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HAMILTON-JACOBI EQUATIONS FOR CONTROL PROBLEMS
OF PARABOLIC EQUATIONS

Sophie Gombao1 and Jean-Pierre Raymond1

Abstract. We study Hamilton-Jacobi equations related to the boundary (or internal) control of
semilinear parabolic equations, including the case of a control acting in a nonlinear boundary condition,
or the case of a nonlinearity of Burgers’ type in 2D. To deal with a control acting in a boundary
condition a fractional power (−A)β – where (A, D(A)) is an unbounded operator in a Hilbert space X
– is contained in the Hamiltonian functional appearing in the Hamilton-Jacobi equation. This situation
has already been studied in the literature. But, due to the nonlinear term in the state equation, the
same fractional power (−A)β appears in another nonlinear term whose behavior is different from the
one of the Hamiltonian functional. We also consider cost functionals which are not bounded in bounded
subsets in X, but only in bounded subsets in a space Y ↪→ X. To treat these new difficulties, we show
that the value function of control problems we consider is equal in bounded sets in Y to the unique
viscosity solution of some Hamilton-Jacobi-Bellman equation. We look for viscosity solutions in classes
of functions which are Hölder continuous with respect to the time variable.
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1. Introduction

In this paper we study the uniqueness and existence of viscosity solution of the Hamilton-Jacobi-Bellman
equation

−∂v
∂t

(t, x) −
(
Dxv (t, x) | Ax

)
X

+
(
Dxv (t, x) | (−A)β

F (t,Λx)
)

X

+H
(
t, x, (−A)β

Dxv (t, x)
)

= 0 in (0, T )×X, (1.1)

v (T, x) = g (x) in X.

In this setting X is a real Hilbert equipped with the inner product (· | ·)X and the norm |·|X , A is an unbounded
operator with domain D (A) in X , it is supposed to be self-adjoint and strictly dissipative in X , (−A)β is the
β-fractional power of (−A) , and 0 ≤ β ≤ 1

2 , Λ is a bounded linear operator from D((−A)α) into X0 with
0 ≤ α < 1

2 , X0 is another real Hilbert space equipped with the inner product (· | ·)X0
and the norm |·|X0

,
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1 Laboratoire MIP, UMR CNRS 5640, Université Paul Sabatier, 31062 Toulouse Cedex 4, France; gombao@cict.fr;
raymond@mip.ups-tlse.fr

c© EDP Sciences, SMAI 2006

Article published by EDP Sciences and available at http://www.edpsciences.org/cocv or http://dx.doi.org/10.1051/cocv:2006004

http://www.edpsciences.org/cocv
http://dx.doi.org/10.1051/cocv:2006004


312 S. GOMBAO AND J.-P. RAYMOND

F ∈ C([0, T ] × X0;X), the Hamiltonian functional H is continuous in [0, T ] × X × X , and the mapping g is
Lipschitz continuous in X . Precise assumptions are stated in Section 2.

Equation (1.1) is related to optimal control problems of semilinear parabolic equations (including in particular
the case where the control acts in a nonlinear boundary condition). More precisely, for all t ∈ [0, T ] and x ∈ X ,
consider an optimal control problem of the form

(Pt,x) min
{
J (t, u, y) | u ∈ M(t, T ;U) and (y, u) is solution of equation (1.2)

}
,

where the cost functional J is defined by

J(t, y, u) =
∫ T

t

L(r, y(r), u(r)) dr + g(y(T )),

and the state equation is
y′ = Ay + (−A)β [Bu− F (·,Λy) ], y (t) = x. (1.2)

The control space M(t, T ;U) is a set of bounded measurable functions with values in U , and U is a bounded
subset in XΓ, XΓ is a Banach space, B ∈ L(XΓ, X). In Section 3 we prove that equation (1.1) admits at most
one viscosity solution. In Section 4, we prove that the value function of problem (Pt,x) is the unique viscosity
solution of equation (1.1), when H is defined by

H (t, x, p) = sup
u∈U

[− (p | Bu)X − L (t, x, u)
]
.

Applications are discussed in Section 5. Before presenting what is new in the present paper, observe that by
setting

H(t, x, (−A)βDxv(t, x)) = H(t, x, (−A)βDxv(t, x)) +
(
(−A)βDxv(t, x) | F (t,Λx)

)
X
,

equation (1.1) can be written in the form

−∂v
∂t

(t, x) −
(
Dxv (t, x) | Ax

)
X

+ H
(
t, x, (−A)β Dxv (t, x)

)
= 0 in (0, T )×X. (1.3)

Equation (1.3) seems to be simpler to handle than equation (1.1). However assumptions on F (t,Λx) and on
H(t, x, p) are different and we cannot simplify the presentation of the paper by considering equation (1.3) (see
e.g. the estimates involving H and F in the proof of Th. 3.5).

During the eighties and the nineties several fundamental advances have been made in the study of Hamilton-
Jacobi equation in infinite dimension. These equations were first studied by Barbu and Da Prato (see e.g. [2]),
mainly in classes of convex functions. The method of viscosity solutions has been extended to infinite dimension
by Crandall and Lions in a series of papers [10–14]. All these papers correspond to the case when β = 0.
Other contributions are due to Cannarsa and Frankowska [5], Ishii [20], Soner [27], Tataru [28,29], Crandall and
Lions [15, 16], Cannarsa and Tessitore [6–9] in order to deal with boundary controls. In particular equations
of the form (1.3) with 0 < β < 1

2 are studied in [6], [8] to treat Neumann boundary controls. The case of
Dirichlet controls is considered in [7, 9], it corresponds to the situation when 1

2 < β < 1 and has to be studied
independently. More recently the case of the Navier-Stokes equations has been studied in [18, 26].

The main motivation of the present paper is to characterize the value function of control problems governed
by semilinear parabolic equations, including the case of equations with a nonlinear boundary condition, or the
case of nonlinearity of Burgers’ type in two dimension, and with cost functionals whose growth is quadratic
or even higher than quadratic. For example we study the case of partial differential equations with nonlinear
boundary conditions of the form:

∂y

∂t
− ∆y + y = f in ]t, T [× Ω,

∂y

∂n
+ ĥ(y) = u on ]t, T [× Γ, y(t) = x in Ω, (1.4)
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with cost functionals of the type

Ĵ(t, y, u) =
∫ T

t

L̂(r, y(r), u(r)) dr + ĝ(y(T )),

where ĥ is any regular nondecreasing function obeying ĥ(0) = 0, and where L̂ and ĝ may be quadratic cost
functionals. Many thermal processes lead to the kind of model corresponding to equation (1.4) (see [23]). The
papers mentioned above do not include this model in their possible applications. If the initial condition x belong
to X = L2(Ω), equation (1.4) is well posed and it admits a unique weak solution belonging to C([0, T ];X) (the
solution also belongs to L2(0, T ;H1(Ω))). We can write equation (1.4) in the form

y′ = Ay + (−A)β [
Bu− F̂ (·,Λy) ], y (t) = x, (1.5)

by defining Λ as the trace mapping on Γ:
Λ : y �−→ y|Γ.

In this example Λ is bounded from H2α(Ω) = D((−A)α) into X0 = L2(Γ) for all 1
4 < α < 1

2 , D(A) = {y ∈
H2(Ω) | ∂y

∂n = 0}, Ay = ∆y, and we have to take 1
4 < β < 1

2 . For a parabolic equation with a nonlinearity of
Burgers’ type we can take β = 1

2 . Let us denote by yt,x,u the solution to equation (1.5). To characterize the
value function v̂(t, x) of the problem

(P̂t,x) min
{
Ĵ (t, u, y) | u ∈ M(t, T ;U) and (y, u) is solution of equation (1.5)

}
,

we have to study the dependence of yt,x,u and of Λyt,x,u with respect to t and to x. Due to the nonlinear term
in equation (1.5), we can prove continuity properties for y·,x,u and Λy·,x,u and Lipschitz properties for yt,·,u and
Λyt,·,u when the initial condition x stays in bounded subsets in Y , for a space Y ↪→ X , but these properties are
not true if we consider only bounded subsets in X . Therefore it is natural to study the properties of the value
function v̂(t, x) when x remains in bounded subsets of Y , and to look for solutions to equation (1.4) in a space
of the type C([0, T ];Y ) or at least L∞

w (0, T ;Y ) (the space of bounded and weakly measurable functions from
(0, T ) into Y ).

Another difficulty comes from the cost functional. In the literature on Hamilton-Jacobi-Bellman equations,
it is often assumed that the cost functionals either are bounded or satisfy a linear growth condition [6,8,18,20].
Thus the case of quadratic cost functionals is not treated in these papers.

To overcome the two difficulties mentioned above, the one coming from the nonlinearity in the state equation
and the other one due to the growth condition of the cost functional, we suggest to proceed as follows. First,
we show that, for an initial condition in BY (M0) (the ball in Y centered at the origin and with radius M0), the
solution y of equation (1.2) satisfies y(·) ∈ BY (RT ) in (t, T ) for some RT = R(M0, T ) which can be explicitly
estimated independently of t ∈ (0, T ). Next, we associate with the mappings L̂(t, ·, u), ĝ and F̂ (t,Λ·), other
mappings L(t, ·, u), g and F (t,Λ·) which are identical to the previous ones in the ball BY (RT ), but which satisfies
some global boundedness and Lipschitz properties. Let us consider the problem (Pt,x) – the one introduced
at the beginning of the introduction – defined with L(t, ·, u), g and F (t,Λ·). We are able to show that value
function v(t, x) of problem (Pt,x) obeys v̂(t, x) = v(t, x) for t ∈ (0, T ) and x ∈ BY (RT ). We show that v is
the unique viscosity solution of the Hamilton-Jacobi equation (1.1). Thus v̂ is not the viscosity solution to
equation (1.1), but it is equal to the viscosity solution of equation (1.1) in bounded sets in (0, T )× Y .

