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CONTROL OF THE WAVE EQUATION BY TIME-DEPENDENT COEFFICIENT

Antonin Chambolle1 and Fadil Santosa2

Abstract. We study an initial boundary-value problem for a wave equation with time-dependent
sound speed. In the control problem, we wish to determine a sound-speed function which damps the
vibration of the system. We consider the case where the sound speed can take on only two values, and
propose a simple control law. We show that if the number of modes in the vibration is finite, and none
of the eigenfrequencies are repeated, the proposed control law does lead to energy decay. We illustrate
the rich behavior of this problem in numerical examples.
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1. Introduction

The problem considered in this work is motivated by recent developments in the area of smart materials.
The properties of these materials can be changed by the application of external fields, such as electrical, mag-
netic, or temperature. When external fields are applied, the material goes through what is known as a phase
transformation. There are magnetostrictive materials whose stiffness can be altered by what is referred to as
the ∆E effect [7].

A structure made with such a material, together with a sensing system that is capable of measuring defor-
mation in the material, is considered. The control problem consists of eliminating a transient disturbance in
the structure by varying the material property in response to the deformation.

In this work, we consider a simple model problem with the attributes of the more complicated structural
control problem described above. The model dynamics is governed by a scalar wave equation. The control
variable is the sound speed in the medium, which is assumed to take on only two values. We propose a simple
control mechanism based on knowledge of the time rate of change of the potential energy in the system.

Even for this simple model problem, we found that the behavior of the problem under the proposed control
law is quite rich. We begin the paper by presenting our model in the next section. Section 3 is devoted to
the analysis of controlling the vibration of a single mode. While the results are of limited utility, we found
the behavior of this simplified dynamics to be instructive. In Section 5 we investigate the dynamics of the full
problem for existence. We show that under somewhat stringent conditions similar to [6], we are able to prove
global existence. The control problem is analyzed in Section 4 for the case where there is a finite number of
modes present in the initial disturbance. We establish energy decay properties under the control law. The
behavior of the system, in particular, the mode mixing properties, are examined in numerical calculations.
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Finally we note that the problem considered here is different from the control of structures by a system of
smart material sensors and actuators. The smart material can be piezo-electric, in which case, the governing
equations consists of a coupled set of dynamic elasticity equations and electromagnetic equations. The control
problem then consists of analysis of the dynamics of bi-material body made up of elastic and piezo-electric
materials. The study of such problems have been explored in numerical simulations in [3]. Other problems
of this type are discussed in [2, 4]. Our problem is more similar in nature to the dynamic composite material
studied by Lurié [5], although our material is much simpler, and perhaps easier to realize.

2. Model

We begin with the wave equation in Ω ∈ R
n

utt = a(t)4u, t > 0, x ∈ Ω, (1a)

where u(x, t) is the disturbance at position x and time t. The sound speed
√

a(t) is assumed be a function of
time. For simplicity, let u satisfy Dirichlet boundary condition

u(x, t) = 0, for x ∈ ∂Ω. (1b)

Initial conditions for u are

u(x, 0) = u0(x), ut(x, 0) = u1(x). (1c)

Associated with the wave equation (1a) is the energy

E(t) =
∫

Ω

[
1
2
ut(x, t)2 +

1
2
a(t)|∇u(x, t)|2

]
dxdt. (2)

The definition of energy follows that of the standard case where the coefficient a is not a function of time. We
recognize that this definition is somewhat arbitrary because for the PDE under consideration, energy is not a
conserved quantity.

The material property a(t) will be the control variable for the problem. An optimal control associated with
this problem is one where we consider a finite horizon t ∈ [0, T ] (or infinite horizon), and we may attempt to
find a(t) which minimizes, say,

∫ T

0

∫
Ω

[
1
2
ut(x, t)2 +

1
2
a(t)|∇u(x, t)|2

]
dxdt.

The solution will be dependent on the initial conditions u0(x) and u1(x) in (1c). Instead we will derive a simple
control law based on integrations-by-parts.

We multiply both sides of (1a) by ut(x, t) and integrate over the domain Ω. We obtain

d
dt

∫
Ω

(
1
2
ut(x, t)2

)
dx = −a(t)

d
dt

∫
Ω

(
1
2
|∇u(x, t)|2

)
dx. (3)

The integral on the left-hand side is just the kinetic energy, whereas the integral on the right-hand side is a
scaled potential energy. Therefore, we choose our control to be such that kinetic energy is decreasing when
possible, and made to increase as slowly as possible when not.

In our ideal model, we assume that the material property a(t) can be switched between two values a1 and
a2, with a1 < a2. To make sure that kinetic energy is decreasing, or at worst, increasing only at a small rate,
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we choose the control

a(t) = φ(s(t)), φ(s) =
{

a1 if s < 0
a2 if s > 0,

(4a)

where

s(t) =
d
dt

∫
Ω

(
1
2
|∇u(x, t)|2

)
dx. (4b)

We see that with this choice, the left-hand side of (3) is negative with magnitude a2|s(t)| when s(t) > 0, and
is positive with magnitude a1|s(t)|, which is smaller, when s(t) < 0. It seems thus reasonable to believe that it
leads to the fastest possible decay of the energy. Observe that the value of a(t) is not specified when s(t) = 0.
Further experiments and the mathematical analysis show that in this case we have to let the control belong to
the interval [a1, a2] (while a strictly bang-bang control will in some cases oscillate very quickly between the two
extremal values, reaching in average an intermediate value).

