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EXACT CONTROLLABILITY IN FLUID – SOLID STRUCTURE:
THE HELMHOLTZ MODEL ∗
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Abstract. A model representing the vibrations of a fluid-solid coupled structure is considered. Fol-
lowing Hilbert Uniqueness Method (HUM) introduced by Lions, we establish exact controllability
results for this model with an internal control in the fluid part and there is no control in the solid part.
Novel features which arise because of the coupling are pointed out. It is a source of difficulty in the
proof of observability inequalities, definition of weak solutions and the proof of controllability results.
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Introduction

In this paper we are interested in the controllability of a fluid-solid structure model introduced in [4] and
[5] which is written down below. Assuming that the fluid is inviscid and its movements are two-dimensional,
infinitesimal and given by a velocity potential, the model couples them with the motion of a solid represented
by a harmonic oscillator. The coupling is in two places: the fluid exerts a pressure force on the solid through
the interface and the solid, in turn, influences the fluid motion via the interface condition which requires that
the normal component of the fluid and solid velocities coincide.

Let O be a simply connected bounded domain in R
2 with a regular boundary Γe, and let S an open and

regular subset in O, of boundary Γ. We suppose that S̄ ⊂ O, and we set Ω = O \ S̄. We consider a fluid
occupying the open set Ω and a solid occupying the closed set S̄ described by the following coupled system

φ′′ − ∆φ = u in Q,

φ = 0 on Σe,

∂nφ = s′ · n on Σ,
φ(0) = φ0 and φ′(0) = φ1 in Ω,
s′′ + s = − ∫

Γ φ
′ n in (0, T ),

s(0) = s0 and s′(0) = s1 in R
2.

(1)
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In this setting Q = Ω× (0, T ), T > 0, Σe = Γe × (0, T ), Σ = Γ× (0, T ). The forcing term u in the fluid region is
a function used to control the fluid-solid structure system. The function φ is the velocity potential in the fluid,
s ∈ R

2 denotes the displacement of the solid and n is the unit normal on Γ exterior to Ω.
The main objective of this paper is to extend the well known internal controllability results of the wave

equation [10], Theorems 2.1 and 2.3, Chapter 7 to the system (1). For simplicity we have taken a control u
acting everywhere in the domain Ω, and in this case we can obtain controllability results for any time T > 0.
However we think that the results obtained in this paper may be extended to a localized internal control and
to a boundary control, with appropriate geometrical conditions. This will be done in a forthcoming paper. In
the present paper by considering the simplest case corresponding to a distributed control acting in Ω, we want
to focus our analysis on the difficulties coming from the coupling between the wave equation and the oscillator
equation. Indeed the term

∫
Γ
φ′ n in the oscillator equation is a source of difficulties in the treatment of the

observability inequalities, in the definition of weak solutions, and in the proofs of controllability results.
Let us explain in few words what are the main ingredients to overcome these problems. The Hilbert Unique-

ness Method, due to Lions [10], consists in constructing an isomorphism Λ from a Hilbert space F onto F ′,
where F is the closure of a space of regular functions for the norm ‖·‖F appearing in an observability inequality,
and F ′ is the space of initial data which are controllable. In the standard HUM, we have

〈ΛΦ,Φ〉F ′,F = ‖Φ‖2
F , (2)

for all Φ ∈ F , and Λ = Λ∗.
Let us first consider the case of controllability of problem (1) with initial data (φ1, φ0, s1, s0) belonging to

F ′ = L2(Ω) × V × R
2 × R

2, where V = {φ ∈ H1(Ω) | φ = 0 on Γe}. But contrarily to the wave equation,
the operator Λ corresponding to system (1) cannot be defined on F = L2(Ω) × V ′ × R

2 × R
2, because weak

solutions of (1) are not well defined for initial data (φ0, φ1, s0, s1) in F . First we have to identify the correct
space Y for which weak solutions are well defined (see Sect. 3). Next we define Λ on Z = V ×L2(Ω)×R

2 ×R
2,

and we prove that its extension Λ̃ to Y is an isomorphism from Y onto F ′. But contrarily to the wave equation
the operator Λ̃ is not selfadjoint and (2) is replaced by

〈
Λ̃(Φ, s), J̃(Φ, s)

〉

F ′,F
= ‖(Φ, s)‖2

Y ,

for all initial data (φ0, φ1, s0, s1) = (Φ, s) ∈ Y , or equivalently by
〈
J̃∗Λ̃(Φ, s), (Φ, s)

〉

F ′,F
= ‖(Φ, s)‖2

Y ,

where J̃ is an isomorphism from Y to F , which for regular data (φ0, φ1, s0, s1) ∈ Z is given by

J̃
(
φ0, φ1, s0, s1

)
=

(

φ0, φ1, s0, s1 +
∫

Γ

φ0 n

)

.

Thanks to these ingredients, we can adapt the Hilbert Uniqueness Method to sytem (1). To control weak
solutions, that is solutions with initial data in Y , the construction is a little bit different from the previous one
(see Sects. 6 and 7).

We think that the approach introduced here may be helpful to tackle the control of more complex fluid-solid
structure models such as those considered in [1, 8, 9, 11]. A first progress in that direction is carried out in [6].

1. Notation and statement of the main result

Let V be the space defined by

V =
{
φ ∈ H1(Ω) | φ = 0 on Γe

}
,
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and denote by V ′ the topological dual of V . The space V will be equipped with the norm

φ �−→
( ∫

Ω

|∇φ|2dx
) 1

2

.

The norm in V will be denoted by ‖ · ‖V . The same kind of notation will be used for other Banach spaces. The
norm in R

2 will be simply denoted by | · |. The inner product of s ∈ R
2 and σ ∈ R

2 is denoted by s · σ.
The first main result of the paper is stated in the following theorem. It is a controllability result with internal

controls. Throughout the paper we fix T > 0 arbitrary.

Theorem 1.1. For all φ0 ∈ V , φ1 ∈ L2(Ω), s0 ∈ R
2, s1 ∈ R

2, there exists a function u ∈ C([0, T ];L2(Ω)) such
that the solution to equation (1) obeys

φ(T ) = φ′(T ) = 0 and s(T ) = s′(T ) = 0.

In the context of Theorem 1.1, we have finite energy solutions for equation (1), whereas in Section 3 a concept
of weak solutions is introduced and studied. The second main result of the paper is stated in Theorem 6.1. It
is a controllability result for weak solutions introduced in Section 3.

2. Definition and regularity of solutions to the controlled system

In this section, we present estimates for finite energy solutions of equation (1) where we have introduced a
forcing term v on the solid part:

φ′′ − ∆φ = u in Q,

φ = 0 on Σe,

∂nφ = s′ · n on Σ,

φ(0) = φ0 and φ′(0) = φ1 in Ω,

s′′ + s = − ∫
Γ φ

′ n+ v in (0, T ),

s(0) = s0 and s′(0) = s1 in R
2.

(3)

Theorem 2.1. (i) For all (φ0, φ1, s0, s1) ∈ V × L2(Ω) × R
2 × R

2, and (u, v) ∈ L1(0, T ;L2(Ω)) × L1(0, T ; R2),
the equation (3) admits a unique solution (φ, s) in (C([0, T ];V ) ∩ C1([0, T ];L2(Ω))) × C1([0, T ]; R2), which is
called a finite energy solution, and

‖φ‖C([0,T ];V ) + ‖φ′‖C([0,T ];L2(Ω)) + ‖s‖C1([0,T ];R2)

≤ C
( ∥

∥φ0
∥
∥

V
+

∥
∥φ1

∥
∥

L2(Ω)
+

∣
∣s0

∣
∣ +

∣
∣s1

∣
∣ + ‖u‖L1(0,T ;L2(Ω)) + ‖v‖L1(0,T ;R2)

)
.

(ii) If u = v = 0 in (3), then the solution possesses an additional property namely φ′′ ∈ C([0, T ];V ′) and

‖φ′′‖C([0,T ];V ′) ≤ C
(∥
∥φ0

∥
∥

V
+

∥
∥φ1

∥
∥

L2(Ω)
+

∣
∣s0

∣
∣ +

∣
∣s1

∣
∣
)
.

Proof. (i) Setting z = (φ, φ′, s, s′), equation (3) may be written in the form of a first order system

dz
dt

= Az + U, z(0) = z0,
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with

Az = A







φ0

φ1

s0
s1





 =







φ1

∆φ0

s1
−s0 −

∫
Γ
φ1 n





 , U =







0
u
0
v





 , and z0 =







φ0

φ1

s0

s1





 .

Set Z = V × L2(Ω) × R
2 × R

2. The domain of A in Z is

D(A) =
{

(φ0, φ1, s0, s1) ∈ Z | φ0 ∈ H2(Ω), ∂nφ0 = s1 · n on Γ, φ1 ∈ V
}
·

The Hilbert space Z is equipped with the inner product defined by

(
(φ0, φ1, s0, s1), (ψ0, ψ1, σ0, σ1)

)

Z
=

∫

Ω

∇φ0∇ψ0 +
∫

Ω

φ1ψ1 + s0 · σ0 + s1 · σ1.

It is clear that the operator (A,D(A)) is a closed operator in Z, and that the domain D(A) is dense in Z.
For every (φ0, φ1, s0, s1) ∈ D(A) we have

(
A(φ0, φ1, s0, s1), (φ0, φ1, s0, s1)

)

Z
=

∫

Ω

∇φ1∇φ0 +
∫

Ω

∆φ0φ1 + s1 · s0 −
(

s0 +
∫

Γ

φ1n

)

· s1 = 0.

Thus, in particular, (A,D(A)) is a dissipative operator in Z.
We can easily verify that the adjoint operator of A is defined by D(A∗) = D(A) and A∗ = −A. There-

fore (A,D(A)) and (A∗, D(A∗)) are both m-dissipative operators on Z and (A,D(A)) is skew-adjoint. From
Stone’s theorem, it follows that the operator (A,D(A)) is the infinitesimal generator of a strongly continuous
unitary group on Z. The end of proof follows from [3] (Chap. 1, Prop. 3.2).
(ii) To prove the part (ii), we remark that the system can also be written equivalently in the following integral
form:

For all v ∈ V, the mapping

t �−→
∫

Ω

φ(t)v

belongs to H2(0, T ) and satisfies

d2

dt2

∫

Ω

φ(t)v +
∫

Ω

∇φ(t) · ∇v =
ds
dt

·
∫

Γ

vn in (0, T ),

∫

Ω

φ(t)v
∣
∣
∣
∣
t=0

=
∫

Ω

φ0v,
d
dt

∫

Ω

φ(t)v
∣
∣
∣
∣
t=0

=
∫

Ω

φ1v,

d2

dt2
s(t) + s(t) = − d

dt

∫

Γ

φ(t)n in (0, T )

s(0) = s0,
ds
dt

(0) = s1.