Sections 2, 3 and 4 are devoted to the study of equation (1.2), equation (1.1), and the value function of
problem (Pt,x). In these sections, only the mappings L(t, ·, u), g and F (t,Λ·) intervene. The assumptions are
precisely stated in Section 2. The definition of the mappings L(t, ·, u), g and F (t,Λ·) from L̂(t, ·, u), ĝ and
F̂ (t,Λ·) is treated in examples of Section 5 by using projection operators. Three examples are considered. The
first one is a control problem for the state equation (1.4), and the two others correspond to problems for a two
dimensional scalar equation of Burgers’ type. The interest of the third example is to show that the method
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using a projection operator in the cost functional and the state equation is flexible enough to involve different
kind of projections adapted to the nonlinearity and to the functionals we have to deal with.

Let us finally mention that the definition of viscosity solutions that we take is not totally standard. Indeed
we consider viscosity solutions which are Hölder continuous with respect to the time variable. This Hölder
continuity condition, which is a new argument in the definition of viscosity solutions – see Definition 3.2 – plays
a major role in the proof of uniqueness to estimate the nonlinear term F . A preliminary version of the present
paper corresponds to a part of the Ph.D. thesis by the first author [17].

2. Preliminaries on the evolution equation

In this section we want to study properties of solutions of the evolution equation

y′ = Ay + (−A)β [
Bu− F (·,Λy) ] in (t, T ), y (t) = x, (2.1)

where t ∈ [0, T ).

2.1. Assumptions

Throughout the paper we make the following assumptions.
(i) The unbounded operator A, with domain D(A) in X , is a closed and densely defined selfadjoint operator

in X , such that (Ax | x)X ≤ −ω |x|2X for all x ∈ D (A), where ω > 0.
(ii) B ∈ L(XΓ, X).
(iii) The linear operator Λ is bounded from D ((−A)α) into X0 for some α ∈ [0, 1

2 [, that is:

|Λx|X0
≤ Cα |(−A)α

x|X for all x ∈ D ((−A)α) . (2.2)

The exponent β ∈ [0, 1
2 ] is given fixed.

(iv) F is a continuous mapping from [0, T ]×X0 into X , which satisfies:

|F (t, x) − F (t, y)|X ≤ KF |x− y|X0
, and |F (t, x)|X ≤MF , (2.3)

for all t ∈ [0, T ], and all x, y ∈ X0. Moreover, there exists η1 ∈ ]0, 1] such that:

|F (t, x) − F (s, x)|X ≤M1,F

(
1 + |x|X0

) |t− s|η1 . (2.4)

In addition, we assume that either β < 1
2 , or β = 1

2 and

D((−A)
1
2 ) ↪→ X0 ,

|F (t, x)|D((−A)β0 ) ≤M
(
β0, |x|

D((−A)
1
2 )

)
for all t ∈ [0, T ] and all x ∈ D((−A)

1
2 ) ,

(−A)β0B ∈ L(XΓ, X) , for some 0 < β0 < β = 1
2 ,

(2.5)

where M
(
β0, |x|

D((−A)
1
2 )

)
> 0 only depends on β0 and |x|

D((−A)
1
2 )

.

(v) The control u belongs to M(t, T ;U), the space of measurable functions from (t, T ) into U , where U is
a nonempty, bounded and closed subset of XΓ, such that

|u|XΓ
≤MU for all u ∈ U. (2.6)

We now state assumptions needed in Section 3 to study equation (1.1).
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(vi) The mapping g ∈ C(X) is Lipschitz continuous and bounded in X, i.e.:

|g (x) − g (y)| ≤ Kg |x− y|X and |g (x)| ≤Mg, for all x, y ∈ X.

(vii) The Hamiltonian functional H satisfies

|H (t, x, p) −H (s, y, q)| ≤ KH (|t− s|η2 + |x− y|X + |p− q|X) . (2.7)

In Section 4, we make the following additional assumption.

(viii) The Hamiltonian functional H : [0, T ]×X ×X → R is defined by:

H (t, x, p) = sup
u∈U

[− (p | Bu)X − L (t, x, u)] , (2.8)

where the functional L ∈ C ([0, T ]×X × U) satisfies:

|L (t, x, u) − L (s, y, u)| ≤ KL (|t− s|η2 + |x− y|X) and |L (t, x, u)| ≤ML,

for all t, s ∈ [0, T ] , all x, y ∈ X, and all u ∈ U , with 0 < η2 ≤ 1.

Observe that if H is defined by (2.8) and if L satisfies the estimate stated in (viii), then

|H (t, x, p) −H (s, y, q)| ≤ KH (|t− s|η2 + |x− y|X + |p− q|X) ,

with KH = max (KL, ‖B‖MU ) . Thus assumption (vii) is automatically satisfied in that case.
Due to assumption (i), (A,D(A)) is the infinitesimal generator of a strongly continuous analytic semigroup

of contractions on X which satisfies

‖etA‖L(X) ≤ e−ωt. (2.9)

Moreover (see [19], Th. 1.4.3, Chap. 1 and [3], Prop. 5.1, Chap. 1), for all δ ≥ 0, there exists a constant Mδ

such that, for all t > 0: ∥∥∥(−A)δ eAt
∥∥∥
L(X)

≤Mδt
−δ. (2.10)

If 0 < δ ≤ 1, and x ∈ D((−A)δ), we have:

∣∣(eAt − I
)
x
∣∣
X

≤ 1
δ
M1−δ t

δ
∣∣∣(−A)δ

x
∣∣∣
X
. (2.11)

Besides, for all δ < γ and all x ∈ D((−A)γ), one has:

∣∣∣(−A)δ x
∣∣∣
X

≤Mδ,γ |(−A)γ x|
δ
γ

X |x|1−
δ
γ

X . (2.12)

With Young’s inequality the last estimate implies that, for all δ ∈ ]0, 1
2

[
, and all σ > 0, there exists a con-

stant Cδ,σ such that: ∣∣∣(−A)δ
x
∣∣∣
X

≤ σ
∣∣∣(−A)

1
2 x
∣∣∣
X

+ Cδ,σ |x|X for x ∈ D((−A)
1
2 ). (2.13)
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2.2. Properties and regularities of mild solutions of equation (2.1)

Theorem 2.1. For all x ∈ X and all u ∈ M(t, T ;U), equation (2.1) admits a unique mild solution yt,x,u in
L1(t, T ;D((−A)α)), it obeys:

yt,x,u (s) = e(s−t)Ax+ (−A)β
∫ s

t

e(s−r)A
[
Bu (r) − F (r,Λyt,x,u (r))

]
dr, (2.14)

for all s ∈ [t, T ]. Moreover yt,x,u belongs to C([t, T ];X) and satisfies the estimate

‖yt,x,u‖C([t,T ];X) ≤ C(1 + |x|X + ‖u‖L∞(t,T ;U)).

Proof. Let t1 ∈ (t, T ] be such that CαKFMα+β
(t1−t)1−(α+β)

1−(α+β) ≤ 1/2. Let us set E = L1 (t, t1;D((−A)α)), and let
us show that the mapping

y �−→ (Ψy) (s) = e(s−t)Ax+ (−A)β
∫ s

t

e(s−r)A [Bu (r) − F (r,Λy (r))] dr,

is a contraction in E. First we have:∫ t1

t

|(−A)α (Ψy) (s)|ds ≤
∫ t1

t

∣∣∣(−A)α e(s−t)Ax
∣∣∣ ds+

∫ t1

t

∫ s

t

∣∣∣(−A)α+β e(s−r)A [Bu (r) − F (r,Λy (r))]
∣∣∣ dr ds

≤ Mα |x|X
(t1 − t)1−α

1 − α
+Mα+β

∫ t1

t

∫ s

t

1

(s− r)α+β
[‖B‖MU +MF ] dr ds

≤ Mα |x|X
(t1 − t)1−α

1 − α
+Mα+β [‖B‖MU +MF ]

(t1 − t)2−(α+β)

[1 − (α+ β)] [2 − (α+ β)]
·

Thus, if y ∈ E, Ψy belongs to E. Moreover if y1, y2 ∈ E, we can write∫ t1

t

|(−A)α (Ψy1) (s) − (−A)α (Ψy2) (s)|X ds

≤
∫ t1

t

∫ s

t

∣∣∣(−A)α+β e(s−r)A [F (r,Λy1 (r)) − F (r,Λy2 (r))]
∣∣∣
X

drds

≤
∫ t1

t

∫ s

t

Mα+β

(s− r)α+β
KF |Λy1 (r) − Λy2 (r)|X0

dr ds

= KF

∫ t1

t

|Λy1 (r) − Λy2 (r)|X0

∫ t1

r

Mα+β

(s− r)α+β
ds dr

≤ CαKFMα+β

∫ t1

t

|(−A)α
y1 (r) − (−A)α

y2 (r)|X
(t1 − r)1−(α+β)

1 − (α+ β)
dr

≤ CαKFMα+β
(t1 − t)1−(α+β)

1 − (α+ β)

∫ t1

t

|(−A)α y1 (r) − (−A)α y2 (r)|X dr.

Thus Ψ is a contraction in E, and it admits a unique fixed point in E, which is the unique solution y in E
to equation (2.1). In addition y belongs to C([t, t1];X) and formula (2.14) is satisfied for all s ∈ [t, t1]. We
can repeat this process on the interval [t1, 2t1], and step by step, we prove that equation (2.1) admits a unique
solution in L1(t, T ;D((−A)α)), which belongs to C([t, T ];X) and satisfies formula (2.14). �
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Proposition 2.2. Assume that x ∈ D ((−A)α). Then the solution yt,x,u of (2.1) satisfies:

|Λyt,x,u (s) − Λx|X0
→ 0 uniformly with respect to u ∈ M(t, T ;U) when s↘ t. (2.15)

Proof. Let x be in D ((−A)α). With inequality (2.2) we have

|Λ(yt,x,u (s) − x)|X0
≤ Cα |(−A)α (yt,x,u (s) − x)|X .

Due to (2.14), we can write

|(−A)α (yt,x,u (s) − x)|X ≤
∣∣∣(−A)α

(
e(s−t)Ax− x

)∣∣∣
X

(2.16)

+
∣∣∣∣(−A)β+α

∫ s

t

e(s−r)A [Bu (r) − F (r,Λyt,x,u (r))] dr
∣∣∣∣
X

.