The remainder of the paper is devoted to determining if the control stated in (4) leads to a decay of the
energy of the system. For mainly technical reasons, most results will be established with a smoother version of
the control, that is, with a different choice of φ: we will consider replacing the bang-bang function (4a) with a
Lipschitz φ with roughly the same behavior, that is, nondecreasing, with φ(s) ' a1 for s � −1, φ(s) ' a2 for
s � 1, and φ(0) = (a1 + a2)/2.

Before we proceed, we note that formally we can pose the problem at hand as a control problem for an
infinite system of ordinary differential equations by using modal expansion. Let us write

u(x, t) =
∞∑

n=1

cn(t)vn(x),

where vn(x) are normalized eigenfunctions associated with eigenvalue ω2
n. Thus, we have

4vn + ω2
nvn = 0, x ∈ Ω, vn(x) = 0 for x ∈ ∂Ω.

Then, the cn(t) satisfy

c̈n + a(t)ω2
ncn = 0, n = 1, 2, · · · (5)

The initial conditions for cn are

cn(0) = c0n, ċn(0) = c1n.

The energy associated with the system is

E(t) =
1
2

∞∑
n=1

ċn(t)2 + a(t)ω2
ncn(t)2. (6)

The equivalent control law for the Fourier coefficients is

a(t) = φ(s(t)), s(t) =
d
dt

∞∑
n=1

ω2
n

2
cn(t)2, (7)

which can be derived directly from the infinite system of ordinary differential equations (5).
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3. Control of one mode

In this section, we consider the simplest case where just one mode is nonzero in (5). In this case, we can show
explicitly that the bang-bang control (4a) leads to an exponential decay of the energy. We provide a natural
criterion for which this control is optimal. Let the initial data in (1c) be (for simplicity)

u(x, 0) = vn(x), ut(x, 0) = 0.

Then the ODE associated with the mode amplitude is

c̈n + a(t)ω2
ncn = 0,

with initial condition cn(0) = 1 and ċn(0) = 0. We use the control law (7), with φ given by (4a). This leads to
the bang-bang control

a(t) =
{

a1 if cn(t)ċn(t) < 0
a2 if cn(t)ċn(t) > 0 .

(8)

The solution for constant a can be given in terms of a propagator

[
cn

ċn

]
(t + δt) =


 cos

√
aωnδt

sin
√

aωnδt√
aωn

−√
aωn sin

√
aωnδt cos

√
aωnδt


[ cn

ċn

]
(t). (9)

Since a(t) will be piecewise constant, we will make use of this formula.
For t > 0 and small, ċn(t) will be negative. Therefore, the control law (8) assigns a(t) = a1 (recall that

a1 < a2). Hence, we have

cn(t) = cos
√

a1ωnt, ċn(t) = −√
a1ωn sin

√
a1ωnt.

According to the control law (8), the first instance where a(t) will switch to a2 is at T1, at which point,
cn(T1) = 0, and ċn(T1) < 0. We easily find T1 = π/(2

√
a1ωn). Thereafter, for t > T1, we again use the

propagator equation (9) with a = a2 to find cn(t) and ċn(t). The next switch, from a2 to a1 occurs at T2, where
(T2 − T1) = π/(2

√
a2ωn). We can evaluate cn and ċn at 0, T1, and T2, using the propagator matrix:

cn(0) = 1, ċn(0) = 0;
cn(T1) = 0, ċn(0) = −√

a1ωn;
cn(T2) = −√

a1/
√

a2, ċn(0) = 0.

The next two times when a(t) switches can be found from following the signs of cn(t) and ċn(t) and the recipe
in (8). They are at T3 and T4 where T3 = T1 + T2, and T4 = 2T2. The values of cn and ċn at these times are

cn(T3) = 0, ċn(T3) = a1ωn/
√

a2;
cn(T4) = a1/a2, ċn(T4) = 0.

We can calculate the energy defined by (6) and find that

E(t) = a1
ω2

n

2
, for 0 < t < T2,

E(t) = a2
1

ω2
n

a2
, for T2 < t < T4.
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Figure 1. Energy decay for a single mode where a1 = 1, a2 = 2, and ω = 2. Top: Fourier
coefficient cn(t). Center: the control parameter a(t). Bottom: the energy E(t).

The upshot is that by using the control law, we have reduced the initial energy by a factor of a1/a2 by the
time t = T2. Repeating this argument allows us to conclude that the energy decreases by this factor every time
interval T2; i.e.,

E(kT2) = a1ω
2
n

(
a1

a2

)k

, k = 1, 2, · · ·

We can generalize the argument to lead to the same conclusion for any initial data. Moreover, a(t) is a periodic
function of period T2.