From the first relation, using that φ ∈ C([0, T ];V ) and s ∈ C1([0, T ]; R2), we deduce the required result. �

Remark 2.2. Observe that, when the assumptions of Theorem 2.1 are satisfied, the solution (φ, s) to equa-
tion (3) satisfies the following energy identity

E(t) = E(0) +
∫ t

0

∫

Ω

uφ′ dxdτ +
∫ t

0

v · s′dτ for all t ∈ [0, T ], (4)
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where
2E(t) =

∫

Ω

(φ′(t))2 dx+
∫

Ω

|∇φ(t)|2 dx+ |s′(t)|2 + |s(t)|2.
In particular, if u = 0 and v = 0 then the energy E(t) is constant.

Remark 2.3. In the context of part (ii) of the above theorem, we cannot assert s′′ ∈ C([0, T ]; R2). This is one
of the effects of the coupling.

Theorem 2.4. For all (φ0, φ1, s0, s1) ∈ D(A), and u = 0, equation (1) admits a unique strong solution (φ, s)
in (C([0, T ];H2(Ω)) ∩ C1([0, T ];V )) × C2([0, T ]; R2) and

‖φ‖C([0,T ];H2(Ω)) + ‖φ‖C1([0,T ];V ) + ‖s‖C2([0,T ];R2) ≤ C
(∥

∥φ0
∥
∥

H2(Ω)
+

∥
∥φ1

∥
∥

V
+

∣
∣s0

∣
∣ +

∣
∣s1

∣
∣
)
.

Proof. Since (φ0, φ1, s0, s1) ∈ D(A), it follows that the solution z = (φ, φ′, s, s′) to equation (1) belongs to
C([0, T ];D(A)) [3] (Chap. 1, Prop. 3.3), and

‖z‖C([0,T ];D(A)) ≤ C
∥
∥(
φ0, φ1, s0, s1

)∥∥
D(A)

.

The proof is complete. �
Now we state a theorem that will be useful to prove estimates by the transposition method, estimates which

are necessary for the control of weak solutions (see Th. 6.9).

Theorem 2.5. Consider the finite energy solution (φ, s) to the system (3) with (φ0, φ1, s0, s1) = 0.
(i) For all u = f ′

1 with f1 ∈ C1
c ((0, T ];V ) and for v = 0, we have

‖φ′‖L1(0,T ;L2(Ω)) + ‖φ‖L∞(0,T ;V ) + ‖s′‖L∞(0,T ;R2) + ‖s‖L∞(0,T ;R2) ≤ C‖f1‖L1(0,T ;V ). (5)

(ii) For u = 0 and v = v′1 with v1 ∈ C1
c ((0, T ]; R2), we have

‖φ′‖L∞(0,T ;L2(Ω)) + ‖φ‖L∞(0,T ;V ) + ‖s′‖L1(0,T ;R2) + ‖s‖L∞(0,T ;R2) ≤ C‖v1‖L1(0,T ;R2). (6)

Proof. (i) We set w(t) =
∫ t

0
φ and ξ(t) =

∫ t

0
s. The pair (w, ξ) is the solution to the system

w′′ − ∆w = f1 in Q,

w = 0 on Σe,

∂nw = ξ′ · n on Σ,
w(0) = 0 and w′(0) = 0 in Ω,
ξ′′ + ξ = − ∫

Γ w
′ n in (0, T ),

ξ(0) = 0 and ξ′(0) = 0 in R
2.

We multiply by (−∆w′) the equation satisfied by w, with integrations by parts and a Green formula we obtain
∫

Ω

f1(−∆w′) =
∫

Ω

∇f1∇w′ −
∫

Γ

∂nw
′f1 =

∫

Ω

∇f1∇w′ −
∫

Γ

ξ′′ · nf1

=
∫

Ω

∇f1∇w′ +
∫

Γ

ξ · nf1 +
∫

Γ

w′n ·
∫

Γ

f1n,

and ∫

Ω

w′′(−∆w′) =
∫

Ω

∇w′′ · ∇w′ −
∫

Γ

∂nw
′w′′.
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Since
−

∫

Γ

∂nw
′w′′ = −

∫

Γ

ξ′′ · nw′′ =
∫

Γ

w′n ·
∫

Γ

w′′n+
∫

Γ

ξ · nw′′,

we have
∫

Ω

(w′′ − ∆w)(−∆w′) =
∫

Ω

∇w′′ · ∇w′ +
∫

Ω

∆w∆w′ +
∫

Γ

w′n ·
∫

Γ

w′′n+
∫

Γ

ξ · nw′′

=
∫

Ω

∇f1∇w′ +
∫

Γ

ξ · nf1 +
∫

Γ

w′n ·
∫

Γ

nf1.

Integrating between 0 and t we obtain

1
2

(

‖∇w′(t)‖2
L2(Ω) + ‖∆w(t)‖2

L2(Ω) +
∣
∣
∣
∣

∫

Γ

w′(t)n
∣
∣
∣
∣

2)

=
∫ t

0

∫

Ω

∇f1 · ∇w′ +
∫ t

0

∫

Γ

ξ · nf1 +
∫ t

0

( ∫

Γ

w′n ·
∫

Γ

f1n

)

+
∫ t

0

∫

Γ

ξ′ · nw′ −
∫

Γ

ξ(t) · nw′(t). (7)

Now multiplying by ξ′ the equation satisfied by ξ. Integrating between 0 and t we obtain

|ξ′(t)|2 + |ξ(t)|2 = −2
∫ t

0

∫

Γ

w′n · ξ′. (8)

Combining (7) and (8) we arrive at the equality

‖∇w′(t)‖2
L2(Ω) + ‖∆w(t)‖2

L2(Ω) + |ξ′(t)|2 +
∣
∣
∣ξ(t) +

∫

Γ

w′(t)n
∣
∣
∣
2

= 2
∫ t

0

∫

Ω

∇f1 · ∇w′

+ 2
∫ t

0

∫

Γ

ξ · nf1 + 2
∫ t

0

(∫

Γ

w′n ·
∫

Γ

f1n

)

.

Using a trace theorem and Hölder’s inequality we first deduce the estimate

‖∇w′(t)‖2
L2(Ω) + ‖∆w(t)‖2

L2(Ω) +
∣
∣
∣
∣ξ(t) +

∫

Γ

w′(t)n
∣
∣
∣
∣

2

+ |ξ′(t)|2

≤ C‖f1‖L1(0,T ;V )

(
‖∇w′‖L∞(0,T ;L2(Ω)) + ‖ξ‖L∞(0,T ;R2)

)
.

Since ξ(0) = 0 and |ξ′(t)|2 is bounded by C‖f1‖L1(0,T ;V )

(‖∇w′‖L∞(0,T ;L2(Ω)) + ‖ξ‖L∞(0,T ;R2)

)
, we can obtain

the estimate
|ξ(t)|2 ≤ C‖f1‖L1(0,T ;V )

(
‖∇w′‖L∞(0,T ;L2(Ω)) + ‖ξ‖L∞(0,T ;R2)

)
.

With the above estimates and Young’s inequality we finally prove

‖∇w′(t)‖2
L2(Ω) + ‖∆w(t)‖2

L2(Ω) +
∣
∣
∣
∣

∫

Γ

w′(t)n
∣
∣
∣
∣

2

+ |ξ′(t)|2 + |ξ(t)|2 ≤ C‖f1‖2
L1(0,T ;V ).

Since ‖∇w′(t)‖L2(Ω) = ‖φ(t)‖V , |ξ′(t)| = |s(t)| and |ξ(t)| = | ∫
Γ
w′(t)n+ s′(t)| = | ∫

Γ
φ(t)n+ s′(t)|, we obtain

‖φ‖L∞(0,T ;V ) + ‖s′‖L∞(0,T ;R2) + ‖s‖L∞(0,T ;R2) ≤ C‖f1‖L1(0,T ;V ).

Next, from the estimate
‖∆w(t)‖L2(Ω) ≤ C‖f1‖L1(0,T ;V ), (9)



186 J.-P. RAYMOND AND M. VANNINATHAN

and the inequality

‖φ′(t)‖L2(Ω) ≤ ‖f1(t)‖L2(Ω) + ‖∆w(t)‖L2(Ω),

it yields

‖φ′‖L1(0,T ;L2(Ω)) ≤ C‖f1‖L1(0,T ;V ).

(ii) Introducing w and ξ as in part (i), we can find the system satisfied by them. Once again, by using the same
multipliers as before, we deduce that

‖∇w′(t)‖2
L2(Ω) + ‖∆w(t)‖2

L2(Ω) + |ξ′(t)|2 +
∣
∣
∣
∣ξ(t) +

∫

Γ

w′(t)n
∣
∣
∣
∣

2

= 2
∫ t

0

ξ′(τ)v1(τ)dτ.

The estimate announced in part (ii) of the theorem follows from this. The proof is complete. �

Remark 2.6. Estimate (5) is proved for all f1 ∈ C1
c ((0, T ];V ), even if it is only needed for all f1 ∈ C1

c ((0, T );V )
(see the proof of Th. 6.3). By using functions f1 belonging to C1

c ((0, T ];V ), we may observe that we cannot
obtain the estimate

‖φ′‖L∞(0,T ;L2(Ω)) ≤ C‖f1‖L1(0,T ;V ).

Indeed, if it was true, we could write

‖f1(T )‖L2(Ω) = ‖w′′(T ) − ∆w(T )‖L2(Ω) ≤ ‖φ′(T )‖L2(Ω) + ‖∆w(T )‖L2(Ω) ≤ C‖f1‖L1(0,T ;V ),

for all f1 ∈ C1
c ((0, T ];V ), which is obviously wrong.

For similar reasons we cannot prove the estimate

‖φ′‖L2(0,T ;L2(Ω)) ≤ C‖f1‖L1(0,T ;V ).