We can estimate the two terms in the right hand side of (2.16) as follows:∣∣∣(−A)α
(
e(s−t)Ax− x

)∣∣∣
X

=
∣∣∣(e(s−t)A − I

)
(−A)α

x
∣∣∣
X
, (2.17)

and ∣∣∣∣(−A)β+α
∫ s

t

e(s−r)A [Bu (r) − F (r,Λyt,x,u (r))] dr
∣∣∣∣
X

≤Mα+β
(s− t)1−(α+β)

1 − (α+ β)
(MF + ‖B‖MU ) . (2.18)

The two terms (2.17) and (2.18) go to 0 uniformly with respect to u ∈ M(t, T ;U) when s ↘ t, because
(α+ β) < 1. �

Proposition 2.3. Let yt,x,u be the weak solution of (2.1). There exists a constant C1(β), independent of u,
such that ∣∣∣yt,x,u (s) − e(s−t)Ax

∣∣∣
X

≤ C1(β) (s− t)1−β for all x ∈ X. (2.19)

Proof. Let yt,x,u be the weak solution of equation (2.1). With the integral formulation (2.14), we have∣∣∣yt,x,u (s) − e(s−t)Ax
∣∣∣
X

≤
∣∣∣∣(−A)β

∫ s

t

e(s−r)A [Bu (r) − F (r,Λy (r))] dr
∣∣∣∣
X

.

From (2.3) and (2.10) it follows that∣∣∣∣(−A)β
∫ s

t

e(s−r)A [Bu (r) − F (r,Λy (r))] dr
∣∣∣∣
X

≤ ∫ s

t
Mβ

(s−r)β [‖B‖MU +MF ] dr

≤ Mβ [‖B‖MU +MF ]
(s− t)1−β

1 − β
·

The proof is complete. �

Proposition 2.4. We assume that β = 1
2 and that the corresponding additional conditions of assumption (iv)

is satisfied. There exists a constant C1

(
β0, |x|

D((−A)
1
2 )

)
, independent of u, such that

∣∣∣yt,x,u (s) − e(s−t)Ax
∣∣∣
X

≤ C1

(
β0, |x|

D((−A)
1
2 )

)
(s− t)

1
2 +β0 for all x ∈ D((−A)

1
2 ). (2.20)
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Proof. Assume that x ∈ D((−A)
1
2 ). Let yt,x,u be the weak solution of equation (2.1). By using the integral

formulation (2.14), we have∣∣∣yt,x,u (s) − e(s−t)Ax
∣∣∣
X

≤
∣∣∣∣(−A)β−β0

∫ s

t

e(s−r)A
[
(−A)β0Bu (r) − (−A)β0F (r,Λy (r))

]
dr
∣∣∣∣
X

.

With (2.5) and (2.10) we have∣∣∣∣(−A)β−β0

∫ s

t

e(s−r)A
[
(−A)β0Bu (r) − (−A)β0F (r,Λy (r))

]
dr
∣∣∣∣
X

≤
∫ s

t

Mβ−β0

(s− r)β−β0

[
‖(−A)β0B‖MU +M

(
β0, |x|

D((−A)
1
2 )

)]
dr

≤Mβ−β0

[
‖(−A)β0B‖MU +M

(
β0, |x|

D((−A)
1
2 )

)] (s− t)1−β+β0

1 − β + β0
·

The proof is complete. �
To prove the other propositions, we need the following theorem.

Theorem 2.5 ([1] Th. 3.3.1, Chap. 2). Let δ and γ be in [0, 1[ and ε > 0. If the mapping

t ∈ J ⊂ R
+ �→ tδu (t) ,

belongs to L∞
loc (J ; R), and if there exist two positive constants a, b such that

u (t) ≤ a t−δ + b

∫ t

0

(t− τ)−γ
u (τ) dτ, for a.e. t ∈ J∗ = J\ {0} ,

then there exits a positive constant c := c (δ, γ, ε) independent of a and b such that

u (t) ≤ a t−δ
(
1 + c b t1−γe(1+ε)k(γ,b)t

)
for a.e. t ∈ J∗,

where k (γ, b) := (Γ (1 − γ) b)1/(1−γ)
.

Proposition 2.6. Let x and x0 be in X, u ∈ M(t, T ;U), and let yt,x,u and yt,x0,u be the corresponding solutions
to equation (2.1). Then, for all θ ∈ [0, 1 − α[, there exists a constant C2(α, β, θ) such that:

|Λyt,x,u (r) − Λyt,x0,u (r)|X0
≤ C2(α, β, θ)

(r − t)α+θ

∣∣∣(−A)−θ (x− x0)
∣∣∣
X
, (2.21)

for all r ∈ (t, T ]. (The constant C2(α, β, θ) is explicitly given in (2.24).)

Proof. Using the integral formulation (2.14) for yt,x,u and yt,x0,u, and (2.2), we obtain

|Λyt,x,u (r) − Λyt,x0,u (r)|X0
≤ Cα

∣∣∣(−A)α+θ e(r−t)A (−A)−θ (x− x0)
∣∣∣
X

+Cα

∣∣∣∣(−A)β+α
∫ r

t

e(r−s)A [F (s,Λyt,x,u (s)) − F (s,Λyt,x0,u (s))] ds
∣∣∣∣
X

.
(2.22)

Setting θ = 0 in this estimate, we first obtain

|Λyt,x,u (r) − Λyt,x0,u (r)|X0
≤ CαMα

(r − t)α |x− x0|X +
2CαMα+βMF

1 − (α+ β)
(r − t)1−(α+β) .
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Multiplying both sides by (r − t)α+θ we have

(r − t)α+θ |Λyt,x,u (r) − Λyt,x0,u (r)|X0

≤ (T − t)θ CαMα |x− x0|X +
2CαMα+βMF

1 − (α+ β)
(T − t)1+θ−β ∈ L∞ (t, T ; R) . (2.23)

Next with (2.22) we write

|Λyt,x,u (r) − Λyt,x0,u (r)|X0

≤ CαMα+θ

(r − t)α+θ

∣∣∣(−A)−θ (x− x0)
∣∣∣
X

+
∫ r

t

CαMβ+α

(r − s)β+α
KF |Λyt,x,u (s) − Λyt,x0,u (s)|X0

ds.

Since the function r �→ (r − t)α+θ |Λyt,x,u (r) − Λyt,x0,u (r)|X0
belongs to L∞ (t, T ), we can use Theorem 2.5

with for example ε = 1, and we obtain (2.21) by setting

C2(α, β, θ) = CαMα+θ

(
1 + Cβ+α,α+θ (cCαMβKF )T 1−β+αe2 k(β+α,KF CαMβ+α)T

)
(2.24)

where c is the constant appearing in Theorem 2.5. �

Proposition 2.7. Let x and x0 be in X, u ∈ M(t, T ;U), and let yt,x,u and yt,x0,u be the corresponding solutions
to equation (2.1). Then, for all θ ∈ [0, 1 − α[, there exists a constant C3(α, β, θ) such that

|yt,x,u (r) − yt,x0,u (r)|X ≤
(

Mθ

(r − t)θ
+
C3(α, β, θ)
1 − (α+ θ)

(r − t)1−(α+β+θ)

) ∣∣∣(−A)−θ (x− x0)
∣∣∣
X
. (2.25)

(The constant C3(α, β, θ) is explicitly given in (2.27).)

Proof. With Proposition 2.6, we have:

|yt,x,u (r) − yt,x0,u (r)|X ≤
∣∣∣(−A)θ e(r−t)A (−A)−θ (x− x0)

∣∣∣
X

+
∫ r

t

Mβ

(r − s)β
KF |Λyt,x,u (s) − Λyt,x0,u (s)|X0

ds

≤ Mθ

(r − t)θ

∣∣∣(−A)−θ (x− x0)
∣∣∣
X

+MβKFC2(α, β, θ)
∣∣∣(−A)−θ (x− x0)

∣∣∣
X

∫ r

t

1

(r − s)β

1

(s− t)α+θ
ds

≤
(

Mθ

(r − t)θ
+MβKF C2(α, β, θ)

∫ r

t

1

(r − s)β

1

(s− t)α+θ
ds

)∣∣∣(−A)−θ (x− x0)
∣∣∣
X
.

By using the integral formula of the beta function we have:∫ r

t

1

(r − s)β (s− t)α+θ
ds =

Γ (1 − β) Γ (1 − (α+ θ))
Γ (2 − (α+ θ + β))

(r − t)1−(α+θ+β)
. (2.26)

By setting

C3(α, β, θ) =
Γ (1 − β) Γ (1 − (α+ θ))

Γ (2 − (α+ θ + β))
MβKF C2(α, β, θ), (2.27)

and

C4(α, β, θ, t; r) =

(
Mθ

(r − t)θ
+
C3(α, β, θ)
1 − (α+ θ)

(r − t)1−(α+β+θ)

)
, (2.28)
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we obtain
|yt,x,u (r) − yt,x0,u (r)|X ≤ C4(α, β, θ, t; r)

∣∣∣(−A)−θ (x− x0)
∣∣∣
X
. �

Proposition 2.8. Let x be in X, s, t ∈ [0, T ), and u ∈ M(min (t, s) , T ;U). Let us denote by yt,x,u and ys,x,u

the solutions of equation (2.1) respectively corresponding to the initial data (t, x) and (s, x) . Then there exist a
constant C5(α, β) and a continuous mapping ā (t, s, x) (independent of α) such that, for all r ∈ ]max (s, t) , T ],
we have:

|Λyt,x,u (r) − Λys,x,u (r)|X0
≤ C5(α, β)

(r − max (t, s))α ā (t, s, x) . (2.29)

The function s �→ ā (t, s, x) goes to 0 when s goes to t, for all fixed x ∈ X. (The constant C5(α, β) and the
mapping ā are explicitly defined in (2.34) and (2.35).)