We give an illustration of the energy decay of the single mode case in Figure 1.
We next demonstrate that for the one-mode case, the control law (8) is indeed optimal for an infinite horizon

control problem. Let us first rewrite the ODE as a system

Ẋn =
[

0 1
−a(t)ω2

n 0

]
Xn,

with initial data Xn(0) = x = (cn(0), ċn(0)). The the optimal control problem is the minimization

J(x) = inf
a(.)

∫ ∞

0

E(t) dt (10)

where E(t) defined as in (2), E(t) = ċn(t)2/2 + a(t)ω2
ncn(t)2/2. We show the following result.

Theorem 1. The optimal control in problem (10) is given by (8).

Proof. By linearity of the equations, note that J is even and homogeneous; i.e., J(λx) = λ2J(x) for every
x ∈ R

2 and λ ∈ R.
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Figure 2. (a) The trajectory starting from (1, 0). (b) The trajectory starting from (0, 1). In
both cases, optimality requires the area ABO to be as small as possible.

Associated with (10) is a dynamic programming principle, that is, for every τ ≥ 0, x ∈ R
2

J(x) = inf
a(.)

{∫ τ

0

E(t) dt + J(Xn(τ))
}
·

With initial data x = (1, 0), in the phase plane, the trajectory starting from x will live in the fourth quadrant
until it reaches a value Xn(τ) = (0,−α) at a certain “exit” time τ . Thus,

J((1, 0)) = inf
a(.)

{∫ τ

0

E(t) dt + J((0,−α))
}

or by the homogeneity and evenness of J ,

J((1, 0)) = inf
a(.)

{∫ τ

0

E(t) dt + α2J((0, 1))
}

, (11)

with cn(τ) = −α and ċn(τ) = 0. A sketch of the trajectory is given in Figure 2a where the starting point
at t = 0 is A : (1, 0), and the first exit point at t = τ is B : (0,−α).

Now, we study the integral
∫ τ

0
E(t) dt where τ is the time where the trajectory reaches B : (0,−α). We have

Xn = (cn, ċn) and for 0 ≤ t ≤ τ , cn goes from 1 to 0 while ċn goes from 0 to α. The integral is∫ τ

0

E(t)dt =
∫ τ

0

ċn(t)2

2
dt +

∫ τ

0

a(t)ω2
ncn(t)2

2
dt.

In the first integral we make the change of variable s = cn(t), ds = ċn(t) dt. It becomes 1
2

∫ 0

1
ċn(c−1

n (s)) ds,
which is half the area inside ABO.

In the second integral the change of variable is s = ċn(t) so that ds = −a(t)ω2
ncn(t) dt. It becomes

− 1
2

∫ 0

1 cn(ċ−1
n (s)) ds and gives the same value as the first one. Thus

∫ τ

0 E(t) dt is the area ABO.
At every point on the trajectory AB, the velocity vector is

Ẋn = (ċn,−aω2
ncn),

with cn > 0, and ċn < 0. Therefore, to make the area ABO as small as possible, we choose the velocity so that
the second component is as small in magnitude as possible, i.e., by choosing a = a1. With this choice, we can
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easily calculate τ and α,

α = −√
a1ω1, and τ =

π

2
√

a1ωn
·

The choice a = a1, with the resulting τ , minimizes the functional in (11). We also find∫ τ

0

E(t)dt =
ωnπ

√
a1

2
·

Thus, we obtain

J((1, 0)) =
πωn

√
a1

4
+ a1ω

2
nJ((0, 1)). (12)

We proceed by computing J((0, 1)) with the same method,

J((0, 1)) = inf
a(.)

{∫ τ

0

E(t) dt + J((β, 0))
}
·

For this case, the starting point in the trajectory is Xn(0) = (0, 1), and the trajectory is in the first quadrant
(see Fig. 2b). The exit time τ is the first time where ċn vanishes, i.e., at point B. Along path AB, both cn and
ċn are positive. Again, J((0,−β)) = β2J((0, 1)), and the same study shows that the optimal path minimizes
the area ABO, obtained by choosing a ≡ a2.

Further calculation reveals that β = 1/(
√

a1ωn), and τ = π/(2
√

a2ωn), leading to
∫ τ

0 E(t) dt =
√

a2ωnπ/4.
We conclude that

J((0, 1)) =
πωn

√
a2

4
+

1
a2ω2

n

J((0, 1)). (13)

We can solve for J((1, 0)) from (12) and (13)

J((1, 0)) =
πωn

√
a1

4(1 − a1/a2)
(1 +

√
a1a2ω

2
n).

The energy is finite, and our construction shows how to assign a(t) to obtain the optimal control. Notice that
the exit time for initial data coincides with the time T1, and the exit time for initial data coincides with the
time T2 − T1 at the beginning of this section. From this, we can see that the assignment of a(t) is identical
to that in the beginning of the section. Thus we can conclude that for the one-mode case, the control law we
introduced in (8) is optimal. Moreover, although we have only considered the initial value (cn(0), ċn(0)) = (1, 0),
the dynamic programming principle shows that in fact our control law is optimal independently of the initial
value x, for minimizing the criterion (10). �

4. Control of multimodal vibration

While it is satisfying to know that the bang-bang version of the control law is also the optimal control for an
infinite horizon problem in the case of one mode, it is not at all clear that the control even leads to damping
when there are more modes. In the case of multiple modes, mode mixing makes any kind of explicit analysis
impractical. We resort to an energy bound, and show that the bound goes to zero as t → ∞, provided that ωn

are all distinct. In doing so rigorously, we assumed that the initial disturbance consists of only a finite number
of modes. The proof is given in Section 6, and we discuss the obstruction preventing the proof of the same result
in the case of infinite modes in the final discussion section. The present section is devoted to the derivation of
the energy bound and numerical experimentation with the control.
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4.1. An energy bound

In this section, we will again consider the bang-bang control for the case of multimodal vibration. An energy
bound, derived for this problem, will later be used to demonstrate damping of the system. The purpose of this
section is to provide some insight into the question of damping, with details of the proof for damping deferred
to Section 6.

