assume that 4 is a BC-extremal, that is
it satisfies the transversality condition which takes the form: the tangent
space to N at 0 is spanned by Y (0), [X,Y](0). Moreover we assume that
the set of points where [X,Y] is tangent to IV is near 0 the image of a simple
curve § : &+ R?®, §(0) = 0, transverse to Y. Straightforward computa-
tions show that the system can be written in a tubular neighborhood of ~
in adapted coordinates in the following normal form:

& =1+a(z)z? +2b(zx)yz+ c(x)y? + Ry
y =d(z)+e(0)z+ Ry (7.11)
— (u s by () + F@)y+ 9(0)z + Rs
where 5(0) = 0, €(0) # 0 and Ry (resp. Rq, R3) are remaining terms of
order > 3 (resp. > 2) in (y,z). The reference extremal v is identified to

t+— (t,0,0), the target N to # = 0 and the image of ¢ to the axis 0y. Since
7 is hyperbolic we have a(z) < 0 for x € [to,0].

IS

7.4.2. OPTIMAL SYNTHESIS AND FOCAL POINTS. From the classification of
[5], 7(0) = 0 is an hyperbolic point and the optimal synthesis for the time
minimal problem with terminal manifold N can be easily described near 0.
We shall extend this synthesis to a tubular neighborhood of ~v. For t < 0,
let ¥; be the set of BC-singular extremals ending on Im § in a time |s|,

0 > s > t. It can be written as ¥; = U (exp sS)(Im &) where S is the

0>s>1
vector field defined in section 7.1 whose solutions are the singular extremals.
For t small enough, ¥; is a smooth surface. By assumption W = §'(0)

belongs to Span{Y (0) , [X,Y](0)}. Let Ay, Ay be two scalars such that
W =X Y(0) + A2 [X,Y](0) and let Z be the vector field A; Y 4+ A9 [ X, Y].
Let t be fixed, the derivative at 0 of the curve e — &;(c) = (exp t.5)(6(¢)) is
denoted W (t) and is given by:
d
de
For t € [ty,0], v(t) = exp tS(0) and we can write exp tS . exp €Z(0) =
exptS .expeZ .exp —t9(y(t)) and computing the derivative at ¢ = 0, we
get

W(t) = — |c=0 (exp tS . expeZ(0))

k
W) = 3 (-1 ad S (2) (3 (1)

k>0
Since S is the singular vector field and Y, [X,Y] are independant along ~
we have:

ad*S(Y) |,€ Span{Y , [X,Y]} |, for k>0

We have the following lemma
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LEMMA 7.3. The vector W (t) is solution to the variational equation:

. a5
(1) = 22 (3 0)) v
with initial condition W(0) = Ay Y(0) + Ay [X,Y](0) tangent vector to §
at v(0) = 0. It belongs to Span{Y (v(t)), [X,Y](v(?))}

7.4.3. DEFINITION. Let t1; be the first time ¢ € [to, 0 such that

det(W(t) Y(v(1)), S(v(1))) = 0

Then v(t17) is called the first focal point along +.
As for the fixed end point problem we have the following result:

PROPOSITION 7.4. Let 0 >t > tyy, then Xy is along v |jg 4 @ smooth surface
separating R® into two domains. On a tubular neighborhood of =, the opti-
mal synthesis using the normal coordinates of section 7.4.1 is the following:
on the surface ¥; we apply the singular control, otherwise in the domain
containing x =y = 0, z < 0 (resp. z > 0) the optimal control is u = +1
(resp. u= —1)

0
7.4.4. GEOMETRIC INTERPRETATION. Assume Y identified to EP and let
¥4

IT be the projection (z,y,z) — (x,y). At t = t1. the vector W () becomes
colinear to Y (y(¢)) and hence the surface I1(3;) has a singular point. The
point I1(v(#1.)) is the limit point of the intersections of the singular extremals
of the reduced system with the reference extremal. This corresponds to
concept of focal point in classical calculus of variations.

As in [4] we can prove, using the normal form, the following result:

PROPOSITION 7.5. At t = ty5 the reference trajectory () of the reduced
system ceases to be optimal.

7.4.5. ALGORITHMS. We have the following algorithms to compute conju-
gate and focal points.

e conjugate point At t =t., V(T') becomes colinear to Y (y(t))

o focal point At t = t;, W(T) becomes colinear to Y (y(t))

7.4.6. EXAMPLE FOR BATCH REACTORS. Consider problem 751 when n; =
ng = 1. The analysis of section 5 shows that 11(3;) is a smooth surface along
a reference singular extremal for each time ¢ and the problem is without
focal point. This explains the simplicity of the closed loop optimal control.
On the contrary, numerical computations given in [3] show the existence of
conjugate points in a domain of the state space.

8. NUMERICAL SIMULATIONS
8.1. PROBLEM Py

According to section 1.1 problem P, is the time-minimal problem of reaching
the target (c; = d) from an initial value (cg)o € [0, dgf for the system (1.4)
where the control is v = Ay exp(—F£1/RT) with T,,, <T < Ty and so

U, = Ay exp(—FE1/RT,) < v <wvy = Ayexp(—FE1/RTwv)
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From section 3.2 we know that Py is equivalent to the projected problem P}
obtained by restricting our study to the planar system

{C:I = v (8.1)

¢y = vt — Povel?