Proposition 2.9. With the same assumptions and notation as in the previous proposition, there exists a
constant C6(α, β) such that, for all r ∈ [max (s, t) , T ], we have:

|yt,x,u (r) − ys,x,u (r)|X ≤ C6(α, β) ā (t, s, x) . (2.30)

(The constant C6(α, β) is explicitly defined in (2.36).)

Proof of Proposition 2.8. Consider the case where s < t. The case t < s can be treated in a similar way. Let
be r > t > s, with estimate (2.2) and with (2.14), we have

|Λyt,x,u (r) − Λys,x,u (r)|X0
≤ Cα

∣∣∣(−A)α e(r−t)A
(
e|t−s|Ax− x

)∣∣∣
X

(2.31)

+ Cα

∣∣∣∣∫ t

s

(−A)α+β e(r−σ)A [Bu (σ) − F (σ,Λys,x,u (σ))] dσ
∣∣∣∣
X

(2.32)

+ Cα

∣∣∣∣∫ r

t

(−A)α+β e(r−σ)A [F (σ,Λyt,x,u (σ)) − F (σ,Λys,x,u (σ))] dσ
∣∣∣∣
X

. (2.33)

Now we can write
(2.31) ≤ CαMα

(r − t)α

∣∣∣(e|t−s|A − I
)
x
∣∣∣
X
.

Since (r − t)α ≤ (r − σ)α for all σ ∈ (s, t), we have

(2.32) ≤ CαMα+β (MF + ‖B‖MU)
∫ t

s

dσ

(r − σ)α+β
≤ CαMα+β (MF + ‖B‖MU)

(r − t)α

∫ t

s

dσ

(r − σ)β
·

Similarly, for all σ ∈ (s, t), we have (r − σ)β ≥ (t− σ)β . Then∫ t

s

dσ

(r − σ)β
≤
∫ t

s

dσ

(t− σ)β
=

(t− s)1−β

1 − β
,

and therefore we obtain

(2.32) ≤ CαMα+β (MF + ‖B‖MU)
(r − t)α (1 − β)

|t− s|1−β
.

The last term can be estimated as follows

(2.33) ≤ ∫ r

t
CαMα+βKF

(r−σ)α+β |Λyt,x,u (σ) − Λys,x,u (σ)|X0
dσ

≤ CαMα+βKF

(r − t)α

∫ r

t

1

(r − σ)β
|Λyt,x,u (σ) − Λys,x,u (σ)|X0

dσ.
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From the estimates obtained for (2.31), (2.32), (2.33), we deduce that the function r �→
(r − t)α |Λyt,x,u (r) − Λys,x,u (r)|X0

belongs to L∞(t, T ). Applying Theorem 2.5, we obtain

|Λyt,x,u (r) − Λys,x,u (r)|X0
≤ C5(α, β)

(r − t)α ā (t, s, x) ,

with
C5(α, β) = 2Cα max

(
Mα

1−α ,
Mα+β(MF +‖B‖MU )

1−β

)(
1 + cCαMβ+αKFT

(1−β)eCT
)
, (2.34)

where c and C are given in Theorem 2.5, and

ā (t, s, x) =
∣∣∣e|t−s|Ax− x

∣∣∣
X

+ |t− s|1−β
. (2.35)

The function s �→ ā (t, s, x) goes to 0 when s goes to t, for all x fixed in X . �

Proof of Proposition 2.9. Consider the case where 0 ≤ s < t. We have:

|yt,x,u (r) − ys,x,u (r)|X
≤
∣∣∣e|t−s|Ax− x

∣∣∣
X

+
Mβ (MF + ‖B‖MU )

1 − β
(t− s)1−β + C5(α, β)KF ā (t, s, x)

∫ r

t

Mβ

(r − σ)β

1
(σ − t)α dσ.

From (2.26) with θ = 0, it yields:∫ r

t

1

(r − σ)β

1
(σ − t)α dσ ≤ Γ(1 − β)Γ(1 − α)

Γ(2 − (α+ β))
T 1−(α+β) ≤ 4T 1−(α+β).

Hence

|yt,x,u (r) − ys,x,u (r)|X ≤
(

1 +
Mβ (MF + ‖B‖MU )

1 − β
+ C5(α, β)KF 4T 1−(α+β)

)
ā (t, s, x) . (2.36)

The proof is complete. �

Proposition 2.10. Let x and x0 be in X, t ∈ [0, T ), and u ∈ M(t, T ;U). Let us denote by yt,x,u and yt,x0,u the
solutions of equation (2.1) respectively corresponding to the initial data (t, x) and (t, x0) . Then, for all r ∈ [t, T ]
and all s ∈ ]t, T ], we have:

|Λyt,x,u (s) − Λyt,x0,u (s)|X0
≤ C7(α, β)

(s− t)α |x− x0|X , (2.37)

and
|yt,x,u (r) − yt,x0,u (r)|X ≤ C8(α, β) |x− x0|X . (2.38)

Proof. The function w = yt,x,u − yt,x0,u satisfies

|Λw (s)|X0
≤ Mα

(s− t)α |x− x0|X +
∣∣∣∣(−A)β+α

∫ s

t

e(s−r)A [F (r,Λyt,x,u (r)) − F (r,Λy,x0,u (r))] dr
∣∣∣∣
X

≤ Mα

(s− t)α |x− x0|X +Mα+βKF

∫ s

t

1

(s− r)α+β
|Λw (r)|X0

dr.
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Estimate (2.37) now follows from Theorem 2.5. We can also obtain the estimate

|w (r)|X ≤ |x− x0|X +KF

∫ r

t

1

(r − s)β

Cα

(s− t)α |x− x0|X ds.

By the same calculation as in the proof of Proposition 2.7, we have

|w (r)|X ≤
[
1 +KFCαT

1−(α+β)
]
|x− x0|X ,

and (2.38) is established. �

3. Viscosity solutions and uniqueness result

In this section we study the uniqueness of solution to equation (1.1). It is well known that, by a change of
variable in time, the terminal value problem (1.1) is equivalent the Hamilton-Jacobi-Bellman equation

∂v

∂t
(t, x) − (Dxv (t, x) | Ax)

X
+
(
(−A)βDxv (t, x) | F (t,Λx)

)
X

+H
(
t, x, (−A)βDxv (t, x)

)
= 0, ∀ (t, x) ∈ ]0, T ]×X, (3.1)

v (0, x) = g (x) .

Let C1
A (]0, T [×X) be the set of all functions Φ (called test functions) satisfying the following conditions:

(α) Φ ∈ C1 (]0, T [×X) .
(β) DxΦ (·, x) is constant (in t) and DxΦ (t, ·) is Lipschitz on X, i.e.:

|DxΦ (t, x) −DxΦ (t, y)|X ≤ KΦ |x− y|X .

(γ) For all θ ∈ [0, 1 − α[, DxΦ (t, x) belongs to D((−A)θ) if and only if x ∈ D((−A)θ).
(δ) The mapping x �→ DxΦ(t, x) is continuous from D((−A)

1
2 ) into itself.

Remark 3.1. Since DxΦ(t, x) does not depend on t, from the last condition we can infer that the mapping
(t, x) �→ DxΦ(t, x) is continuous from [0, T ]×D((−A)

1
2 ) into D((−A)

1
2 ).

Definition 3.2. Consider functions w satisfying:
(i) w ∈ C ([0, T ]×X) and |w (t, x)| ≤Mw, for all (t, x) ∈ [0, T ]×X.
(ii) |w (t, x) − w (t, y)| ≤ Kw |x− y|X for all t ∈ [0, T ] , and all x, y ∈ X.

(iii) |w (t, x) − w (t, y)| ≤ Ct,θ

∣∣(−A)−θ (x− y)
∣∣
X
, for all t ∈ ]0, T ] , all x, y ∈ X, and all θ ∈ [0, 1 − α[ , where

the constant Ct,θ is bounded on all compact subset of ]0, T ].
(iv) w (·, x) is Hölder continuous in time of exponent 0 < η ≤ 1, for all x ∈ D((−A)

1
2 ). More precisely there

exists a constant M1,w such that:

|w (t, x) − w (s, x)| ≤M1,w

(
1 +

∣∣∣(−A)
1
2 x
∣∣∣
X

)
|t− s|η .

We say that a function w satisfying (i)-(iv) is a viscosity subsolution of (3.1) on [0, T ] if, for every Φ ∈
C1

A (]0, T [×X) , the conditions (α1) and (β1) are satisfied, where:

(α1)

∂Φ
∂t

(t, x) +H
(
t, x, (−A)β

DxΦ (t, x)
)

+
(
(−A)

1
2DxΦ (t, x) | (−A)

1
2x
)

X
+
(
(−A)βDxΦ (t, x) | F (t,Λx)

)
X

≤ 0

for all (t, x) ∈
(
]0, T [×D((−A)

1
2 )
)
∩ argmax (w − Φ) ,
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(β1) lim
t↘0

sup
x∈X

[
w (t, x) − g

(
etAx

)]+
= 0.

(Recall that [f ]+ = max (f, 0) and [f ]− = min (f, 0).)
We say that a function w satisfying (i)-(iv) is a viscosity supersolution of (3.1) on [0, T ] if, for every Φ ∈

C1
A (]0, T [×X) , the two conditions (α2) and (β2) are satisfied, where:

(α2)

∂Φ
∂t

(t, x) +H
(
t, x, (−A)β DxΦ (t, x)

)
+
(
(−A)

1
2DxΦ (t, x) | (−A)

1
2x
)

X
+
(
(−A)βDxΦ (t, x) | F (t,Λx)

)
X

≥ 0

for all (t, x) ∈ ( ]0, T [×D((−A)
1
2 )
) ∩ argmin (w − Φ) ,

(β2) lim
t↘0

sup
x∈X

[
w (t, x) − g

(
etAx

)]−
= 0.

Finally, w is a viscosity solution of (3.1) if it is both a subsolution and a supersolution of equation (3.1).

Remark 3.3. If (t, x) belongs to ]0, T [×D((−A)
1
2 ), then Λx is well defined and F (t,Λx) is meaningful.