We begin by defining the kinetic energy and a measure of the potential energy

EK(t) =
∞∑

n=1

ċ2
n

2
and ÊP =

∞∑
n=1

ω2
n

c2
n

2
· (14)

We use the function (4a)

φ(s) =
{

a1 if s < 0
a2 if s > 0,

to define the control law. The governing equations for the Fourier coefficients cn(t) are

c̈n + φ

( ∞∑
n=1

ω2
ncnċn

)
ω2

ncn = 0, n = 1, 2, · · · ,

subject to initial conditions. Identifying the argument of φ(·) with d
dtÊP , we see that

c̈n + φ

(
d
dt

ÊP

)
ω2

ncn = 0. (15)

We choose α to be the mean

α =
a1 + a2

2
, (16a)

and define a kind of energy

Eα(t) = EK(t) + αÊP (t). (16b)

We observe that

d
dt

Eα =
d
dt

EK + α
d
dt

ÊP

=
∞∑

n=0

ċnc̈n + αω2
ncnċn

=
[
α − φ

(
d
dt

ÊP

)]
d
dt

ÊP ,

after using (15) and (14). If d
dt ÊP < 0, φ = a1, so that d

dtEα(t) < 0. If on the other hand d
dt ÊP > 0, φ = a2,

and in that case, we still have d
dtEα(t) < 0. Therefore, we conclude that

d
dt

Eα ≤ 0. (17)
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When a(t) = a1, we can bound E(t) from below by considering, for K > 0,

KEα(t) =
∞∑

n=1

K

2
ċ2
n +

K

2

(
a1 + a2

2

)
ω2

nc2
n.

Choosing K = 2a1/(a1 + a2) < 1 gives us

2a1

a1 + a2
Eα(t) ≤ E(t).

A similar argument gives an upper bound. The energy (6) therefore satisfies a global bound

2a1

a1 + a2
Eα(t) ≤ E(t) ≤ 2a2

a1 + a2
Eα(t). (18)

The results in (17) and (18) are the ingredients needed to establish that the system is damped. The latter imply
that the energy in the system is bounded above, and below, by a nonincreasing “weighted” energy Eα(t). It
remains to be shown that the only limit of Eα(t) is zero. We are indeed able to demonstrate this fact when
there are a finite number of modes present in the vibration, and the frequencies ωn are distinct. We defer
demonstration of this fact to Section 6, after we have established well-posedness of the initial value problem in
Section 5. In establishing the result, we replace the function φ(·) in (15) with a Lipschitz function. In the next
subsection, we will study the behavior of the damping in numerical experiments.

4.2. Numerical examples

In order to obtain detail behavior of the wave equation with the control law that we proposed, we consider
the discrete dynamical system given by (5) with time-dependent coefficients given by (7). We assume that we
have a finite number of modes with frequencies

ωn = nπ, n = 1, 2, · · · , N.

Note that we do not have repeated eigenvalues since as we will show later, the control law we prescribed
does not work when there are repeated eigenvalues. The material properties are chosen to be a1 = 1, and
a2 = 4. The latter chosen large in order to have large damping. The differential equation is first rewritten as
a first order system. In all our examples, we take N ≤ 30, but to capture the dynamics accurately, we take
small time increments ∆t = 2/(100 × 30

√
a2). That is, if N = 30, the shortest period in time is sampled at

100 points. Within this time increment, a(t) is assumed to be constant. With a(t) piecewise constant, we can
use the propagator method (9) to evolve the dynamics, using the control law (7) to choose a(t).

It must be pointed out here that the control of assigning

a = a1 if
d
dt

ÊP < 0, and a = a2 if
d
dt

ÊP > 0,

leaves the choice of a ambiguous when d
dt ÊP = 0; we will simply say that a ∈ [a1, a2] when this happens. As we

shall see shortly, this turns out to have interesting consequences. The fact is that d
dtÊP can be very small. If

it is small and positive, then a2 is assigned, leading to a small and negative d
dt ÊP in the next time increment.

Then a1 is assigned, leading to d
dt ÊP small and positive in the next time increment. Thus a(t) oscillates while

at the same time ÊP is nearly constant over a time interval. This oscillation will be more rapid as we take
smaller time samples – an averaging phenomenon. The system is attempting to take choose a value for a(t)
which is in the interval [a1, a2] by rapid oscillation. In this sense, the calculations must be interpreted as an
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Figure 3. Random initial data with 20 modes. Top: energy vs. time. Overplotted are the
upper and lower bounds in (18). Bottom: control coefficient vs. time. Black out regions
correspond to rapid oscillations.

approximation of the continuum problem. The limit behavior of a(t) as the time increment goes to zero is some
kind of local average of the rapidly oscillating solution.