Indeed, if it was true, we could write

‖f1(t)‖L2(Ω) ≤ ‖φ′(t)‖L2(Ω) + ‖∆w(t)‖L2(Ω),

and consequently

‖f1‖L2(0,T ;L2(Ω)) ≤ ‖φ′‖L2(0,T ;L2(Ω)) + ‖∆w‖L2(0,T ;L2(Ω)) ≤ C‖f1‖L1(0,T ;V ),

for all f1 ∈ C1
c ((0, T ];V ), which is obviously wrong. See the remark after the proof of Theorem 6.9.

Before ending this section, we state a Green formula for finite energy solutions to equation to (3) and finite
energy solutions of the following equation

ψ′′ − ∆ψ = f in Q,

ψ = 0 on Σe,

∂nψ = σ′ · n on Σ,

ψ(T ) = 0 and ψ′(T ) = 0 in Ω,

σ′′ + σ = − ∫
Γ ψ

′ n+ g in (0, T ),

σ(T ) = 0 and σ′(T ) = 0 in R
2.

(10)
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Theorem 2.7. The finite energy solution (φ, s) of equation (3) and the finite energy solution (ψ, σ) of equa-
tion (10) satisfy the formula

∫

Q

fφ+
∫ T

0

g · s =
∫

Q

ψu+
∫ T

0

v · σ − 〈φ0, ψ′(0)〉V,V ′

+ (ψ(0), φ1)L2(Ω) + σ(0) ·
(

s1 +
∫

Γ

φ0n

)

− s0 ·
(

σ′(0) +
∫

Γ

ψ(0)n
)

, (11)

for all (φ0, φ1, s0, s1) ∈ Z, (u, v) ∈ L1(0, T ;L2(Ω)) × L1(0, T ; R2), (f, g) ∈ L1(0, T ;L2(Ω)) × L1(0, T ; R2).

Proof. The proof is classical and is left to the reader. �

3. Weak solutions

As explained in the introduction, weak solutions of system (1) cannot be well defined for arbitrary initial
data (φ0, φ1, s0, s1) ∈ L2(Ω) × V ′ × R

2 × R
2. A classical method to define weak solutions for rough data

consists in using the so-called transposition method. Consider (φ0, φ1, s0, s1) = (0, φ1, s0, s1) with (φ1, s0, s1) ∈
V ′ × R

2 × R
2 and u = 0. In this case, we can say that (φ, s) ∈ L∞(0, T ;L2(Ω)) × L∞(0, T ; R2) is a weak

solution of equation (1) if formula (11) with (φ0, φ1, s0, s1) = (0, φ1, s0, s1) and u = 0 is satisfied for every
(f, g) ∈ L1(0, T ;L2(Ω)) × L1(0, T ; R2), that is if:

∫

Q

fφ+
∫ T

0

g · s =
〈
ψ(0), φ1

〉
V,V ′ + σ(0) · s1 − s0 ·

(

σ′(0) +
∫

Γ

ψ(0)n
)

, (12)

for all (f, g) ∈ L1(0, T ;L2(Ω))×L1(0, T ; R2), where (ψ, σ) is the finite energy solution of equation (10). We see
that the above definition makes sense because the solution (ψ, σ) of equation (10) obeys ψ(0) ∈ V. This leads
to the following estimate in the case φ0 = 0:

‖φ‖C([0,T ];L2(Ω)) + ‖φ′‖C([0,T ];V ′) + ‖s‖C([0,T ];R2) ≤ C
( ∥

∥φ1
∥
∥

V ′ +
∣
∣s0

∣
∣ +

∣
∣s1

∣
∣
)
. (13)

The estimate of ‖φ‖C([0,T ];L2(Ω)) and ‖s‖C([0,T ];R2) can be obtained from (12) and from Theorem 2.1 applied
to the finite energy solution (ψ, σ) of equation (10). The estimate of ‖φ′‖C([0,T ];V ′) can be deduced from (12)
and from (5) applied to the finite energy solution (ψ, σ) of equation (10), with f = f ′

1, f1 ∈ C1
c ((0, T );V ), and

g = 0. Taking g = g′1, g1 ∈ C1
c ((0, T ); R2), and f = 0, from (6) we can deduce an estimate on ‖σ′‖L1(0,T ;R2), but

not on ‖σ′‖C([0,T ];R2). As a consequence, we cannot obtain an estimate of ‖s′‖C([0,T ];R2) for the weak solution
of equation (1) corresponding to (φ0, φ1, s0, s1) = (0, φ1, s0, s1) ∈ {0} × V ′ × R

2 × R
2 and u = 0. This is one of

the effects of the coupling term
∫
Γ φ

′n.
The transposition method cannot be directly used to define weak solutions if φ0 ∈ L2(Ω) is arbitrary because

the term
∫
Γ φ

0n is not defined in this case and hence (11) cannot be used any longer (an adaptation of the
transposition method to define weak solutions is given at the end of the section). To overcome this drawback
we are going to define weak solutions by using the semigroup approach.

Let us recall that we have
D(A) = D(A∗) ↪→ Z

with dense and continuous embedding. In this setting we identify Z and Z ′. Thus we have

D(A) = D(A∗) ↪→ Z = Z ′ ↪→ (D(A∗))′ = (D(A))′,

with dense and continuous embeddings. Let (S(t))t∈R be the strongly continuous group on Z generated
by (A,D(A)). When the initial condition of equation (1) does not belong to Z, but only belongs to (D(A∗))′,
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we can still define weak solutions of equation (1) in C([0, T ];D(A∗)′) by using the extrapolation method which
extends the dynamics to a larger space (see [3], pp. 159–161). Introducing the unbounded operator A1 on D(A∗),
with domain D(A1) = D((A∗)2), defined by A1z = A∗z for all z ∈ D((A∗)2), we know that the adjoint of A1

is the unbounded operator A∗
1 in (D(A∗))′, with domain D(A∗

1) = Z (see [3]). We denote by (S̃(t))t∈R, the
strongly continuous unitary group on (D(A∗))′ generated by (A∗

1, Z). Then we have

S(t)
(
φ0, φ1, s0, s1

)
= S̃(t)

(
φ0, φ1, s0, s1

)
for all

(
φ0, φ1, s0, s1

) ∈ Z, and all t ∈ R,

and the following equality holds
∥
∥S(·) (

φ0, φ1, s0, s1
)∥∥

C([0,T ];(D(A∗))′) =
∥
∥(
φ0, φ1, s0, s1

)∥∥
(D(A∗))′ ,

for all (φ0, φ1, s0, s1) ∈ Z.
In order to exploit the fact that (S̃(t))t∈R is a strongly continuous group on (D(A∗))′, we need a more precise

characterization of (D(A∗))′. Observe that

(
φ0, φ1, s0, s1

) �−→
( ∥

∥φ0
∥
∥

L2(Ω)
+

∥
∥φ1

∥
∥

V ′ +
∣
∣s0

∣
∣ +

∣
∣
∣
∣s

1 +
∫

Γ

φ0n

∣
∣
∣
∣

)

is a norm on Z. Let Y be the completion of Z with respect to this norm, and denote this norm by ‖ · ‖Y .

Theorem 3.1. The dual space (D(A∗))′ can be identified algebraically and topologically with Y .

Proof. Since (D(A∗))′ = (D(A))′, we are going to prove that (D(A))′ can be identified algebraically and
topologically with Y . Let us recall that the norm on (D(A))′ is defined by

‖w‖(D(A))′ = supz∈D(A)

|(z, w)Z |
‖z‖D(A)

·

The graph norm on D(A)
z �−→ ‖z‖Z + ‖Az‖Z,

is equivalent to the norm

z =
(
φ0, φ1, s0, s1

) �−→ ∥
∥∆φ0

∥
∥

L2(Ω)
+

∥
∥φ1

∥
∥

V
+

∣
∣s0

∣
∣ +

∣
∣s1

∣
∣ .

For all z = (φ0, φ1, s0, s1) ∈ D(A) and w = (ψ0, ψ1, σ0, σ1) ∈ Z, we have

|(z, w)Z | =
∣
∣
∣
∣ −

∫

Ω

∆φ0ψ0 +
∫

Ω

φ1ψ1 + s0 · σ0 + s1 ·
(

σ1 +
∫

Γ

ψ0n

)∣
∣
∣
∣ ≤ C‖z‖D(A)‖w‖Y .

Thus
‖w‖(D(A))′ ≤ C‖w‖Y for all w ∈ Z. (14)

Let us prove the reverse inequality. Let w = (ψ0, ψ1, σ0, σ1) ∈ Z, and let φ0 ∈ H2(Ω) be the solution to the
boundary value problem

−∆φ0 = ψ0 in Ω, φ0 = 0 on Γe,
∂φ0

∂n
=

(

σ1 +
∫

Γ

ψ0n

)

· n on Γ.

Then z = (φ0, 0, 0, σ1 +
∫
Γ ψ

0n) ∈ D(A) and

|(z, w)Z | = −
∫

Ω

∆φ0ψ0 +
∣
∣
∣
∣σ

1 +
∫

Γ

ψ0n

∣
∣
∣
∣

2

=
∫

Ω

∣
∣ψ0

∣
∣2 +

∣
∣
∣
∣σ

1 +
∫

Γ

ψ0n

∣
∣
∣
∣

2

.
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Since

‖w‖(D(A))′ ≥ |(z, w)Z |
‖z‖D(A)

,

it follows that

‖ψ0‖L2(Ω) +
∣
∣
∣
∣σ

1 +
∫

Γ

ψ0n

∣
∣
∣
∣ ≤ C‖w‖(D(A))′ .

Let φ1 ∈ V be such that
‖φ1‖V = 1 and

〈
ψ1, φ1

〉
V ′,V =

∥
∥ψ1

∥
∥

V ′ .

Setting z = (0, φ1, 0, 0), we have

‖w‖(D(A))′ ≥ |(z, w)Z |
‖z‖D(A)

=
∥
∥ψ1

∥
∥

V ′ .

Setting z = (0, 0, σ0, 0), we have

‖w‖(D(A))′ ≥ |(z, w)Z |
‖z‖D(A)

=
∣
∣σ0

∣
∣ .