Remark 3.4. If in place of equation (3.1) we consider equation (1.1), the conditions (α1), (α2), (β1), and (β2)
have to be modified accordingly (see Sect. 4).

Theorem 3.5. Assume that (i) − (vii) of Section 2 hold. Let w be a viscosity subsolution and v be a viscosity
supersolution of the Hamilton-Jacobi-Bellman equation (3.1). Then

w (t, x) ≤ v (t, x) for all (t, x) ∈ [0, T ]×X. (3.2)

Before proving this theorem let us state a useful lemma.

Lemma 3.6. Assume that ϕ and ψ ∈ C1
A (]0, T [×X) , and let w and v be two continuous functions in [0, T ]×

X. If
(t0, x0) ∈ argmaxO (w − ϕ) and (s0, y0) ∈ argminO (v − ψ) , (3.3)

where O is an open set of ]0, T [×X, then

Dxϕ (t0, x0) ⊂ D+
x w (t0, x0) and Dxψ (s0, y0) ⊂ D−

x v (s0, y0) . (3.4)

Proof. We establish the result only for the function ϕ. Due to (3.3), for all x ∈ X , we have:

w (t0, x) − w (t0, x0) − [ϕ (t0, x) − ϕ (t0, x0)] ≤ 0.

With the condition (β) in the definition of C1
A (]0, T [×X), we have:

|ϕ (t0, x) − ϕ (t0, x0) − (Dxϕ (t0, x0) | x− x0)X | ≤ KΦ|x− x0|2 .

Combining this estimate with the previous inequality, we obtain:

limsup|x−x0|→0

w (t0, x) − w (t0, x0) − (Dxϕ (t0, x0) | x− x0)X

|(x− x0)| ≤ 0. �

Let us recall Young’s inequality. For all p, q > 1 such that 1
p + 1

q = 1, we have:

ab ≤ λp

p
ap +

1
qλq

bq for all λ > 0, and all a, b ≥ 0. (3.5)
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Proof of Theorem 3.5. We are going to use the same kind of proof as in [6]. The proof is divided in five steps.
Step 1. Since w, v ∈ C ([0, T ]×X) , it is enough to prove that

wσ (t, x) ≤ vσ (t, x) for all (t, x) ∈ ]0, T [×X and all σ > 0, (3.6)

where
wσ (t, x) = w (t, x) − σ

T − t
and vσ (t, x) = v (t, x) +

σ

T − t
·

As w is a subsolution of (3.1), then wσ is a subsolution of

∂wσ

∂t
(t, x) − (Dxwσ (t, x) | Ax)X +

(
(−A)βDxwσ (t, x) | F (t,Λx)

)
X

+H
(
t, x, (−A)βDxwσ (t, x)

)
= − σ

(T − t)2
≤ − σ

T 2
,

wσ (0, x) = g (x) − σ

T
·

(3.7)

Similarly, vσ is a supersolution of

∂vσ

∂t
(t, x) − (Dxvσ (t, x) | Ax)X +

(
(−A)βDxvσ (t, x) | F (t,Λx)

)
X

+H
(
t, x, (−A)βDxvσ (t, x)

)
=

σ

(T − t)2
≥ σ

T 2
,

vσ (0, x) = g (x) +
σ

T
·

(3.8)

Step 2. Let 0 < η ≤ 1 be an exponent such that v(·, x) and w(·, x) be Hölder continuous of exponent η
(Condition (iv) in Def. 3.2). We set

η̄ = min (η, η1, η2) . (3.9)
Let ε and µ be in ]0, 1]. For all (t, x) and all (s, y) in ]0, T [×X , we define

Φε,µ (t, s, x, y) = wσ (t, x) − vσ (s, y) − 1
2ε
(
(−A)−1 (x− y) | (x− y)

)
X
− (t− s)2

2ε
2
η̄

− µ

2

(
|x|2X + |y|2X

)
.

Let τ be a small parameter satisfying 0 < τ < T
2 , and set Qτ = [τ, T − τ ] × X. From condition (iii) in

Definition 3.2, v and w are weakly continuous in Qτ . Thus vσ and wσ are weakly continuous in Qτ . Moreover
the mapping

(x, y) �→ 1
2ε
(
(−A)−1(x − y) | (x− y)

)
X

+
µ

2
|x|2X +

µ

2
|y|2X

is convex, and continuous (for the strong topology of X ×X). Therefore Φε,µ is weakly lower semicontinuous
in Q2

τ . Besides for all couples (t, x) , (s, y) ∈ Qτ

Φε,µ (t, s, x, y) ≤Mw +Mv − µ

2
(|x|2X + |y|2X

) → −∞ when max (|x|X , |y|X) → +∞.

Thus there exists (tε,µ, xε,µ, sε,µ, yε,µ) ∈ Q2
τ such that

Φε,µ (tε,µ, sε,µ, xε,µ, yε,µ) = max
Qτ×Qτ

Φε,µ.

Let us verify that if τ is small enough (0 < τ < τσ) , then tε,µ, sε,µ < T − τ . Indeed, from the inequality

wσ (t, x) − vσ (s, y) ≤Mw +Mv − σ

T − t
− σ

T − s
,
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it follows that
lim

max(s,t)→T
(wσ (t, x) − vσ (s, y)) = −∞ uniformly w.r. to x and y.

Hence we have shown that there exists (tε,µ, xε,µ, sε,µ, yε,µ) ∈ ([τ, T − τ [×X)2 such that

Φε,µ (tε,µ, sε,µ, xε,µ, yε,µ) = max
Qτ×Qτ

Φε,µ.

Step 3. We are going to obtain some a priori estimates on tε,µ, sε,µ, xε,µ, yε,µ. Since

Φε,µ (tε,µ, tε,µ, xε,µ, xε,µ) + Φε,µ (sε,µ, sε,µ, yε,µ, yε,µ) ≤ 2Φε,µ (tε,µ, sε,µ, xε,µ, yε,µ) ,

then

wσ (tε,µ, xε,µ) − vσ (tε,µ, xε,µ) + wσ (sε,µ, yε,µ) − vσ (sε,µ, yε,µ)

≤ 2 (wσ (tε,µ, xε,µ) − vσ (sε,µ, yε,µ)) − 1
ε

(
(−A)−1 (xε,µ − yε,µ) | (xε,µ − yε,µ)

)
X
− (tε,µ − sε,µ)2

ε
2
η̄

·

Consequently we obtain

1
ε

(
(−A)−1 (xε,µ − yε,µ) | (xε,µ − yε,µ)

)
X

+
(tε,µ − sε,µ)2

ε
2
η̄

≤ wσ (tε,µ, xε,µ) − wσ (sε,µ, yε,µ) + vσ (tε,µ, xε,µ) − vσ (sε,µ, yε,µ) (3.10)
≤ 2 (Mw +Mv) = C.

We deduce that

|tε,µ − sε,µ| ≤ Cε
1
η̄ (3.11)∣∣∣(−A)−

1
2 (xε,µ − yε,µ)

∣∣∣
X

≤ C
√
ε. (3.12)

Now let us show that
lim
µ↘0

µ
(∣∣xε(µ),µ

∣∣2
X

+
∣∣yε(µ),µ

∣∣2
X

)
= 0, (3.13)

where 0 < ε(µ) < 1 is any function of µ. For all x ∈ X, we have:

Φε,µ (tε,µ, tε,µ, x, x) ≤ Φε,µ (tε,µ, sε,µ, xε,µ, yε,µ) ,

i.e.

wσ (tε,µ, x) − vσ (tε,µ, x) − µ|x|2X ≤ wσ (tε,µ, xε,µ) − vσ (sε,µ, yε,µ) − 1
2ε
(
(−A)−1 (xε,µ − yε,µ) | (xε,µ − yε,µ)

)
X

− (tε,µ − sε,µ)2

ε
2
η̄

− µ

2

(
|xε,µ|2X + |yε,µ|2X

)
.

By taking x = 0, we deduce that

µ

2
(|xε,µ|2X + |yε,µ|2X

) ≤ 2 (Mw +Mv) .

Thus, µ
2

(|xε,µ|2X + |yε,µ|2X
)

is bounded independently of ε ∈]0, 1] and µ ∈]0, 1]. We are going to use this property
to prove (3.13).
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We define now Ψε on Qτ ×Qτ by:

Ψε (t, s, x, y) = wσ (t, x) − vσ (s, y) +
1
2ε
(
A−1 (x− y) | (x− y)

)
X
− (t− s)2

2ε
2
η̄

·

The function Ψε is bounded from above (independently of ε):

Ψε ≤Mw +Mv,

and upper semicontinuous. So, for every δ > 0, there exists (tε,δ, xε,δ, sε,δ, yε,δ) ∈ Q2
τ such that

Ψε (tε,δ, sε,δ, xε,δ, yε,δ) ≥ Ψε (t, s, x, y) − δ ∀ (t, x), (s, y) ∈ Qτ .

The point (tε,δ, sε,δ, xε,δ, yε,δ) corresponds to a supremum (and a priori not a maximum), because we have not
proved that Ψε → −∞ when max (|x|X , |y|X) → ∞. Starting from the inequality

Φε,µ (tε,µ, sε,µ, xε,µ, yε,µ) ≥ Φε,µ (tε,δ, sε,δ, xε,δ, yε,δ)

it follows that

Ψε (tε,µ, sε,µ, xε,µ, yε,µ) − µ

2

(
|xε,µ|2X + |yε,µ|2X

)
≥ Ψε (tε,δ, sε,δ, xε,δ, xε,δ) − µ

2

(
|xε,δ|2X + |yε,δ|2X

)
≥ Ψε (tε,µ, sε,µ, xε,µ, yε,µ) − δ − µ

2

(
|xε,δ|2X + |yε,δ|2X

)
.

Hence we have
µ

2
(|xε,µ|2X + |yε,µ|2X

) ≤ µ

2

(
|xε,δ|2X + |yε,δ|2X

)
+ δ for all δ > 0.