In all the examples, the initial velocity of each mode is set to zero; i.e., ċn(0) = 0.

Example 1. In the first example, we take N = 20, and set cn(0) = p/n where p is a random number in the
interval [−0.5, 0.5]. Figure 4 (top) shows the decay in the energy E(t). In the solid black parts of the curve, the
energy is rapidly oscillating. Shown also are the upper and lower bounds for the problem as predicted by (18).
We also display the control a(t) in Figure 4 (bottom). Again we have rapid oscillation in a(t) which reflects the
system’s attempt to achieve a between a1 and a2 by rapid oscillation.

Example 2. We choose N = 5 with cn(0) equal to zero except for c1(0) = c5(0) = 1. The example is designed
to show the damping mechanism. The system is evolved over the time interval [0, 4]. In Figure 5 (top) we show
the energy decay as a function of t. The corresponding time-dependent coefficient a(t) is shown in Figure 5
(middle). Note also the self-similar nature of the coefficient and the energy plots. Plots of the coefficients c1(t)
and c5(t) are given in Figure 5 (bottom). It can be seen that the higher frequency disturbance is damped more
quickly than the low frequency component.

Example 3. In this example, we investigate the behavior of the system to smoothing of the control law. The
initial data is cn(0) = 1/n, for n = 1, · · · , 30. First we solve the problem with control law (7). Next, the
problem is solved with control law

a = φ

(
d
dt

∑
ω2

nc2
n

)
, φ(s) =

1
2

[(a1 + a2) + (a2 − a1) tanh(ks)]

with k = 0.5 and k = 0.05. The control law (7) is the formal limit of the above as k → ∞. The effect of k is
to smooth the transition between a1 and a2. What we observe is that both the coefficient a(t) and the energy
E(t) becomes smoother (especially at later times when the high frequency information has been damped) as
we make k smaller. We display this behavior in Figures 5 and 6. We believe that there is a homogenization
phenomenon inherent in the process, and that a limit behavior may be possible to characterize.
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Figure 4. Demonstration of damping with 2 modes. Top: plot of log E(t). Middle: plot
of a(t). Bottom: plot of c1(t) and c5(t). Note the self-similar nature of the control and the
logarithm of the energy after some of the high frequency component has been damped.

5. Existence of solution

We will study the existence of solutions for our problem in the case where the equation is of the form

c̈n + φ

( ∞∑
n=1

ω2
ncnċn

)
ω2

ncn = 0, n = 1, 2, · · · , (19)

with given initial values cn(0), ċn(0), n ≥ 1, but now (as in Example 3 above) φ is a nondecreasing Lipschitz–
continuous function, such that

lim
s→−∞ φ(s) = a1, lim

s→+∞ φ(s) = a2, and φ−1(α) = 0, (20)

where α = (a1 + a2)/2. We denote by L the Lipschitz constant of φ(·) – 0 ≤ φ′ ≤ L.

5.1. Finite number of modes

We consider first the case where all but a finite number of modes are zero. For simplicity we can consider
just the first N modes (N ≥ 1) of the system. In this case, the existence of a solution is obvious, and given by
the Cauchy–Lipschitz theorem. We let

X =




X1

...
XN
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Figure 5. The effect of smoothing the control law: plots of log E(t). The control a = φ( d
dtÊP ),

see (14). Top: φ(s) is binary: a1 or a2. Middle and bottom: φ(s) is a smooth, and smoother,
function of s.

where for every n = 1, . . . , N ,

Xn =
(

ωncn

ċn

)
.

Then, the equation is Ẋ = F (X) where the transformation F (X) multiplies the component Xn of the vector
X by the square matrix

ωn

(
0 1

−φ
(∑N

m=1 ω2
mcmċm

)
0

)
.

It is clear that F is locally Lipschitz-continuous, hence for every initial data X0 associated to a set of initial values
c1(0), ċ1(0), . . . , cN (0), ċN (0), there exist a maximal interval [0, T ) ⊆ [0, +∞) and a solution X(t) satisfying the
equation on [0, T ), with X(0) = X0. Notice that this solution is also unique.

In order to show that T = +∞ it is enough to show that the solution X(t) remains bounded for every finite t.
Clearly, ‖F (X)‖ ≤ ωN(1 ∨ a2)‖X‖ for every X ∈ R

2N . Hence by Gronwall’s lemma ‖X(t)‖ ≤ exp(kt)‖X0‖,
with k = ωN (1 ∨ a2), showing that T = +∞. In fact, for every n ≥ 1 and t ≥ 0 we have

ċn(t)2 + ω2
ncn(t)2 ≤ e2ωn(1∨a2)t

(
ċn(0)2 + ω2

ncn(0)2
)
. (21)

5.2. Infinite number of modes

If the number of modes is infinite, the existence of a solution is less straightforward. We can show two
different results:

• an existence result for small time, for an initial data with some regularity;
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Figure 6. The effect of smoothing the control law: plots of a(t). Top: φ(s) is binary: a1 or
a2. Middle and bottom: φ(s) is a smooth, and smoother, function of s.