Collecting together these different estimates, we obtain

‖w‖Y ≤ C‖w‖(D(A))′ for all w ∈ Z. (15)

The theorem follows from (14), (15), and the fact that Y is the closure of Z with respect to the norm ‖ · ‖Y ,
and (D(A))′ is the closure of Z with respect to the norm ‖ · ‖(D(A))′ . �

Remark 3.2. Due to Theorem 3.1, (S̃(t))t∈R is the strongly continuous group on Y generated by the opera-
tor (A∗

1, Z).

Theorem 3.3. Let z0 = (φ0, φ1, s0, s1) ∈ Z. The finite energy solution S(·)z0 = (φ, φ′, s, s′) to equation (1)
with u = 0 obeys the following estimate

‖φ‖C([0,T ];L2(Ω)) + ‖φ′‖C([0,T ];V ′) + ‖s‖C([0,T ];R2) +
∥
∥
∥
∥s

′ +
∫

Γ

φn

∥
∥
∥
∥

C([0,T ];R2)

≤ C

(
∥
∥φ0

∥
∥

L2(Ω)
+

∥
∥φ1

∥
∥

V ′ +
∣
∣s0

∣
∣ +

∣
∣
∣
∣s

1 +
∫

Γ

φ0 n

∣
∣
∣
∣

)

. (16)

Proof. The theorem is a direct consequence of the estimate

‖S(·)z0‖C([0,T ];Y ) ≤ C‖z0‖Y . �

Remark 3.4. We see that estimate (16) is better than the one obtained in (13).

Remark 3.5. It is clear from the definition of the space Y that the combination s′ +
∫
Γ φn is a well-defined

element of C([0, T ]; R2) for weak solutions of equation (1) with u = 0, given by the group (S̃(t))t∈R in the
space Y even though individual terms do not make sense. Further the Green formula (11) continues to hold
good for a weak solution (φ, s) of (3) and a finite energy solution (ψ, σ) of (10), if we accept to replace s1+

∫
Γ φ

0n

by s̃1 where (φ0, φ1, s0, s̃1) = J̃(φ0, φ1, s0, s1), and the operator J̃ is the one introduced in Section 5. This leads
to the alternate definition given below.

Definition 3.6. Let (φ0, φ1, s0, s1) belong to Y and set u = 0. A pair (φ, s) ∈ L∞(0, T ;L2(Ω))× L∞(0, T ; R2)
is called a weak solution of equation (1) in the transposition sense if and only if

∫

Q

fφ+
∫ T

0

g · s = −(
φ0, ψ′(0)

)
L2(Ω)

+ 〈ψ(0), φ1〉V,V ′ + σ(0) · s̃1 − s0 ·
(

σ′(0) +
∫

Γ

ψ(0)n
)

, (17)
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for all (f, g) ∈ L1(0, T ;L2(Ω)) × L1(0, T ; R2), where (φ0, φ1, s0, s̃1) = J̃(φ0, φ1, s0, s1), and (ψ, σ) is the finite
energy solution of equation (10).

We can easily check that if (φ0, φ1, s0, s1) belongs to Y and u = 0, then equation (1) admits a unique solution
in the sense of definition 3.6. This existence and uniqueness result is a consequence of Theorems 5.1 and 2.1
applied to the finite energy solution (ψ, σ) of equation (10), and we have

‖φ‖C([0,T ];L2(Ω)) + ‖s‖C([0,T ];R2) ≤ C

(
∥
∥φ0

∥
∥

L2(Ω)
+

∥
∥φ1

∥
∥

V ′ + |s0| +
∣
∣
∣
∣s

1 +
∫

Γ

φ0 n

∣
∣
∣
∣

)

. (18)

However, there are difficulties in deducing estimates on φ′ and s′ +
∫
Γ φn directly from (17). Let us explain why

in the following remark.

Remark 3.7. Because of the Green formula (11), it is clear that if (φ0, φ1, s0, s1) belongs to Z and u = 0,
the solution (φ, s) of equation (1) in the sense of definition 3.6 is such that (φ, φ′, s, s′) = S(·)(φ0, φ1, s0, s1) =
S̃(·)(φ0, φ1, s0, s1). Let now (φ0, φ1, s0, s1) belong to Y , and let ((φ0

k, φ
1
k, s

0
k, s

1
k))k be a sequence in Z, converging

to (φ0, φ1, s0, s1) in Y . Let (φk, sk) be the solution of equation (1) corresponding to (φ0
k, φ

1
k, s

0
k, s

1
k) and to

u = 0. From estimate (16) it follows that ((φk, φ
′
k, sk, s

′
k +

∫
Γ
φk n))k converges to J̃ S̃(·)(φ0, φ1, s0, s1) in

L2(Ω)×V ′×R
2×R

2. From estimate (18), it follows that the sequence ((φk, sk))k converges to the solution (φ, s)
of equation (1) in the sense of definition 3.6. Setting (Φ,Φ′, s, s̃) = J̃ S̃(·)(φ0, φ1, s0, s1), we have (Φ, s) = (φ, s),
but we cannot deduce any estimate of ‖φ′k‖C([0,T ];V ′) and ‖s′k +

∫
Γ φk n‖C([0,T ];R2) from the formulation (17).

Indeed, if we want to estimate ‖φ′‖C([0,T ];V ′) by the method used in [10, page 50–52], we have to consider
the finite energy solution (ψ, σ) of equation (10) with f = f ′

1 and f1 ∈ C1
c ((0, T );V ) and g = 0. But The-

orem 2.5 only provides an estimate of ‖ψ′‖L1(0,T ;L2(Ω)) and not of ‖ψ′‖L∞(0,T ;L2(Ω)). This is the reason why
estimate (16) cannot be directly deduced from the formulation (17). The same difficulty occurs in estimating
‖s′ +

∫
Γ φn‖C([0,T ];R2). On the other hand estimate (16) is a direct consequence of the continuity on Y of the

group (S̃(t))t∈R.
An alternate way to prove estimate (16) may be to consider the finite energy solution (ψ, σ) of

ψ′′ − ∆ψ = 0 in Q,

ψ = 0 on Σe,

∂nψ = σ′ · n on Σ,

ψ(τ) = ψτ and ψ′(τ) = 0 in Ω,

σ′′ + σ = − ∫
Γ
ψ′ n in (0, T ),

σ(τ) = στ and σ′(τ) = 0 in R
2,

(19)

and the variational equation

〈ψτ , φ
′(τ)〉V,V ′ +στ ·

(

s′(τ)+
∫

Γ

φ(τ)n
)

= −(
φ0, ψ′(0)

)
L2(Ω)

+〈ψ(0), φ1〉V,V ′ +σ(0) · s̃1−s0 ·
(

σ′(0)+
∫

Γ

ψ(0)n
)

,

(20)
where τ is arbitrarily fixed in (0, T ], ψτ ∈ V , στ ∈ R

2, and (φ, φ′, s, s′) is the finite energy solution of equation (1)
with u = 0. This method is used in [6] for another problem. As in [6], from (20) we can deduce that

‖φ′(τ)‖V ′ +
∥
∥
∥s′(τ) +

∫

Γ

φ(τ)n
∥
∥
∥

R2
≤ C‖(φ0, φ1, s0, s1)‖Y ,
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where C is a constant independent of τ . Next, taking the supremum with respect to τ , we recover estimate (16).
Thus we observe that, by this method, the continuity in C([0, T ];Y ) is more complicated to prove than by directly
using the semigroup property in the present case.

4. Inverse inequality

The main results of this section are the inverse inequalities stated in Theorems 4.4 and 4.5. Both inequalities
are stated for finite energy solutions even if the norm appearing in (24) is the norm of Y . Inequality (24) is
used in Theorem 5.2 for finite energy solutions. In Section 5, the operator Λ of the Hilbert Uniqueness Method
is first defined in Z and next extended to Y .

Consider the homogeneous problem:

y′′ − ∆y = 0 in Q,

y = 0 on Σe,

∂ny = r′ · n on Σ,

y(0) = y0 and y′(0) = y1 in Ω,

r′′ + r = − ∫
Γ y

′ n in (0, T ),

r(0) = r0 and r′(0) = r1 in R
2.

(21)

Theorem 4.1. There exists a constant C > 0 such that, for all (y0, y1, r0, r1) ∈ Z, the finite energy solu-
tion (y, r) of equation (21) satisfies

‖y′(t)‖L2(Ω) + ‖y(t)‖V + |r′(t)| + |r(t)| ≤ C

( ∫

Q

(y′)2 +
∫ T

0

r · r
) 1

2

for all 0 ≤ t ≤ T .

Proof. Let ρ be the function defined by
ρ(t) = t2(T − t)2.

With integration by parts we have
∫

Q

y′′ρy = −
∫

Q

ρ′yy′ −
∫

Q

ρ(y′)2,

and
∫

Q

(−∆y)ρy =
∫

Q

ρ|∇y|2 −
∫

Σ

∂nyρy =
∫

Q

ρ|∇y|2 −
∫

Σ

r′ · nρy =
∫

Q

ρ|∇y|2 +
∫ T

0

ρ′r ·
∫

Γ

yn+
∫ T

0

ρr ·
∫

Γ

y′n.

On the other hand we have
∫ T

0

r′′ · ρr +
∫ T

0

ρr · r = −
∫ T

0

ρr′ · r′ −
∫ T

0

ρ′r · r′ +
∫ T

0

ρr · r = −
∫ T

0

ρr ·
∫

Γ

y′n.

Thus we have

0 = −
∫

Q

ρ′yy′ −
∫

Q

ρ(y′)2 +
∫

Q

ρ|∇y|2 +
∫ T

0

ρ′r ·
∫

Γ

yn+
∫ T

0

ρr′ · r′ +
∫ T

0

ρ′r · r′ −
∫ T

0

ρr · r.
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Since ρ′ρ−1/2 belongs to L∞(0, T ), we see that, for all ε > 0, there exists a constant C(ε) > 0 such that
∣
∣
∣
∣

∫

Q

ρ′yy′
∣
∣
∣
∣ ≤ ε

∫

Q

ρy2 + C(ε)
∫

Q

(y′)2,

∣
∣
∣
∣

∫ T

0

ρ′r ·
∫

Γ

yn

∣
∣
∣
∣ ≤ ε

∫ T

0

ρ

∣
∣
∣
∣

∫

Γ

yn

∣
∣
∣
∣

2

+ C(ε)
∫ T

0

r · r,
and ∣

∣
∣
∣

∫ T

0

ρ′r · r′
∣
∣
∣
∣ ≤ ε

∫ T

0

ρ r′ · r′ + C(ε)
∫ T

0

r · r.
We already know that y(t) ∈ V for all t ∈ [0, T ]. From the Poincaré inequality and a trace theorem it follows
that ∫

Q

ρ|∇y|2 ≥ λ0

( ∫

Q

ρy2 +
∫ T

0

ρ

∣
∣
∣
∣

∫

Γ

yn

∣
∣
∣
∣

2)

,

for some constant λ0 > 0. Thus we can choose ε > 0 small enough to have

∫ T

0

ρ(t)
(
‖y′(t)‖2

L2(Ω) + ‖y(t)‖2
V + |r′(t)|2 + |r(t)|2

)
dt ≤ C

( ∫

Q

(y′)2 +
∫ T

0

r · r
)

.