This inequality is satisfied for all ε > 0. In particular if 0 < ε(µ) < 1 is a function of µ, we can write

µ

2

(∣∣xε(µ),µ

∣∣2
X

+
∣∣yε(µ),µ

∣∣2
X

)
≤ µ

2

(∣∣xε(µ),δ

∣∣2
X

+
∣∣yε(µ),δ

∣∣2
X

)
+ δ ≤ µ

2
δ

(Mw +Mv) + δ.

Thus

lim sup
µ↘0

µ

2

(∣∣xε(µ),µ

∣∣2
X

+
∣∣yε(µ),µ

∣∣2
X

)
= δ.

We take the limit when δ → 0 to obtain (3.13).
Let us prove that

1
2ε

∣∣∣(−A)−
1
2 (xε,µ − yε,µ)

∣∣∣2
X

≤ |xε,µ − yε,µ|2X
8ελ

+ 2M2
v ελ+

µ

2
|xε,µ|2X , (3.14)

for all constant λ > 0. From the inequality

Φε,µ (tε,µ, sε,µ, xε,µ, xε,µ) ≤ Φε,µ (tε,µ, sε,µ, xε,µ, yε,µ) ,

we deduce

1
2ε
(
(−A)−1 (xε,µ − yε,µ) | (xε,µ − yε,µ)

)
X

≤ vσ (sε,µ, xε,µ) − vσ (sε,µ, yε,µ) +
µ

2
|xε,µ|2X .
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With (ii) in Definition 3.2 we have:

1
ε

∣∣∣(−A)−
1
2 (xε,µ − yε,µ)

∣∣∣2
X

≤ 2Mv |xε,µ − yε,µ| + µ|xε,µ|2X .

Estimate (3.14) follows from Young’s inequality.

Step 4. We are going to show that min(tε,µ, sε,µ) = τ. If it is not true, then tε,µ > τ and sε,µ > τ. Let ϕ and
ψ be two mappings defined by:

ϕ (t, x) = vσ (sε,µ, yε,µ) +
1
2ε
(
(−A)−1 (x− yε,µ) | (x− yε,µ)

)
X

+
(t− sε,µ)2

2ε
2
η̄

+
µ

2
(|x|2X + |yε,µ|2X

)
ψ (t, y) = wσ (tε,µ, xε,µ) − 1

2ε
(
(−A)−1 (xε,µ − y) | (xε,µ − y)

)
X
− (tε,µ − s)2

2ε
2
η̄

− µ

2

(
|xε,µ|2X + |y|2X

)
.

The mappings ϕ, ψ belong to C1
A (]0, T [×X). Indeed

(i) ϕ ∈ C1 (]0, T [×X) and Dxϕ (t, x) = 1
ε (−A)−1 (x− yε,µ) + µx.

(ii) Dxϕ (·, x) is constant in t, and x �→ Dxϕ (t, x) is Lipschitz from X into X because (−A)−1 is a linear and
continuous operator from X into X :

|Dxϕ (t, x) −Dxϕ (t, y)|2X ≤ 2
(

1
ε

∣∣A−1 (x− y)
∣∣2
X

+ µ |x− y|2X
)

≤ 2
(
µ+

C

ε

)
|x− y|2X .

(iii) It is clear that for all θ ∈ [0, 1 − α[ , Dxϕ (t, x) ∈ D((−A)θ) ⇔ x ∈ D((−A)θ).
(iv) Moreover the mapping x �→ Dxϕ(t, x) is continuous from D((−A)

1
2 ) into itself.

The mappings ϕ, ψ have been chosen to satisfy:

(tε,µ, xε,µ) ∈ arg max
Qτ

(wσ − ϕ) , and (sε,µ, yε,µ) ∈ argmin
Qτ

(vσ − ψ) . (3.15)

Since vσ and wσ satisfy (iii) in Definition 3.2, with [5, Cor. 3.4], D+
x wσ (tε,µ, xε,µ) and D−

x vσ (sε,µ, yε,µ)
are included in D((−A)θ) for all θ ∈ [

0, 3
4

[
. Due to Lemma 3.6, Dxϕ (tε,µ, xε,µ) ⊂ D+

x wσ (tε,µ, xε,µ) and
Dxψ (sε,µ, yε,µ) ⊂ D−

x vσ (sε,µ, yε,µ). Hence, we have

Dxϕ (tε,µ, xε,µ) , Dxψ (sε,µ, yε,µ) ∈ D((−A)θ) for all θ ∈ [0, 1 − α[.

Therefore xε,µ and yε,µ belong to D
(
(−A)θ

)
for all θ ∈ [0, 1 − α[, and in particular xε,µ, yε,µ ∈ D((−A)

1
2 ).

Since wσ is a viscosity subsolution of (3.7) , and (tε,µ, xε,µ) belongs to
(
]0, T [×D((−A)

1
2 )
)
∩arg max (wσ − ϕ),

we have:

tε,µ − sε,µ

ε
2
η̄

+H

(
tε,µ, xε,µ, (−A)β

(
1
ε
(−A)−1 (xε,µ − yε,µ) + µxε,µ

))
+
(

(−A)
1
2

(
1
ε

(−A)−1 (xε,µ − yε,µ) + µxε,µ

)
| (−A)

1
2xε,µ

)
X

+
(

(−A)β

(
1
ε

(−A)−1 (xε,µ − yε,µ) + µxε,µ

)
| F (tε,µ,Λxε,µ)

)
X

≤ − σ

T 2
·
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In the same way, since vσ is a viscosity supersolution of (3.8), with (3.15) we have:

tε,µ − sε,µ

ε
2
η̄

+H

(
sε,µ, yε,µ, (−A)β

(
1
ε
(−A)−1 (xε,µ − yε,µ) − µyε,µ

))
+
(

(−A)
1
2

(
1
ε

(−A)−1 (xε,µ − yε,µ) − µyε,µ

)
| (−A)

1
2 yε,µ

)
X

+
(

(−A)β

(
1
ε

(−A)−1 (xε,µ − yε,µ) + µyε,µ

)
| F (sε,µ,Λyε,µ)

)
X

≥ σ

T 2
·

Substracting the previous two inequalities we obtain

H

(
tε,µ, xε,µ, (−A)β

(
1
ε
(−A)−1 (xε,µ − yε,µ) + µxε,µ

))
−H

(
sε,µ, yε,µ, (−A)β

(
1
ε
(−A)−1 (xε,µ − yε,µ) − µyε,µ

))
+
(

(−A)
1
2

(
1
ε

(−A)−1 (xε,µ − yε,µ)
)

| (−A)
1
2 (xε,µ − yε,µ)

)
X

+µ
∣∣∣(−A)

1
2xε,µ

∣∣∣2
X

+ µ
∣∣∣(−A)

1
2 yε,µ

∣∣∣2
X

+
(

(−A)β

(
1
ε

(−A)−1 (xε,µ − yε,µ)
)

| F (tε,µ,Λxε,µ) − F (sε,µ,Λyε,µ)
)

X

+µ
(
(−A)βxε,µ | F (tε,µ,Λxε,µ)

)
X
− µ

(
(−A)βyε,µ | F (sε,µ,Λyε,µ)

)
X

≤ − 2σ
T 2

·

Thus we have

µ
∣∣∣(−A)

1
2xε,µ

∣∣∣2
X

+ µ
∣∣∣(−A)

1
2 yε,µ

∣∣∣2
X

+
1
ε
|xε,µ − yε,µ|2X (3.16)

≤ − 2σ
T 2

+KH

(|tε,µ − sε,µ|η2 + |xε,µ − yε,µ|X + µ
∣∣(−A)β (xε,µ + yε,µ)

∣∣
X

)
(3.17)

+
1
ε

∣∣(−A)β−1 (xε,µ − yε,µ)
∣∣
X
|F (tε,µ,Λxε,µ) − F (sε,µ,Λyε,µ)|X (3.18)

+µ
∣∣(−A)βxε,µ

∣∣
X
|F (tε,µ,Λxε,µ)|X + µ

∣∣(−A)βyε,µ

∣∣
X
|F (sε,µ,Λyε,µ)|X . (3.19)

Estimates of (3.17)–(3.19):

Estimate of (3.17). With (3.11) and Young’s inequality we can write

|tε,µ − sε,µ|η2 ≤ Cε
η2
η̄ ≤ Cε and KH |xε,µ − yε,µ|X ≤ 2εK2

H +
|xε,µ − yε,µ|2X

8ε
· (3.20)
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For all σ > 0, with (2.13), we have:

µKH

∣∣(−A)β (xε,µ + yε,µ)
∣∣
X

≤ µKH

(∣∣(−A)βxε,µ

∣∣
X

+
∣∣(−A)βyε,µ

∣∣
X

)
≤ µKH

[
σ
(∣∣∣(−A)

1
2xε,µ

∣∣∣
X

+
∣∣∣(−A)

1
2 yε,µ

∣∣∣
X

)
+ Cβ,σ

(|xε,µ|X + |yε,µ|X
)]

≤ µKH

[
1
2
σ

(∣∣∣(−A)
1
2 xε,µ

∣∣∣2
X

+
∣∣∣(−A)

1
2 yε,µ

∣∣∣2
X

+ 2
)

+ Cβ,σ

(|xε,µ|X + |yε,µ|X
)]
.

Choosing σ = 1
KH

we have:

µKH

∣∣(−A)β (xε,µ + yε,µ)
∣∣
X

≤ µ

[
1
2

∣∣∣(−A)
1
2xε,µ

∣∣∣2
X

+
1
2

∣∣∣(−A)
1
2 yε,µ

∣∣∣2
X

+ 1 +KHCβ,1/KH
(|xε,µ|X + |yε,µ|X)

]
.

(3.21)
With (3.20) and (3.21), we have:

(3.17) ≤ KHCε+ 2εK2
H +

|xε,µ − yε,µ|2X
8ε

+µ
[
1
2

∣∣∣(−A)
1
2xε,µ

∣∣∣2
X

+
1
2

∣∣∣(−A)
1
2 yε,µ

∣∣∣2
X

+ 1 +KHCβ,1/KH
(|xε,µ|X + |yε,µ|X)

]
.