• an existence result for all times, but requiring very strong regularity hypothesis on the initial data u0(x)
and u1(x), requiring them to be analytic.

The proof is based on a Galerkin approximation method, as in [6] (see also [1]). We consider a set of initial
data (cn(0), ċn(0))∞n=1. For every N ≥ 1, we denote by (cN

n (t))N
n=1 the solution with N modes corresponding to

the initial data (cn(0), ċn(0))N
n=1. For every N , let

aN (t) = φ

(
N∑

m=1

ω2
mcN

mċN
m

)
, (22)

and for every k ≥ 0 let

FN
k (t) =

N∑
n=1

ω2k
n

(
ċN
n (t)2 + aN (t)ω2

ncN
n (t)2

)
.

We also let

Fk =
∞∑

n=1

ω2k
n

(
ċn(0)2 + a2ω

2
ncn(0)2

)
.

Our first result is the following:

Theorem 2. Assume F1 < +∞. Then there exists a time T ∗ ≥ (LF1)−1, and a solution of (19) on [0, T ∗).
Moreover, the coefficient φ

(∑∞
n=1 ω2

ncnċn

)
of the wave equation is continuous in time on [0, T ∗).
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Proof. First, we differentiate FN
k (t),

dFN
k

dt
=

N∑
n=1

ω2k
n

(
2c̈N

n ċN
n + 2aNω2

nċN
n cN

n + ȧNω2
n(cN

n )2
)
.

Since c̈N
n = −aNω2

ncN
n , the expression simplifies to

dFN
k

dt
=

N∑
n=1

ȧNω2k+2
n (cN

n )2.

We proceed by differentiating aN (t) in (22)

ȧN = φ′
(

N∑
m=1

ω2
mcN

mċN
m

)
N∑

n=1

ω2
n

(
(ċN

n )2 + cN
n c̈N

n

)
,

= φ′
(

N∑
m=1

ω2
mcN

mċN
m

)
N∑

n=1

ω2
n

(
(ċN

n )2 − aNω2
n(cN

n )2
)
.

We deduce that for every k ≥ 0,

dFN
k

dt
(t) ≤ LFN

1 (t)FN
k (t), (23)

where L is the Lipschitz constant of φ.
First assume that F1 < +∞. For every N , we have FN

1 (0) ≤ F1. Choosing k = 1 in (23) we get that
˙FN
1 ≤ L(FN

1 )2, hence

FN
1 (t) ≤ FN

1 (0)
1 − LFN

1 (0) t
,

as long as t < (LFN
1 (0))−1. In particular, if t < T ∗ = (LF1)−1, we see that

FN
1 (t) ≤ F1

1 − LF1 t
< +∞, (24)

for every N ≥ 1.
We want now to send N to infinity. We first notice that there exists a subsequence of (aN )N≥1, that we

will still denote by aN , and a function a ∈ L∞([0, +∞), [a1, a2]) such that aN goes to a weakly-∗ in L∞ as
N → +∞.

For a fixed n ≥ 1, since inequality (21) is valid for (cN
n , ċN

n ) as soon as N ≥ n, we see that cN
n , ċN

n , and
c̈N
n = −ω2

naNcN
n are bounded uniformly in N on the interval [0, T ∗]. Hence we may assume (possibly extracting

a further subsequence) that cN
n and ċN

n converge uniformly in [0, T ∗] as N → ∞ to respectively cn and ċn, where
cn is the (unique) solution of

c̈n(t) + ω2
na(t)cn(t) = 0,

with initial values cn(0), ċn(0).
Now, by (24), we see that for every t < T ∗, FN

1 (t) is bounded uniformly in N . Hence (letting cN
n ≡ 0

whenever n > N), both vectors (ωnċN
n (t))∞n=1 and (ω2

ncN
n (t))∞n=1 are uniformly bounded in `2(N) as N goes to
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infinity. We deduce easily (since ωn ↑+∞ as n↑+∞) that for every δ > 0, (ω1−δ
n ċN

n (t))∞n=1 converges strongly
in `2(N) to (ω1−δ

n ċn(t))∞n=1, as well as (ω2−δ
n cN

n (t))∞n=1 to (ω2−δ
n cn(t))∞n=1, as N → ∞.

In particular, the scalar product

N∑
n=1

ω2
ncN

n (t)ċN
n (t) =

〈
(ω3/2

n cN
n )∞n=1, (ω

1/2
n cN

n )∞n=1

〉
`2

converges, as N → ∞, to
∑∞

n=1 ω2
ncn(t)ċn(t), and since φ is continuous we deduce that for every t < T ∗,

a(t) = φ

( ∞∑
n=1

ω2
ncn(t)ċn(t)

)
.