Then the adjoint vector p = (p1,p2) associated to the state vector z =
(€1, c2) satisfies

131 = —nl?JC?fl_l(pl - Pz) (8 2)
P2 =B py
with at final time 0
p(0) = (0, 1) (8-3)

the corresponding Hamiltonian being:
H(z,p,v) = —vel' p1 + (veft — po¥ey?)ps
. . . . OH
So the singular control ¢ solution to the equation in v : 8—(36,])7 v) =0
v
satisfies:
1
5= ' (p2—p) |
aficy’pa
As in sections 1.4.2 and 4.3.1, let us consider on the target (c; = dy) the
points:
i
o E,, = ((Bdy?ve 1)1, ds) such that ¢z = 0 when v = vy,
1
e S, = ((aBdy?ve 1) ™1, dy) such that the final singular control is vy,

e Sy = ((oeﬁdgz’vf\“[l)ﬁ, dy) such that the final singular control is vys

Giving particular values to constants and solving systems according to the
joined Scilab! file p2.s we found Figure 20, which corroborates Figure 5 in
the whole physical space.

8.2. PROBLEM 752

8.2.1. NEAR THE SINGULAR LOCUS. According to section 1.1 problem P,
is the time-minimal problem of reaching the target (c; = d3) from an initial
value (c3)o € [0, dy[ for the system (1.5) where the control is u = T with
- < u < ugp and u— < 0 < uy From section 3.2 we know that 752 is
equivalent to the projected problem 775 obtained by restricting our study to
the system

¢ = —vef!
¢y = vt — Povel? (8.4)
o = h(v)u with h(v) = (Rv/E;) In*(v/A;)

'Scilab is a package available on the Web site http://www-rocq.inria.fr/scilab
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c2
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Figure 20: 4 are black, v,, are blue,yas are red and switching curves are
vellow

Then the adjoint vector p = (p1, p2, ps) associated to the state vector z =
(¢1, c2,v) satisfies

po= n1UC7f1_1(P1 —p2)

P2 = nafo7c}?  py (8.5)
. _ dh

By =’ prt (= + o) py — - (v)ups

with at final time 0
p(0) = (0,1,0) (8.6)
the corresponding Hamiltonian being:
H(z,p,v) = —vci'pr + (vt — pves?)pg + h(v)ups (8.7)

Then, as in Lemma 6.2 in section 6.2.1, computations applying section 2.4

to the dynamical system (8.4) give the singular control u,:
ny cjto?

a c2h(v)

Us =

<0 (8.8)

As in Lemma 6.1 in section 6.2.1, let us consider on the target (c; = dy) the
d OH

set Sy of points (¢1 > 0,da, v €]0, A1]) satisfying T 0, so that any
U

singular BC-extremal arriving on N arrives on S,. Taking (8.4)-(8.7) into
account, we get:

Sy = {(e1 > 0,dg,v €]0, A1[) € N 5 ] — apv*~ 1} = 0} (8.9)
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Let us then consider (as in in Lemma 6.2 in section 6.2.1) the point Sga of
Sy where the final singular control is equal to u_. From (8.8) and (8.9) it
comes:
1 pott
Seat = (B2 d52) ™1 | dy, ven) such that u_ = —ngfdh2 1 —=2t _
h(vsat)
Giving particular values to constants we computed saturation points on
singular trajectories and switching points on y_ and 74 arcs (cf. the joined
Scilab file sing.s): these computations corroborate in the whole physical
space the time minimal synthesis found in section 6 and shown by Figures 8
and 17(ii); in particular we found that there is no switch on 4 arcs. Figure
21 (obtained when executing the joined Scilab file plsing.s after sing.s) shows
the surface separating (v* = wu_) from (u* = uy), where u* denotes the
optimal control: this surface is constituted of singular trajectories (black),
of switching points for 4 y_ trajectories (blue (resp. green) when the initial
point is in the parabolic (resp. hyperbolic) domain) and of first switching
points for v4 v_ 7, trajectories (red).
3

Note that Z ¢;(t) is constant. So, for the sake of simplicity, as we chose ny =
—
' 3
ng = 1, we considered relative concentrations ¢, = CZ/Z ¢;(0), i=1,2.Then
=1
the state system (8.4) becomes:
¢ = -vd
¢y, =wd — pued,
o = h(v)u with h(v) = (Rv/E;) In*(v/A;)
with ) +¢, <1

8.2.2. NEAR THE EXCEPTIONAL LOCUS. Keeping the same values, we solved
dynamical and adjoint systems near the exceptional locus, defined as in
Lemma 6.4 in section 6.2.3 as the set of final points of BC-extremal trajec-
tories tangent to the target N : (c3 = d3), included in €& = {(¢; > 0,ds,v €
10, A1[) € N ;5 ' — Bv*~1d}? = 0} the set of points of N such that ¢; = 0.
As in Lemma 6.5 in section 6.2 we consider the point £_ of £ such that the
exceptional arc arriving at this point has with N a contact of order greater
than two. It comes:
£ = ((ﬁvf_ldgz’)"l_l, dy,v_) such that

1 no(l—=2) o+t (1-a

(1 _ a)u_£1n2 (Z_—l) — nlﬁl—ad22( nq )U_+n1( )
Then, according to the joined Scilab file exc.s we found Figure 22 (excep-
tional trajectories) and Figure 23 (y_ trajectory) which corroborate Figure

9iii).
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0.5

0.6

Figure 21: v, are black, switching points for v4 v_ are blue (parabolic case)
or green (hyperbolic case), first switching points for vy v_ 5 are red

11*cpriml

1.0

100*cprim2

Figure 22 : exceptional trajectories
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