Estimate of (3.18). We first write

(3.18) ≤ 1
ε

∥∥∥(−A)β− 1
2

∥∥∥ ∣∣∣(−A)−
1
2 (xε,µ − yε,µ)

∣∣∣
X
|F (tε,µ,Λxε,µ) − F (sε,µ,Λyε,µ)|X . (3.22)

From (2.2) and (2.4), it yields

|F (tε,µ,Λxε,µ) − F (sε,µ,Λyε,µ)|X ≤ M1,F (1 + |Λxε,µ|X0 ) |tε,µ − sε,µ|η1 +KF |Λxε,µ − Λyε,µ|X0

≤ M1,F

(
1 + C1/2

∣∣∣(−A)
1
2xε,µ

∣∣∣
X

)
|tε,µ − sε,µ|η1

+KFCα |(−A)α (xε,µ − yε,µ)|X .

Then, choosing α0 > 0 such that α+ α0 <
1
2 , we obtain

(3.18) ≤ C

∣∣∣(−A)−
1
2 (xε,µ − yε,µ)

∣∣∣
X

ε1−α0

∣∣(−A)α (xε,µ − yε,µ)
∣∣
X

εα0
(3.23)

+C

∣∣∣(−A)−
1
2 (xε,µ − yε,µ)

∣∣∣
X

ε1−α0

(
1 +

∣∣∣(−A)
1
2xε,µ

∣∣∣
X

) |tε,µ − sε,µ|η1

εα0
· (3.24)

Estimate of (3.23). We first estimate the factor
∣∣∣(−A)−

1
2 (xε,µ − yε,µ)

∣∣∣
X
/ε1−α0 . From inequality (3.10) it follows

that
1
ε

∣∣∣(−A)−
1
2 (xε,µ − yε,µ)

∣∣∣2
X

≤ w (tε,µ, xε,µ) − w (sε,µ, yε,µ) + v (tε,µ, xε,µ) − v (sε,µ, yε,µ) .

As tε,µ, sε,µ ∈ [τ, T − τ ] and [τ, T − τ ] is compact, with properties (iii) and (iv) in Definition 3.2, setting
C(v, w) = M1,v +M1,w and C(τ) = supt∈[τ,T ]Ct,1/2,v + Ct,1/2,w, we have

1
ε

∣∣∣(−A)−
1
2 (xε,µ − yε,µ)

∣∣∣2
X

≤ 2C(v, w)
(
1 +

∣∣∣(−A)
1
2 xε,µ

∣∣∣
X

)
|tε,µ − sε,µ|η + C(τ)

∣∣∣(−A)−
1
2 (xε,µ − yε,µ)

∣∣∣
X
.
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As

C(τ)
∣∣∣(−A)−

1
2 (xε,µ − yε,µ)

∣∣∣
X

≤

∣∣∣(−A)−
1
2 (xε,µ − yε,µ)

∣∣∣2
X

2ε
+
ε

2
C(τ)2,

then
1
ε

∣∣∣(−A)−
1
2 (xε,µ − yε,µ)

∣∣∣2
X

≤ 4C(v, w)
(
1 +

∣∣∣(−A)
1
2xε,µ

∣∣∣
X

)
|tε,µ − sε,µ|η + εC(τ)2.

Hence, we obtain:

1
ε1−α0

∣∣∣(−A)−
1
2 (xε,µ − yε,µ)

∣∣∣
X

≤ 2
√
C(v, w)

(
1 +

∣∣∣(−A)
1
2xε,µ

∣∣∣
X

) |tε,µ − sε,µ|
η
2

ε
1
2−α0

+ εα0C(τ). (3.25)

We now estimate the factor |(−A)α (xε,µ − yε,µ)|X /εα0 . With (2.12), we have:

1
εα0

|(−A)α (xε,µ − yε,µ)|X ≤Mα,1/2

∣∣∣(−A)
1
2 (xε,µ − yε,µ)

∣∣∣2α

X

|xε,µ − yε,µ|1−2α
X

ε
1
2−α0

·

Applying Young’s inequality (3.5) to the left hand side and taking q = 1/ (1 − 2α) , p = 1/2α, qλq = ε
1
2−

α0
1−2α ,

then λp

p = Cε(1−2α−2α0)/4α and we obtain:

1
εα0

|(−A)α (xε,µ − yε,µ)|X ≤ |xε,µ − yε,µ|X
ε1/2

+ Cε(1−2α−2α0)/4α
∣∣∣(−A)

1
2 (xε,µ − yε,µ)

∣∣∣
X
. (3.26)

The exponent of (1 − 2α− 2α0)/4α of ε is positive because α+ α0 <
1
2 .

With (3.25), (3.26), and with Young’s inequality we can write

(3.23) ≤
[
C
(
1 +

∣∣∣(−A)
1
2 xε,µ

∣∣∣
X

) |tε,µ − sε,µ|η
ε1−2α0

+ ε2α0C(τ)
]

+
|xε,µ − yε,µ|2X

8ε
+ Cε

(1−2α−2α0)
2α

∣∣∣(−A)
1
2 (xε,µ − yε,µ)

∣∣∣2
X
.

With (3.11) one has

|tε,µ − sε,µ|η
ε1−2α0

≤ C
ε

η
η̄

ε1−2α0
≤ Cε2α0 ,

which gives

(3.23) ≤ C
(
ε2α0 + ε

(1−2α−2α0)
2α

)(
1 +

∣∣∣(−A)
1
2 xε,µ

∣∣∣2
X

+
∣∣∣(−A)

1
2 yε,µ

∣∣∣2
X

)
+ ε2α0C(τ) +

|xε,µ − yε,µ|2X
8ε

· (3.27)

Estimate of (3.24). We finally estimate (3.24) with (3.25), (3.26) and (3.11), and we have

(3.24) ≤ C(τ)
(
1 +

∣∣∣(−A)
1
2 xε,µ

∣∣∣
X

)3/2
(
|tε,µ − sε,µ|

η
2 +η1

ε
1
2

+ |tε,µ − sε,µ|η1

)

≤ C(τ)ε
(

1 +
∣∣∣(−A)

1
2 xε,µ

∣∣∣2
X

)
. (3.28)
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We complete the estimate of (3.18) with (3.27) and (3.28):

(3.18) ≤ C
(
ε+ ε2α0 + ε(1−2α−2α0)/2α

)(
1 +

∣∣∣(−A)
1
2 xε,µ

∣∣∣2
X

+
∣∣∣(−A)

1
2 yε,µ

∣∣∣2
X

)
(3.29)

+C(τ)ε2α0 +
|xε,µ − yε,µ|2X

8ε
·

Estimate of ( 3.19). Since F is bounded, as in (3.17) , and with (3.21) we obtain

(3.19) ≤ µ

[
1
8

∣∣∣(−A)
1
2 xε,µ

∣∣∣2
X

+
1
2

+
1
8

∣∣∣(−A)
1
2 yε,µ

∣∣∣2
X

+
(
|xε,µ|2X + |yε,µ|2X

)
+ C

]
.

End of step 4
Collecting the different estimates of the terms in the right hand side of (3.16) we obtain:

(
µ− µ

2 − C
(
ε2α0 + ε(1−2α−2α0)/2α

)− µ
8

) [∣∣∣(−A)
1
2xε,µ

∣∣∣2
X

+
∣∣∣(−A)

1
2 yε,µ

∣∣∣2
X

]
+ 1

ε

(
1 − 1

8 − 1
4 − 1

8

) |xε,µ − yε,µ|2X
≤ − 2σ

T 2 + µC
(
1 + |xε,µ|2X + |yε,µ|2X

)
+ C(τ)

[
ε

1
η̄ + ε2α0

]
.

(3.30)
We take ε(µ) small enough to have C

(
ε2α0 + ε(1−2α−2α0)/2α

)
< 3µ

8 , and we take the limit when µ tends to zero.
We obtain the contradiction 0 ≤ − 2σ

T 2 . Thus the equality min (tε,µ, sε,µ) = τ is established.
Step 5. We are going to conclude with the initial data. We argue by contradiction. If (3.6) does not hold, then
there exists (t0, x0) ∈ ]0, T [×X such that

0 < wσ (t0, x0) − vσ (t0, x0) = δ0. (3.31)

We choose τ and ε small enough to have (t0, x0) ∈ Qτ , and

[
w (t, x) − g

(
etAx

)]+ ≤ δ0
8

and
[
v (t, x) − g

(
etAx

)]− ≤ δ0
8
,

for all x ∈ X and all t ∈ [0, τ + Cε1/η̄], where C is the constant in (3.11). One has

Φε,µ (t0, t0, x0, x0) ≤ Φε,µ (tε,µ, sε,µ, xε,µ, yε,µ) ≤ wσ (tε,µ, xε,µ) − vσ (sε,µ, yε,µ) ,

i.e.

wσ (t0, x0) − vσ (t0, x0) − µ |x0|2X ≤ wσ (tε,µ, xε,µ) − vσ (sε,µ, yε,µ)

=
[
wσ (tε,µ, xε,µ) +

σ

T − tε,µ
− g

(
etε,µAxε,µ

)]
+ g

(
etε,µAxε,µ

)− g
(
esε,µAyε,µ

)
+
[
g
(
esε,µAyε,µ

)
+

σ

T − sε,µ
− vσ (sε,µ, yε,µ)

]
−
[

σ

T − sε,µ
+

σ

T − tε,µ

]
≤ [

w (tε,µ, xε,µ) − g
(
etε,µAxε,µ

)]+
+Kg

∣∣etε,µAxε,µ − esε,µAyε,µ

∣∣ (3.32)

+
[
v (sε,µ, yε,µ) − g

(
esε,µAyε,µ

)]−
.