This shows the existence of a solution to our problem, for t < T ∗ = (LF1)−1.
Notice furthermore that since∣∣∣∣∣ d

dt

(
N∑

n=1

ω2
ncN

n ċN
n

)∣∣∣∣∣ =

∣∣∣∣∣
N∑

n=1

ω2
n

(
(ċN

n )2 − aNω2
n(cN

n )2
)∣∣∣∣∣ ≤ FN

1 ,

which, by (24), is uniformly bounded on every interval [0, T ], T < T ∗, the convergence of
∑N

n=1 ω2
ncN

n ċN
n to∑∞

n=1 ω2
ncnċn is in fact uniform on every such interval. This shows that this function, as well as a(t), is in fact

continuous in time. Theorem 2 is proven. �
The next result is the following:

Theorem 3. Assume F0 < +∞, and assume that the initial data satisfies lim infk→∞(Fk)1/k/k < +∞. Then
there exists a solution of (19) on [0, +∞).

Proof. We essentially follow the proof of Pohozaev [6] for a similar problem. In Section 4.1, equation (16a, 16b),
we introduced the energy

EN
α (t) =

N∑
n=1

ċN
n (t)2

2
+ αω2

n

cN
n (t)2

2
·

We have that

dEN
α

dt
(t) = (α − aN (t))

N∑
n=1

ω2
ncN

n (t)ċN
n (t),

and since aN = φ(
∑N

n=1 ω2
ncN

n ċN
n ) and s 7→ (α − φ(s))s is always negative (except at s = 0 where it vanishes),

we deduce that EN
α (t) is nonincreasing. Hence EN

α (t) ≤ EN
α (0) for every t ≥ 0, and we deduce the following

estimate, valid for every N ≥ 1 and t ≥ 0:

FN
0 (t) ≤

(a2

α

)
F0. (25)

Now, by Hölder’s inequality,

FN
1 (t) ≤ (FN

0 (t))1−
1
k (FN

k (t))
1
k , (26)



390 A. CHAMBOLLE AND F. SANTOSA

for every k ≥ 1 and t ≥ 0. Recalling (23) and (25), we find that for every k ≥ 1 and t ≥ 0,

dFN
k

dt
(t) ≤ a2L

α
(F0)1−

1
k (FN

k (t))1+
1
k . (27)

We assume (as is natural) that F0 < +∞ and let c = a2L(1 ∨ F0)/α. Computing the time–derivative of
(FN

k )−1/k we deduce from (27) that as long as t < (c(FN
k (0))1/k/k)−1,

(FN
k (t))

1
k ≤ (FN

k (0))
1
k

1 − c
(FN

k (0))

k

1
k

t

·

Hence, for every N ≥ 1, k ≥ 1, and t < (c(Fk)1/k/k)−1

(FN
k (t))

1
k ≤ (Fk)

1
k

1 − c (Fk)
k

1
k

t

· (28)

Let us set τ = lim supk→∞(c(Fk)1/k/k)−1. Since we assumed the finiteness of lim infk→∞(Fk)1/k/k, we have
τ > 0.

If T < τ , then there exists (an arbitrarily large) k ≥ 1 such that T < (c(Fk)1/k/k)−1, hence on [0, T ] the
energy FN

k (t) is finite and uniformly bounded by Fk/(1 − c(Fk)1/k/k)k. By (26), FN
1 (t) is also uniformly

bounded and following the proof of the previous theorem we get the existence of a solution (cn(t))n≥1 of (19)
on the interval [0, T ].

The fact that we get uniform bounds on FN
k (t) on [0, T ] for arbitrarily large values of k yields the strong

convergence in `2(N) of (ω1+k
n cN

n )∞n=1 and (ωk
nċN

n )∞n=1 to respectively (ω1+k
n cn)∞n=1 and (ωk

nċn)∞n=1 as N → ∞,
for any k, (uniformly on [0, T ]), as well as the uniform convergence of aN to a = φ(

∑∞
n=1 ω2

ncnċn), which is thus
continuous.

In addition, we get that for every k ≥ 1,

lim
N→∞

FN
k (t) =

∞∑
n=1

ω2k
n

(
ċn(t)2 + a(t)ω2

ncn(t)2
)

< +∞.

We denote this energy by Fk(t). It is a continuous function of time, and all the inequalities proven so far for
the energies FN

k are also valid for Fk.
Now, we let T ∗ be the maximal time (possibly infinite) such that for any T < T ∗, the solution exists and the

energies Fk are finite and continuous in time, satisfying (23). We have seen that T ∗ ≥ τ and wish to show that
T ∗ = +∞.

If we fix T < T ∗ and let λ = maxt∈[0,T ] F1(t) we get from (23) that for every t ∈ [0, T ],

Fk(t) ≤ eλLtFk(0) ≤ eλLtFk.

Letting for every k

Fk
′

=
∞∑

n=1

ω2k
n

(
ċn(T )2 + a2ω

2
ncn(T )2

) ≤ a2

a1
Fk(T ),
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we get

(
Fk

′)
k

1
k

≤
(

a2

a1

) 1
k

e
λLT

k

(Fk

)
k

1
k

,

and this yields lim infk→∞(Fk
′
)1/k/k ≤ lim infk→∞(Fk)1/k/k. We deduce that lim supk→∞(c(Fk

′
)1/k/k)−1 ≥ τ .