Since E(0) = E(t) = ‖y′(t)‖2
L2(Ω) + ‖y(t)‖2

V + |r′(t)|2 + |r(t)|2, the proof is complete. �

Theorem 4.2. There exists a constant C > 0 such that the finite energy solution (y, r) of equation (21) satisfies
the following inverse inequality

‖y0‖L2(Ω) + ‖y1‖V ′ + |r0| +
∣
∣
∣r1 +

∫

Γ

y0 n
∣
∣
∣ ≤ C

( ∫

Q

y2 +
∫ T

0

ζ · ζ
) 1

2

,

for all (y0, y1, r0, r1) ∈ V × L2(Ω) × R
2 × R

2, where ζ is the solution to the differential equation

ζ′(t) = r(t) in (0, T ), and ζ(0) = −r1 −
∫

Γ

y0 n.

Proof. Consider the boundary value problem

∆χ = y1 in Ω, χ ∈ V, ∂nχ = r0 · n on Γ.

The solution χ is equal to χ1 + χ0, where χ1 is the solution of

∆χ1 = y1 in Ω, χ1 ∈ V, ∂nχ1 = 0 on Γ,

and χ0 is the solution of

∆χ0 = 0 in Ω, χ0 ∈ V, ∂nχ0 = r0 · n on Γ.

We can easily verify that
‖χ1‖V = ‖y1‖V ′ ,

and
‖χ0‖V ≤ C1|r0|.

Thus we have
‖y1‖V ′ − C1|r0| ≤ ‖χ‖V . (22)
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Let us set

w(x, t) =
∫ t

0

y(x, τ)dτ + χ(x),

and define the function ζ by

ζ(0) = −r1 −
∫

Γ

y0 n, ζ′ = r.

The pair (w, ζ) obeys the system

w′′ − ∆w = 0 in Q,

w = 0 on Σe,

∂nw = ζ′ · n on Σ,

w(0) = χ and w′(0) = y0 in Ω,

ζ′′ + ζ = − ∫
Γ w

′ n in (0, T ),

ζ(0) = −r1 − ∫
Γ
y0 n and ζ′(0) = r0 in R

2.

(23)

Applying Theorem 4.1 to (w, ζ) we get

‖χ‖V + ‖y0‖L2(Ω) +
∣
∣
∣r1 +

∫

Γ

y0 n
∣
∣
∣ + |r0| ≤ C

( ∫

Q

y2 +
∫ T

0

ζ · ζ
) 1

2

.

With estimate (22), we finally have

‖y1‖V ′ + ‖y0‖L2(Ω) +
∣
∣
∣
∣r

1 +
∫

Γ

y0 n

∣
∣
∣
∣ +

∣
∣r0

∣
∣

≤ ‖χ‖V +
∥
∥y0

∥
∥

L2(Ω)
+

∣
∣
∣
∣r

1 +
∫

Γ

y0 n

∣
∣
∣
∣ + (1 + C1)|r0| ≤ C

( ∫

Q

y2 +
∫ T

0

ζ · ζ
) 1

2

,

and the proof is complete. �

We can now eliminate the term
∫ T

0
r · r from the right hand side in Theorem 4.1.

Theorem 4.3. There exists a constant C > 0 such that, for every y0 ∈ V , every y1 ∈ L2(Ω), every r0 ∈ R
2,

and every r1 ∈ R
2, the finite energy solution (y, r) of equation (21) satisfies

‖r‖L∞(0,T ;R2) ≤ C‖y′‖L2(Q).

Proof. We argue by contradiction. We suppose that there exist a sequence (yj , rj)j of solutions of equation (21)
such that ‖rj‖L∞(0,T ;R2) = 1 and limj→∞

∫
Q

(y′j)
2 = 0. Using the inverse inequality of Theorem 4.1 we can

suppose that there exist y and r such that

yj
∗
⇀ y in L∞(0, T ;V ), y′j

∗
⇀ 0 in L∞ (

0, T ;L2(Ω)
)
, y′j → 0 in L2

(
0, T ;L2(Ω)

)
,

and
rj

∗
⇀ r in L∞ (

0, T ; R2
)
, r′j

∗
⇀ r′ in L∞ (

0, T ; R2
)
.
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By Arzela-Ascoli Theorem it follows that the sequence (rj)j tends to r in C([0, T ]; R2). Observe that y′ = 0.
On the other hand ∂ny = r′ · n. Thus

∂ny
′ = r′′ · n = 0 on Σ.

Therefore r′′ = 0 in (0, T ).
Let σ ∈ C1([0, T ]; R2) be such that σ(0) = σ(T ) = 0. Multiplying by σ the equation satisfied by rj , we have:

∫ T

0

(−r′jσ′ + rjσ) =
∫ T

0

σ′
∫

Γ

yj · n.

Passing to the limit, we obtain

∫ T

0

(−r′σ′ + rσ) =
∫

Γ

(( ∫ T

0

σ′
)

· ny
)

= 0.

Thus
r′′ + r = 0 in the sense of distributions in (0, T ).

Since r′′ = 0, we have r = 0. This is clearly in contradiction with ‖rj‖L∞(0,T ;R2) = 1 and (rj)j tends to r

in C([0, T ]; R2). �
Theorem 4.4. There exists a constant C > 0 such that the finite energy solution (y, r) of equation (21) satisfies
the following inverse inequality

‖y0‖L2(Ω) + ‖y1‖V ′ + |r0| +
∣
∣
∣
∣r

1 +
∫

Γ

y0 n

∣
∣
∣
∣ ≤ C‖y‖L2(Q), for all (y0, y1, r0, r1) ∈ Z. (24)

Proof. We use the notation in the proof of Theorem 4.2. Applying Theorem 4.3 to the solution (w, ζ) of
equation (23), we have

‖ζ‖L∞(0,T ;R2) ≤ C‖w′‖L2(Q) = C‖y‖L2(Q).

The proof follows from the inverse inequality stated in Theorem 4.2. �
Theorem 4.5. Suppose that (y0, y1, r0, r1) ∈ Z. The finite energy solution (y, r) of equation (21) satisfies the
following inverse inequality

‖y0‖V + ‖y1‖L2(Ω) + |r0| + |r1| ≤ C‖y′‖L2(Q).

Proof. The result is a direct consequence of Theorems 4.1 and 4.3. �

5. Proof of Theorem 1.1

Set F = L2(Ω) × V ′ × R
2 × R

2 and F ′ = L2(Ω) × V × R
2 × R

2. Define the operator J from Z into F by

J(φ0, φ1, s0, s1) =
(

φ0, φ1, s0, s1 +
∫

Γ

φ0n

)

.

Notice that ‖J(z)‖F = ‖z‖Y for all z ∈ Z. By density and continuity, J can be uniquely extended to a bounded
linear operator J̃ from Y to F such that ‖J̃(z)‖F = ‖z‖Y for all z ∈ Y .

Theorem 5.1. The operator J̃ is an isomorphism from Y to F .

Proof. First prove that the operator J̃ is surjective from Y to F . Since Y is complete, J̃(Y ) is closed in F .
Therefore, it is sufficient to show that J̃(Y ) or J(Z) is dense in F . But J(Z) = Z, thus J̃ is surjective. Since J̃
is an isometry, J̃ is an isomorphism from Y to F . �
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Theorem 5.2. Let P ∈ L(Z;L2(Ω)) be defined by (φ0, φ1, s0, s1) �→ φ0. The mapping

(z, w) �−→
∫ T

0

(
PS(t)z, PS(t)w

)

L2(Ω)
dt

defines an inner product on Z, denoted by (·, ·)Y , whose norm is equivalent to ‖ · ‖Y .

Proof. The proof follows from Theorems 3.3 and 4.4. �

Proof of Theorem 1.1. Consider the mapping from Z into F ′ defined by

Λ : (y0, y1, r0, r1) �−→
(

−ψ′(0), ψ(0),−σ′(0) −
∫

Γ

ψ(0)n, σ(0)
)

,

where (ψ, σ) is the finite energy solution to the equation

ψ′′ − ∆ψ = y in Q,

ψ = 0 on Σe,

∂nψ = σ′ · n on Σ,
ψ(T ) = 0 and ψ′(T ) = 0 in Ω,
σ′′ + σ = − ∫

Γ
ψ′ n in (0, T ),

σ(T ) = 0 and σ′(T ) = 0 in R
2,

(25)

and (y, r) is the finite energy solution to equation (21) corresponding to (y0, y1, r0, r1). Let (φ0, φ1, s0, s1) ∈ Z
and denote by (φ, s) the solution to equation (1) with u = 0. Applying formula (11), we obtain

〈
Λ

(
y0, y1, r0, r1

)
, J

(
φ0, φ1, s0, s1

) 〉

F ′,F
=

∫

Q

y φ. (26)

From Theorems 5.1 and 5.2 it follows that

〈
Λ

(
y0, y1, r0, r1

)
, J

(
φ0, φ1, s0, s1

) 〉

F ′,F
=

( (
y0, y1, r0, r1

)
,
(
φ0, φ1, s0, s1

) )

Y

≤ C
∥
∥
(
y0, y1, r0, r1

)∥
∥

Y

∥
∥
(
φ0, φ1, s0, s1

)∥
∥

Y
= C

∥
∥
(
y0, y1, r0, r1

)∥
∥

Y

∥
∥J

(
φ0, φ1, s0, s1

)∥
∥

F
. (27)

Thus Λ is continuous from (Z, ‖ · ‖Y ) into F ′. By density and continuity, Λ can be uniquely extended to a
bounded linear operator Λ̃ from Y to F ′. Equation (26) can be rewritten in the form