Now, we can repeat the previous construction, starting from time T and initial values (cn(T ), ċn(T ))∞n=1, and
build a solution of the problem on [T, T + τ). This shows that T ∗ = T ∗ + τ , thus T ∗ = +∞. Hence Theorem 3
is proven. �

6. Damping for the multimode case

We consider again the problem in (19, 20). This time, we assume that we have a finite number of modes
N ≥ 1. It was proven in Section 5.1 (simply using the Cauchy–Lipschitz theorem) that this problem has a
solution for t ≥ 0, moreover we have seen in Section 4.1 that if

Eα(t) =
N∑

n=1

ċN
n (t)2

2
+ αω2

n

cN
n (t)2

2
,

then Eα is decreasing, so that we have a global control of the energy.

Theorem 4. Assume for every n, n′ ∈ {1, . . . , N}, ωn 6= ωn′ . Then E∞
α := limt→∞ Eα(t) = 0.

Proof. Consider an increasing sequence (tk)k≥1, with tk → +∞ as k → +∞, and such that for each n =
1, . . . , N , (cn(tk), ċn(tk)) converge to some pair of real numbers (γ0

n, γ1
n).

We introduce for every k the functions ck
n(t) = cn(tk + t), n = 1, . . . , N , defined for t ≥ 0. We have for every

t ≥ 0 and k

dEα

dt
(tk + t) = (α − a(tk + t))φ−1(a(tk + t))

and since Eα(tk + t) goes uniformly to the constant E∞
α as k → ∞ we deduce that −dEα/dt (tk + t) → 0, at

least in L1(0, +∞), so that a(tk + t) goes to α (a priori weakly-∗ in L∞, but in fact the results that follow will
yield uniform convergence on compacts subsets of [0, +∞)).

Then it is easy to show that as k → ∞, the functions ck
n and ċk

n converge respectively to functions γn and
γ̇n(t) uniformly on the compact intervals in [0, +∞), with γn solving

γ̈n + αω2
nγn = 0, (29)

on (0, +∞), and γn(0) = γ0
n, γ̇n(0) = γ1

n, for every n = 1, · · · , N . We also get that
∑N

n=1 ω2
nck

n(t)ċk
n(t) converges

(uniformly on compact sets) to
∑N

n=1 ω2
nγn(t)γ̇n(t), and simultaneously to φ−1(α) = 0.

Hence, letting P = (α/2)
∑N

n=1 ω2
nγn(t)2 and K = (1/2)

∑N
n=1 ω2

nγ̇n(t)2, we deduce that dP/dt = 0, so that
P and K remain constant (since P + K is a constant).

But the solution of (29) is explicit; i.e., there exist real numbers An, Bn, n = 1, . . . , N , such that for every
n, γn(t) = An cos(

√
αωnt) + Bn sin(

√
αωnt). We get

P =
α

2

N∑
n=1

ω2
n

A2
n + B2

n

2

+
α

2

N∑
n=1

ω2
n

(
A2

n − B2
n

2
cos(2

√
αωnt) + AnBn sin(2

√
αωnt)

)
.
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This expression is constant if and only if An = Bn = 0 for every n, provided ωn 6= ωn′ when n 6= n′ (so that the
2N functions t 7→ cos(2

√
αωnt) and t 7→ sin(2

√
αωnt), n = 1, . . . , N are linearly independent). Hence we have

established that Eα(t) → 0 as t → ∞. �
This result, together with the bound in (18) proves that for the case of finite number of modes with Lipschitz

control φ(·), vibration from any initial condition is damped.

Remark. If ωn = ωn′ for some n 6= n′, the control law does not damp. A trivial counter-example is N = 2, with
ω1 = ω2 = 1. A solution is c1 = cos

√
αt, c2 = sin

√
αt, resulting in P = K = constant. Such a situation can

occur if we wish to damp the wave equation in a square domain Ω = (0, 1)2 with Dirichlet boundary conditions.
The second eigenvalue 5π2 is repeated and corresponds to the two eigenmodes sin 2πx sin πy and sinπx sin 2πy.

Notice that a small perturbation of the system (for instance, if the domain is replaced with a rectangle
(0, 1)× (0, 1 ± ε), for some small value of ε) breaks the symmetry. However, in cases where two eigenvalues are
distinct but very close, numerical experiments show that the damping occurs at a very slow rate.

7. Discussion

We have studied a control for the wave equation where the control is a time dependent coefficient. A simple
control law based on integrations-by-parts is proposed. We show that under the assumption that the vibration
consists of only a finite number of modes of distinct eigenfrequencies, the control law leads to damping. In the
case of one mode, the control law turns out to be optimal.

While we were able to establish well-posedness of the initial value problem for infinite number of modes, we
were unable to prove damping for the system for this case. The crux of the difficulty is that we were not able
to demonstrate that the energies corresponding to γn(t) satisfying (29) and the limits of the energies of cn(t)
coincide.

Finally we remark that an interesting generalization of this problem is to consider coefficients which depend
on x and t; i.e., controllable function a(x, t) (see [5] where a specific form of a(x, t) is proposed). A control law
similar to the one proposed in this work can be derived. Analysis of this problem would require basic theory for
wave equations with time and space dependent coefficients, which unfortunately is not well-developed. However,
we have performed several 1-D numerical experiments that convinced us that such a control procedure should
lead to damping.
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