〈
J̃∗Λ̃

(
y0, y1, r0, r1

)
,
(
φ0, φ1, s0, s1

) 〉

Y ′,Y
=

( (
y0, y1, r0, r1

)
,
(
φ0, φ1, s0, s1

) )

Y
(28)

for all (y0, y1, r0, r1) ∈ Y , and all (φ0, φ1, s0, s1) ∈ Y .
Equation (28) implies that J̃∗Λ̃ is an isomorphism from Y onto Y ′. Since J̃∗ is an isomorphism from Y

onto F , it follows that Λ̃ = (J̃∗)−1(J̃∗Λ̃) is an isomorphism from Y onto F ′.
Let us start with (φ0, φ1, s0, s1) in Z. Notice that (−φ1, φ0,−s1−∫

Γ φ
0n, s0) belongs to F ′. Let (y0, y1, r0, r1) ∈

Y be the solution to the equation

Λ̃
(
y0, y1, r0, r1

)
=

(

− φ1, φ0,−s1 −
∫

Γ

φ0n, s0
)

.
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Denote by (y, r) the solution of equation (21) corresponding to (y0, y1, r0, r1), and by (ψ, σ) the solution to
equation (25) corresponding to y. From the definition of Λ̃ it follows that

ψ(0) = φ0, ψ′(0) = φ1, σ(0) = s0, σ′(0) = s1. (29)

Therefore if we take u = y the solution (φ, s) to equation (1) obeys φ(T ) = φ′(T ) = 0 and s(T ) = s′(T ) = 0.
Theorem 1.1 is proved. �

6. Controllability of weak solutions

The main result of the two following sections is a controllabity result for weak solutions stated below.

Theorem 6.1. For all (φ0, φ1, s0, s1) ∈ Y , there exists a control u ∈ (H1(0, T ;L2(Ω)))′ such that the weak
solution to equation (1) obeys

φ(T ) = φ′(T ) = 0 and s(T ) = s′(T ) = 0.

Throughout this section, we fix (y0, y1, r0, r1) ∈ Z and consider the corresponding finite energy solution (y, r)
satisfying (21). All estimates will be in terms of y.

To prove Theorem 6.1, we need to consider the system (31) wherein we take f = −dt[y′]. This new object
−dt[y′] is associated with y. To define it, we recall that (y, r) belongs to (C([0, T ];V ) ∩ C1([0, T ];L2(Ω)) ∩
H2(0, T ;V ′)) × C1([0, T ]; R2). Thus we can define −dt[y′] as an element of (H1(0, T ;L2(Ω)))′ by

〈
− dt[y′], θ

〉

(H1(0,T ;L2(Ω)))′,H1(0,T ;L2(Ω))
=

∫

Q

y′(x, t)θ′(x, t) dxdt, (30)

for all θ ∈ H1(0, T ;L2(Ω)).
With the above definition, we consider the following system

ψ′′ − ∆ψ = f in Q,

ψ = 0 on Σe,

∂nψ = σ′ · n on Σ,

ψ(T ) = 0 and ψ′(T ) = 0 in Ω,

σ′′ + σ = − ∫
Γ ψ

′ n in (0, T ),

σ(T ) = 0 and σ′(T ) = 0 in R
2.

(31)

Since −dt[y′] does not belong to L1(0, T ;V ′), equation (31) with f = −dt[y′] cannot be studied in the framework
of weak solutions introduced in section 3. We need another one which is provided in this section. The proof of
Theorem 6.1 which uses (31) is given in Section 7. We can define the solutions of (31) by the transposition method
(see Def. 6.8 below). By using the same method, we can prove that equation (31) admits a unique solution
(ψ, σ) in L∞(0, T ;L2(Ω)) × L∞(0, T ; R2) (Th. 6.9). This solution belongs to C([0, T ];L2(Ω)) × C([0, T ]; R2),
but ψ′ does not belong to C([0, T ];V ′) and consequently, at this stage, we are not able to state a Green formula.
But, as observed below, −dt[y′] can be identified with a vector valued measure belonging to L2(0, T ;V ′) +
M([0, T ];L2(Ω)) and this enables us to prove that ψ′ belongs to L∞(0, T ;V ′) and σ′ belongs to L∞(0, T ; R2)
and that there exists a unique (ψ0, ψ1, σ0, σ̃1) in L2(Ω) × V ′ × R

2 × R
2 which satisfies some Green formula

(see Th. 6.9). In the case where the solution (ψ, σ) is regular, the quadruplet (ψ0, ψ1, σ0, σ̃1) is equal to
(ψ(0), ψ′(0), σ(0), σ′(0) +

∫
Γ ψ(0)n).



EXACT CONTROLLABILITY IN FLUID – SOLID STRUCTURE: THE HELMHOLTZ MODEL 197

To see that −dt[y′] is a vector valued measure, belonging to L2(0, T ;V ′) +M([0, T ];L2(Ω)), we observe that

〈
− dt[y′], θ

〉

(L2(0,T ;V ′)+M([0,T ];L2(Ω))),(L2(0,T ;V )∩C([0,T ];L2(Ω)))

=
∫ T

0

〈−y′′(t), θ(t)〉V ′,V dt+ (y′(T ), θ(T ))L2(Ω) − (y′(0), θ(0))L2(Ω), (32)

for all θ ∈ (L2(0, T ;V )∩C([0, T ];L2(Ω)). This definition for −dt[y′] is possible because −y′′ belongs to L2(0, T ;V ′).
Since

∫ T

0

〈−y′′(t), θ(t)〉V ′,V dt+ (y′(T ), θ(T ))L2(Ω) − (y′(0), θ(0))L2(Ω) =
∫ T

0

(
y′(t), θ′(t)

)
L2(Ω)

,

for all θ ∈
(
L2(0, T ;V ) ∩C([0, T ];L2(Ω))

)
∩H1(0, T ;L2(Ω)), it is clear that

−dt[y′] ∈
(
L2(0, T ;V ′) + M([0, T ];L2(Ω))

)
∩

(
H1(0, T ;L2(Ω))

)′
.

Formula (32) means that −dt[y′] = −y′′ + y′(T )⊗ δT − y′(0)⊗ δ0 and accordingly, we can decompose (31) into
two parts. Due to the definition of the space Y , the source term −y′′ ∈ L2(0, T ;V ′) can be directly handled
in the framework of weak solutions of Section 3. The measure (y′(T ) ⊗ δT − y′(0) ⊗ δ0) ∈ M([0, T ];L2(Ω))
can be approximated by sequences in L1(0, T ;L2(Ω)) and the required estimates for (ψ, σ) can be obtained by
a passage to the limit (see the proof of Th. 6.7). After these preliminary remarks, let us now turn to formal
definitions and proofs.

Following the decomposition −dt[y′] = −y′′ +µ with µ = y′(T )⊗ δT − y′(0)⊗ δ0, we split the solution of (31)
into two parts:

(ψ, σ) = (ψ1, σ1) + (ψ2, σ2)

where (ψ1, σ1) is the weak solution of (31) with the source term (−y′′) and (ψ2, σ2) corresponds to the source
term µ. Our first result is concerned with (ψ1, σ1).

Definition 6.2. A function (ψ, σ) ∈ L∞(0, T ;L2(Ω)) × L∞(0, T ; R2) is a weak solution to equation (31) with
the source term f = −y′′ if

∫

Q

ψu +
∫ T

0

σ · v = −
∫ T

0

〈φ(t), y′′(t)〉V,V ′ dt,

for all u ∈ L1(0, T ;L2(Ω)), v ∈ L1(0, T ; R2), where (φ, s) is the finite energy solution to equation (3) corre-
sponding to (φ0, φ1, s0, s1) = 0.

Theorem 6.3. There is a unique weak solution to (31) with the source term f = −y′′ and it admits the following
estimates:

‖ψ1‖L∞(0,T ;L2(Ω)) + ‖ψ′
1‖L∞(0,T ;V ′) + ‖σ1‖L∞(0,T ;R2) + ‖σ′

1‖L∞(0,T ;R2) ≤ C‖y′‖C([0,T ];L2(Ω)),

∥
∥
∥σ′

1 +
∫

Γ

ψ1n
∥
∥
∥

L∞(0,T ;R2)
≤ C‖y′‖C([0,T ];L2(Ω)).

Further, it enjoys the regularity property

(

ψ1, ψ
′
1, σ1, σ

′
1 +

∫

Γ

ψ1n

)

∈ C([0, T ];F ) and
(

ψ1, ψ
′
1, σ1, σ

′
1

)

∈ C([0, T ];F ).
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Moreover the following formula holds

∫

Q

ψ1u+
∫ T

0

σ1 · v =
∫

Q

y′φ′ − (y′(T ), φ(T ))L2(Ω)

−(φ1, ψ1(0))L2(Ω) + 〈φ0, ψ′
1(0)〉V,V ′ + s0 ·

(
σ′

1(0) +
∫

Γ

ψ1(0)n
)
−

(
s1 +

∫

Γ

φ0n
)
· σ1(0), (33)

for all u ∈ L1(0, T ;L2(Ω)), v ∈ L1(0, T ; R2), and (φ0, φ1, s0, s1) ∈ Z, where (φ, s) is the finite energy solution
to equation (3). (In formula (33),

(
ψ1(0), ψ′

1(0), σ1(0),
(
σ′

1(0) +
∫
Γ
ψ1(0)n

))
, is well defined in F because

(
ψ1, ψ

′
1, σ1, σ

′
1 +

∫
Γ
ψ1n

)
∈ C([0, T ];F ).)

Proof. First of all, it is clear that the weak solution is unique if it exists. To prove the stated estimates, we
proceed in steps.
Step 1. Since y′′ ∈ C([0, T ];V ′) (see Th. 3.1), a solution (ψ1, σ1) can be obtained via the evolution group
(S̃(t))t≥0 on the space Y.

To check that it is also a weak solution in the sense of the Definition 7.1, we consider a finite energy solution
(φ, s) to the system (3) with (φ0, φ1, s0, s1) = 0. According to our remarks in Section 3, it is perfectly legal to
do integration by parts between (φ, s) and (ψ1, σ1) and the corresponding Green formula can be written as

∫

Q

ψ1u+
∫ T

0

σ1 · v = −
∫ T

0

〈φ(t), y′′(t)〉V,V ′ .

Thus the semigroup solution is also the solution in the sense of transposition stated in Definition 6.2. The right
hand side can be further integrated to yield

∫

Q

ψ1u+
∫ T

0

σ1 · v =
∫

Q

φ′y′ − (y′(T ), φ(T ))L2(Ω).

Step 2. To obtain the second set of estimates, using Theorem 2.1 we majorize the right hand side of the above
relation by

‖y′‖L∞(0,T,L2(Ω))(‖φ′‖L1(0,T,L2(Ω)) + ‖φ‖L∞(0,T ;L2(Ω))) ≤ C‖y′‖L∞(0,T ;L2(Ω))(‖u‖L1(0,T,L2(Ω)) + ‖v‖L1(0,T ;R2)).

Since (u, v) are arbitrary, the stated estimate on (ψ1, σ1) follows.
Estimate on (ψ′

1, σ
′
1). We make the choice u = f ′

1 with f1 ∈ C′
c((0, T );V ) and v = v′1 with v1 ∈ C1

c ((0, T ); R2).
Above relation then becomes

∫

Q

ψ1f
′
1 +

∫ T

0

σ1 · v′1 =
∫

Q

y′φ′ − (y′(T ), φ(T ))L2(Ω).

This time around, using Theorem 2.5, we majorize the right side by

C‖y′‖L∞(0,T ;L2(Ω))(‖f1‖L1(0,T ;V ) + ‖v1‖L1(0,T ;R2)).

Since (f1, v1) are arbitrary, we obtain the required estimate on (ψ′
1, σ

′
1).

Step 3. The method presented in the above step seems to be inadequate to prove the last inequality. We
present now a different argument to achieve this.

We consider a finite energy solution (φ, s) to (3) with u = 0, v = 0, φ0 = φ1 = 0, s1 = 0 but s0 ∈ R
2

arbitrary.
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Fixing t0 such that 0 ≤ t0 < T, the new idea consists of introducing

(φt0 , st0)(τ) = (φ, s)(τ − t0) for t0 ≤ τ ≤ T.

Since (φ, s) is a solution to (3) on [0, T ]× Ω, it is clear that (φt0 , st0) satisfies (3) on [t0, T ]× Ω. Integration by
parts between (ψ1, σ1) and (φt0 , st0) gives

s0 ·
(

σ′
1(t0) +

∫

Γ

ψ1(t0)n
)

= −
T∫

t0

y′φ′t0 + (y′(T ), φt0(T )).

The right side can be estimated by

‖y′‖L∞(t0,T ;L2(Ω))

{‖φ′t0‖L1(0,T ;L2(Ω)) + ‖φ‖L∞(0,T ;L2(Ω))

}

≤ ‖y′‖L∞(t0,T ;L2(Ω))

{‖φ′‖L1(0,T ;L2(Ω)) + ‖φ‖L∞(0,T ;L2(Ω))

}

≤ C|s0|‖y′‖L∞(t0,T ;L2(Ω)), by Theorem 2.1.

It follows then that ∣
∣
∣
∣σ

′
1(t0) +

∫

Γ

ψ1(t0)n
∣
∣
∣
∣ ≤ C‖y′‖L∞(t0,T ;L2(Ω)).

Since t0 is arbitrary, the proof of the estimate is complete.
Step 4. Since y ∈ C1([0, T ];L2(Ω)) ∩ H2(0, T ;V ′), there exists a sequence (yk)k ⊂ C1([0, T ];L2(Ω)) ∩
H2(0, T ;L2(Ω)) converging to y in C1([0, T ];L2(Ω)). Let (ψk, σk) be the solution to (31) with the source
term f = −y′′k . Due to the estimates proved in steps 2 and 3,

(
ψk, ψ

′
k, σk, σ

′
k +

∫
Γ ψkn

)

k
and (ψk, ψ

′
k, σk, σ

′
k)k

are Cauchy sequences in C([0, T ];F ), respectively converging to
(
ψ1, ψ

′
1, σ1, σ

′
1 +

∫
Γ ψ1n

)
and to (ψ1, ψ

′
1, σ1, σ

′
1)

in C([0, T ];F ). Thus
(
ψ1, ψ

′
1, σ1, σ

′
1 +

∫
Γ
ψ1n

)
and (ψ1, ψ

′
1, σ1, σ

′
1) belong to C([0, T ];F ).

Step 5. We have already seen in Section 3 that the Green formula is valid between the finite energy solution
(φ, s) and the weak solution (ψ, σ): see the remark at the end of Section 3. �

Remark 6.4. Since (ψ1, ψ
′
1, σ1, σ

′
1) belongs to C([0, T ];F ), then ψ′

1 ∈ C([0, T ];V ′).

Remark 6.5. From the estimates provided by the above theorem, it follows that the individual terms

σ′
1 ∈ L∞(0, T ; R2) and

∫

Γ

ψ1n ∈ L∞(0, T ; R2)

are in the space L∞(0, T ; R2). This is an additional regularity property for weak solutions (ψ1, σ1) of (31) which
has a non-zero source term but has zero initial data. If the initial data is non-zero, as remarked in Section 4,
the above individual terms are not well-defined in general but only their sum is.

To define solutions to equation (31) by the transposition method with the source term f = y′(T ) ⊗ δT −
y′(0) ⊗ δ0, we cannot use test functions (φ, s) for which (φ(0), φ′(0), s(0), s′(0)) = 0 because in that case the
weak solution is only defined in the time interval (0, T ] and the source term y′(0)⊗ δ0 is not taken into account
in this interval. To take into account this source term in a weak formulation satisfied by a pair (ψ, σ) we have
to give a meaning to ψ′(0).

Definition 6.6. A function (ψ, σ) ∈ L∞(0, T ;L2(Ω)) × L∞(0, T ; R2) is a weak solution to equation (31) with
the source term f = y′(T ) ⊗ δT − y′(0) ⊗ δ0 if ψ′, the vector-valued distributional derivative of ψ in (0, T ),



200 J.-P. RAYMOND AND M. VANNINATHAN

belongs to L∞(0, T ;V ′) and may be identified with a function in BV ([0, T ];V ′) and if

∫

Q

ψu+
∫ T

0

σ · v = (y′(T ), φ(T ))L2(Ω) − (y′(0), φ0)L2(Ω) + 〈φ0, ψ′(0)〉V,V ′ ,

for all u ∈ L1(0, T ;L2(Ω)), v ∈ L1(0, T ; R2), φ0 ∈ V , (φ1, s0, s1) = 0, where (φ, s) is the finite energy solution
to equation (3).

For the definition of the space BV ([0, T ];V ′) we refer to [2] or to [12].

Theorem 6.7. Consider the system (31) with the source term f = y′(T )⊗ δT − y′(0)⊗ δ0. Then there exists a
unique weak solution (ψ2, σ2) satisfying

‖ψ2‖L∞(0,T ;V ) + ‖ψ′
2‖L∞(0,T ;L2(Ω)) + ‖σ2‖L∞(0,T ;R2) + ‖σ′

2‖L∞(0,T ;R2) ≤ C‖y′‖L∞(0,T ;L2(Ω)).

Moreover ψ2 ∈ C([0, T ];Vw), σ2 ∈ C1([0, T ]; R2) and the following formula holds

∫

Q

ψ2u+
∫ T

0

σ2 · v = (y′(T ), φ(T ))L2(Ω) − (y′(0), φ(0))L2(Ω) + 〈φ0, ψ′
2(0)〉V,V ′

− (φ1, ψ2(0))L2(Ω) + s0 ·
(

σ′
2(0) +

∫

Γ

ψ2(0)n
)

−
(

s1 +
∫

Γ

φ0n

)

· σ2(0), (34)

for all u ∈ L1(0, T ;L2(Ω)), v ∈ L1(0, T ; R2), and (φ0, φ1, s0, s1) ∈ Z, where (φ, s) is the finite energy solution to
equation (3). The space Vw denotes the space V endowed with its weak topology, and C([0, T ];Vw) is the space
of continuous functions from [0, T ] into Vw.

Proof. The uniqueness is obvious. To prove the existence we proceed by approximation. Let (µk)k be a sequence
in L1(0, T ;L2(Ω)) converging to y′(T ) ⊗ δT − y′(0) ⊗ δ0 for the weak-star topology of M([0, T ];L2(Ω)), and
satisfying

‖µk‖L1(0,T ;L2(Ω)) ≤ ‖y′(T )‖L2(Ω) + ‖y′(0)‖L2(Ω).

Let (ψk, σk) be the finite energy solution of the equation

ψ′′ − ∆ψ = µk in Q,

ψ = 0 on Σe,

∂nψ = σ′ · n on Σ,

ψ(T ) = 0 and ψ′(T ) = 0 in Ω,

σ′′ + σ = − ∫
Γ
ψ′ n in (0, T ),

σ(T ) = 0 and σ′(T ) = 0 in R
2.

(35)

From Theorem 3.1, we have the estimate

‖(ψk, ψ
′
k, σk, σ

′
k)‖C([0,T ];Z) ≤ C‖µk‖L1(0,T ;L2(Ω)) ≤ C‖y′‖L∞(0,T ;L2(Ω)).

Furthermore, integration by parts between (φ, s) and (ψk, σk) yields

∫

Q

uψk +
∫ T

0

v · σk =
∫

Q

µkφ− (φ1, ψk(0)L2(Ω) + 〈φ0, ψ1
k(0)〉V,V ′

+ s0 ·
(

σ′
k(0) +

∫

Γ

ψk(0)n
)

−
(

s1 +
∫

Γ

φ0n

)

· σk(0).



EXACT CONTROLLABILITY IN FLUID – SOLID STRUCTURE: THE HELMHOLTZ MODEL 201

For a subsequence, we have

(ψk, ψ
′
k, σk, σ

′
k) ⇀ (ψ2, ψ

′
2, σ2, σ

′
2) in L∞(0, T ;Z) weak ∗,

(ψk(0), ψ′
k(0), σk(0), σ′

k(0)) ⇀
(
ψ0

2 , ψ
1
2 , σ

0
2 , σ

1
2

)
in Z weak.

Furthermore, the boundary quantities admit stronger estimates:

‖(ψ0
2 , ψ

1
2 , σ

0
2 , σ

1
2)‖Z ≤ lim inf

k→∞
‖(ψk(0), ψ′

k(0), σk(0), σk(0), σ′
k(0))‖Z

≤ C‖y′‖L∞(0,T ;L2(Ω)).

Since ψ ∈ L∞(0, T ;V ) and ψ′ ∈ L∞(0, T ;L2(Ω)), it follows first that ψ ∈ C([0, T ];L2(Ω)), and next that ψ ∈
C([0, T ];Vw) (we can apply [7], Chap. 18, Lem. 5.6). A similar argument applied to σ yields σ ∈ C([0, T ]; R2).
Next using the equation satisfied by σ and the facts that ψ ∈ C([0, T ];Vw) and σ ∈ C([0, T ]; R2), we ob-
tain σ′ ∈ C([0, T ]; R2). Observe that

∫
Γ ψ(·)n ∈ C([0, T ]; R2). Thus we have (ψ0

2 , σ
0
2 , σ

1
2 , σ

1
2 +

∫
Γ ψ

0
2 n) =

(ψ2(0), σ2(0), σ′
2(0), σ′

2(0) +
∫
Γ
ψ2(0)n). Since

‖(ψk, ψ
′
k, σk, σ

′
k)‖C([0,T ];Z) ≤ C‖y′‖L∞(0,T ;L2(Ω)),

using the equation satisfied by ψk, we prove that

‖ψ′
k‖BV ([0,T ];V ′) ≤ C‖y′‖L∞(0,T ;L2(Ω)).

Thus ψ′
2 ∈ BV ([0, T ];V ′), and

ψ′
k(0) ⇀ ψ′

2(0) weakly in V ′,
(see [2], Th. 3.5 or [12], Prop 16.1). Therefore ψ′

2(0) = ψ1
2 .

We obtain (34) by passing to the limit in the Green formula satisfied by (ψk, σk). �
Combining Definitions 6.2 and 6.6, we state the following

Definition 6.8. A function (ψ, σ) ∈ L∞(0, T ;L2(Ω))×L∞(0, T ; R2) is a weak solution to equation (31) with the
source term f = −dt[y′] if ψ′, the vector-valued distributional derivative of ψ in (0, T ), belongs to L∞(0, T ;V ′)
and may be identified with a function in C([0, T ];V ′) +BV ([0, T ];V ′) and if

∫

Q

ψu +
∫ T

0

σ · v =
∫

Q

y′φ′ +
〈
φ0, ψ′(0)

〉
V,V ′ ,

for all u ∈ L1(0, T ;L2(Ω)), v ∈ L1(0, T ; R2), φ0 ∈ V , (φ1, s0, s1) = 0, where (φ, s) is the finite energy solution
to equation (3).

Theorem 6.9. The equation (31) with f = −dt[y′] admits a unique weak solution (ψ, σ) in L∞(0, T ;L2(Ω))×
L∞(0, T ; R2) in the sense of definition 6.8 and it satisfies the estimate

‖ψ‖L∞(0,T ;L2(Ω)) + ‖ψ′‖L∞(0,T ;V ′) + ‖σ‖L∞(0,T ;R2) + ‖σ′‖L∞(0,T ;R2) ≤ C‖y′‖L∞(0,T ;L2(Ω)).

There exists a unique (ψ0, ψ1, σ0, σ̃1) in L2(Ω) × V ′ × R
2 × R

2 such that
∫

Q

ψu+
∫ T

0

σ · v =
∫

Q

y′φ′ − (
φ1, ψ0

)
L2(Ω)

+
〈
φ0, ψ1

〉
V,V ′ + s0 · σ̃1 −

(

s1 +
∫

Γ

φ0n

)

· σ0, (36)

for all u ∈ L1(0, T ;L2(Ω)), v ∈ L1(0, T ; R2), and (φ0, φ1, s0, s1) ∈ Z, where (φ, s) is the finite energy solution
to equation (3). Moreover the following estimate holds

∥
∥ψ0

∥
∥

L2(Ω)
+

∥
∥ψ1

∥
∥

V ′ +
∣
∣σ0

∣
∣ +

∣
∣σ̃1

∣
∣ ≤ C‖y′‖L∞(0,T ;L2(Ω)).
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Proof. The uniqueness of a weak solution is obvious. The existence of a solution and its estimate follow from
Theorems 6.3 and 6.7.

The uniqueness of (ψ0, ψ1, σ0, σ̃1) ∈ L2(Ω)×V ′×R
2×R

2 obeying (36) follows from the fact that the mapping
(φ0, φ1, s0, s1) �→ (φ0, φ1, s0, s1 +

∫
Γ φ

0n) is an isomorphism from Z into itself.
Following the decomposition (ψ, σ) = (ψ1, σ1) + (ψ2, σ2), the problem of existence of (ψ0, ψ1, σ0, σ̃′) can be

reduced to two problems: one involving (ψ1, σ1) and another one for (ψ2, σ2). These two problems are already
studied in the previous two theorems. �
Remark 6.10. We cannot prove that

‖ψ′‖L∞(0,T ;V ′) ≤ C‖y′‖L2(0,T ;L2(Ω)),

because, in Theorem 2.5, we were not able to establish the estimate

‖φ′‖L2(0,T ;L2(Ω)) ≤ C‖f1‖L1(0,T ;V ).

So far, we have been dealing with weak solutions of (31) where we have zero end conditions at time T. Quite
obviously, we can do the same thing with weak solutions of (1) with zero initial conditions at time t = 0.
Thus in the case when u = −dt[y′], and when (φ0, φ1, s0, s1) = 0 we can define the solution to equation (1)
by transposition, in a similar way (with obvious modifications) as in Definition 6.2. Therefore, combining the
results of Section 3 and of the present section, we can assert that if u = −dt[y′] and if (φ0, φ1, s0, s1) ∈ Y ,
equation (1) admits a unique weak solution (φ, s) ∈ L∞(0, T ;L2(Ω)) × L∞(0, T ; R2).

Theorem 6.11. Let (ψ, σ) ∈ L∞(0, T ;L2(Ω)) × L∞(0, T ; R2) be the unique solution of equation (31), and let
(ψ0, ψ1, σ0, σ̃1) ∈ F be defined by the formula (36). Then (ψ, σ) ∈ L∞(0, T ;L2(Ω))×L∞(0, T ; R2) is the unique
weak solution of equation (1) corresponding to u = −dt[y′] and to (φ0, φ1, s0, s1) = (J̃)−1(ψ0, ψ1, σ0, σ̃1).

Proof. We use the notation in the proof of Theorem 6.7. We can easily verify that the solution (ψk, σk)
of equation (35) is also the solution (φk, sk) of equation (1) corresponding to u = µk and to (φ0, φ1, s0, s1) =
(ψk(0), ψ′

k(0), σk(0), σ′
k(0)). By definition of J̃ , we have (ψk(0), ψ′

k(0), σk(0), σ′
k(0)) =

(J̃)−1(ψk(0), ψ′
k(0), σk(0), σ′

k(0) +
∫
Γ ψk(0)n). Therefore the theorem is obtained by passing to the limit when

k → ∞. �

7. Proof of Theorem 6.1

Step 1. We define the operator Λ̂ from Z into Z ′ by

Λ̂(y0, y1, r0, r1) =
(
− ψ1, ψ0,−σ̃1, σ0

)
,

where (ψ, σ) is the weak solution to equation (31), (ψ0, ψ1, σ0, σ̃1) ∈ L2(Ω) × V ′ × R
2 × R

2 is associated with
(ψ, σ) by the formula (36), and (y, r) is the finite energy solution of equation (21). We define the isomorphism
Ĵ from Z onto Z by

Ĵ(φ0, φ1, s0, s1) =
(

φ0, φ1, s0, s1 +
∫

Γ

φ0n

)

.

From the definition of Λ̂ and formula (36) it follows that

〈
Λ̂

(
y0, y1, r0, r1

)
, Ĵ

(
φ0, φ1, s0, s1

) 〉

Z′,Z
=

∫

Q

y′φ′.

Due to Theorems 2.1 and 4.5, the mapping
( (
y0, y1, r0, r1

)
,
(
φ0, φ1, s0, s1

) )
�−→

∫

Q

y′φ′
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defines an inner product on Z whose norm is equivalent to the original norm in Z. This observation and the
above identity implies that Ĵ∗Λ̂ is an isomorphism from Z onto Z ′. Since Ĵ∗ is an isomorphism from Z ′ onto Z ′,
we deduce that Λ̂ is an isomorphism from Z onto Z ′.

Step 2. Let us now start with (φ0, φ1, s0, s1) in Y . Let us set (φ0, φ1, s0, s̃1) = J̃(φ0, φ1, s0, s1), where J̃ is
the operator defined in Theorem 5.1 and observe that (−φ1, φ0,−s̃1, s0) belongs to Z ′. Let (y0, y1, r0, r1) ∈ Z
be the solution to the equation

Λ̂
(
y0, y1, r0, r1

)
=

(−φ1, φ0,−s̃1, s0) .
If (y, r) is the finite energy solution to equation (21) corresponding to (y0, y1, r0, r1) and (ψ, σ) is the weak
solution to (31), then from the definition of Λ̂ it follows that

(
ψ0, ψ1, σ0, σ̃1

)
= J̃

(
φ0, φ1, s0, s1

)
.

Therefore if we set u = −dt[y′], and (φ0, φ1, s0, s1) = (J̃)−1(ψ0, ψ1, σ0, σ̃1), due to Theorem 6.11 the solution
(φ, s) to equation (1) obeys φ(T ) = φ′(T ) = 0 and s(T ) = s′(T ) = 0, and Theorem 6.1 is proved.

Acknowledgements. The authors thank an anonymous referee for helpful questions and comments on a preliminary version
of this paper.

References

[1] G. Avalos, I. Lasiecka, Exact controllability of structural acoustic interactions. J. Math. Pures Appl. 82 (2003) 1047–1073.

[2] V. Barbu, T. Precupanu, Convexity and Optimization in Banach Spaces, 2nd ed., D. Reidel, Dordrecht (1986).

[3] A. Bensoussan, G. Da Prato, M.C. Delfour and S.K. Mitter, Representation and Control of Infinite Dimensional Systems.
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Paris (1994).

[5] C. Conca, J. Planchard and M. Vanninathan, Fluids and periodic structures. Masson and J. Wiley, Paris (1995).

[6] L. Cot, J.-P. Raymond and J. Vancostenoble, Exact controllability of an aeroacoustic model. In preparation.
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