Since 0 < τ = min(tε,µ, sε,µ) and |tε,µ − sε,µ| ≤ Cε1/η̄, we have

[
w (tε,µ, xε,µ) − g

(
etε,µAxε,µ

)]+ ≤ δ0
8

and
[
v (sε,µ, yε,µ) − g

(
esε,µAyε,µ

)]− ≤ δ0
8
·
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Still using τ = min(tε,µ, sε,µ), with (2.11), we can write∣∣etε,µAxε,µ − esε,µAyε,µ

∣∣
X

≤ ∣∣(etε,µA − esε,µA
)
xε,µ

∣∣
X

+
∣∣esε,µA (xε,µ − yε,µ)

∣∣
X

≤
∣∣∣(e|tε,µ−sε,µ|A − I

)
eτAxε,µ

∣∣∣
X

+
∣∣∣(−A)

1
2 esε,µA(−A)−

1
2 (xε,µ − yε,µ)

∣∣∣
X

≤ M0 |tε,µ − sε,µ|
∣∣AeτAxε,µ

∣∣
X

+
C√
τ

∣∣∣(−A)−
1
2 (xε,µ − yε,µ)

∣∣∣
X

≤ C

τ
|xε,µ|X |tε,µ − sε,µ| + C√

τ

∣∣∣(−A)−
1
2 (xε,µ − yε,µ)

∣∣∣
X

≤ C

τ
|xε,µ|X ε

1
η̄ +

C√
τ

√
ε ≤ C

τ

ε
1
η̄

µ1/2
+

C√
τ

√
ε.

(The last inequality is obtained with (3.12).) We choose µ ≤ δ0
4Kg

, and next ε such that

C

τ

ε
1
η̄

µ1/2
+

C√
τ

√
ε ≤ µ .

We obtain: ∣∣etε,µAxε,µ − esε,µAyε,µ

∣∣
X

≤ µ ≤ δ0
4Kg

·

Then with (3.32), (3.31) and this inequality we have:

δ0 − µ |x0|2X = wσ (t0, x0) − vσ (t0, x0) − µ |x0|2X ≤ δ0
8

+Kg

(
δ0

4Kg

)
+
δ0
8

=
δ0
2
·

By passing to the limit when µ tends to zero, we obtain a contradiction. Therefore we have proved that

w (t, x) ≤ v (t, x) for all (t, x) ∈ Qτ . �

4. Properties of the value function and existence results

For all t ∈ [0, T ] and x ∈ X , we consider the optimal control problem

(Pt,x) min
{
J (t, y, u) | u ∈ M(t, T ;U) and (y, u) is solution of equation (2.1)

}
,

where the cost functional J is defined by

J(t, y, u) =
∫ T

t

L(r, y(r), u(r)) dr + g(y(T )).

We assume that assumptions (i)–(viii) of Section 2 are satisfied. Let v(t, x) be the value function of prob-
lem (Pt,x), that is

v(t, x) = infu∈M(t,T ;U)J(t, yt,x,u, u).

In the following it will be convenient to use the notation

It,x(u) = J(t, yt,x,u, u).
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4.1. Properties of the value function

Proposition 4.1. For all x, x0 ∈ X, and all t ∈ [0, T ] , the value function v satisfies:

|v (t, x) − v (t, x0)| ≤ Kv |x− x0|X , (4.1)

with Kv independent of t.

Proof. With estimate (2.38), we have

v (t, x) − v (t, x0) = inf
u∈M(t,T ;U)

It,x(u) − inf
u∈M(t,T ;U)

It,x0(u)

≤ sup
u∈M(t,T ;U)

(It,x(u) − It,x0(u))

≤ sup
u∈M(t,T ;U)

{∫ T

t

|L (·, yt,x,u, u) − L (·, yt,x0,u, u)| dr + |g (yt,x,u (T )) − g (yt,x0,u (T ))|
}

≤ sup
u∈M(t,T ;U)

{∫ T

t

KL |yt,x,u (r) − yt,x0,u (r)|X dr +Kg |yt,x,u (T ) − yt,x0,u (T )|X
}

(4.2)

≤ sup
u∈M(t,T ;U)

(KLT +Kg) ‖yt,x,u − yt,x0,u‖L∞(0,T ;X)

≤ (KLT +Kg) C8(α, β) |x − x0|X . (4.3)

By permuting x and x0, we obtain estimate (4.1) with Kv = (KLT +Kg)C8(α, β). �
Proposition 4.2. The value function v is continuous and bounded in [0, T ]×X.

Proof. Let us show that v is bounded. As L and g are bounded, we have:

v (t, x) = inf
u∈M(t,T ;U)

It,x (u) ≤Mg + TML = Mv.

Moreover,

v (t, x) ≥ − sup
u∈M(t,T ;U)

|It,x (u (·))| ≥ − (Mg + TML) = −Mv.

Hence we have
|v (t, x)| ≤Mv for all (t, x) ∈ [0, T ]×X.

Let (t, x) ∈ [0, T ] ×X be fixed, and first show that the function t �→ v (t, x) is continuous. Let 0 ≤ s < t, we
have:

v (t, x) − v (s, x) ≤ sup
u∈M(t,T ;U)

(∫ T

t

|L(·, yt,x,u, u) − L(·, ys,x,u, u)|dr + |g(yt,x,u(T )) − g(ys,x,u(T ))|
)

+ sup
u∈M(t,T ;U)

∫ t

s

|L(·, ys,x,u, u)| dr

≤ sup
u∈M(t,T ;U)

(KLT +Kg) ‖yt,x,u − ys,x,u‖L∞(t,T ;X) + |t− s|ML.

By permuting s and t, and with Proposition 2.9 we have

|v (t, x) − v (s, x)| ≤ C6(α, β) (KLT +Kg) ā (t, s, x) + |t− s|ML. (4.4)



334 S. GOMBAO AND J.-P. RAYMOND

Hence with (4.1) we obtain

|v (t, x) − v (s, x0)| ≤ [C6(α, β)(KLT +Kg) ā (t, s, x) +Kv |x− x0|X ] + |t− s|ML.

The proof is complete. �
Proposition 4.3. For all t ∈ [0, T [ , and all x, x0 ∈ X, the value function satisfies

|v (t, x) − v (t, x0)| ≤ C(α, β, θ, t)
∣∣∣(−A)−θ (x− x0)

∣∣∣
X

for all θ ∈ [0, 1 − α[ . (4.5)

The constant C(α, β, θ, t) is explicitly given in (4.7), it blows up when t→ T and when α+ θ → 1, but it stays
bounded on all compact subset of [0, T [ .

Proof. We have

v (t, x) − v (t, x0) ≤ sup
u∈M(t,T ;U)

{∫ T

t

KL |yt,x,u (r) − yt,x0,u (r)|X dr +Kg |yt,x,u (T ) − yt,x0,u (T )|X
}
.

With estimate (2.25), we obtain

v (t, x) − v (t, x0) ≤
{∫ T

t

KLC4(α, β, θ, t; r)dr +KgC4(α, β, θ, t;T )

}∣∣∣(−A)−θ (x− x0)
∣∣∣
X
,

where C4(α, β, θ, t; r) is given in (2.28). As 1 − (α+ β + θ) > −1, then function r �→ (r − t)1−(α+β+θ) is
integrable over (t, T ). So, one has∫ T

t

KLC4(α, β, θ, t; r) (r) dr = KL

∫ T

t

(
Mθ

(r − t)θ
+
C3(α, β, θ)
1 − (α+ θ)

(r − t)1−(α+β+θ)

)
dr

= KL

[
Mθ

1 − θ
(T − t)1−θ +

C3(α, β, θ)
[2 − (α+ β + θ)] [1 − (α+ θ)]

(T − t)2−(α+β+θ)

]
.

(4.6)

Setting
C(α, β, θ, t) = (4.6) +KgC4(α, β, θ, t;T ), (4.7)

we can write
v (t, x) − v (t, x0) ≤ C(α, β, θ, t)

∣∣∣(−A)−θ (x− x0)
∣∣∣
X
.

And permuting x and x0 we obtain (4.5). �

Proposition 4.4. For all x ∈ D((−A)
1
2 ) and all s, t ∈ [0, T ] there exists a constant C, independent of x, t

and s, such that
|v (t, x) − v (s, x)| ≤ C

(
1 +

∣∣∣(−A)
1
2 x
∣∣∣
X

)
|t− s| 12 . (4.8)

Proof. Let us recall (4.4):

|v (t, x) − v (s, x)| ≤ C6(α, β) (KLT +Kg) ā (t, s, x) + |t− s|ML,

where ā (t, s, x) =
∣∣e|t−s|Ax− x

∣∣
X

+ |t− s|1−β. With (2.11), if x ∈ D((−A)
1
2 ), we get:∣∣∣(e|t−s|A − I

)
x
∣∣∣
X

≤ C |t− s| 12
∣∣∣(−A)

1
2 x
∣∣∣
X
.
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Since β ≤ 1/2, we have

ā (t, s, x) ≤ C(β, T )
(
1 +

∣∣∣(−A)
1
2 x
∣∣∣
X

)
|t− s| 12 .

Hence

|v (t, x) − v (s, x)| ≤
[
C6(α, β)

(
KLT +Kg + C(β, T )

(
1 +

∣∣∣(−A)
1
2 x
∣∣∣
X

))
+MLT

1
2

]
|t− s| 12 .

The proof is complete. �

4.2. Existence results

Theorem 4.5. Assume that assumptions (i)–(viii) of Section 2 hold. Then the value function v is a viscosity
solution of the Hamilton-Jacobi-Bellman equation (1.1) in the sense of Definition 3.2.

The proof is split into three steps:

Step 1. We show that v satisfies the condition (α1) in the definition of subsolutions.
Step 2. We show that v satisfies condition (α2) in the definition of supersolutions.
Step 3. We show that v satisfies both terminal conditions (β1) and (β2) .

Proof. We only treat the case 0 ≤ β < 1
2 . The case β = 1

2 can be treated with obvious modifications by using
estimate (2.20) in place of (2.19).
Step 1. Let Φ ∈ C1

A (]0, T [×X) , and (t, x) ∈ ( ]0, T [×D((−A)
1
2 )
)∩arg max]0,T [×X (v − Φ) . Let u (·) = u ∈ U

be a constant control. For all s > t we have

v (t, x) − Φ (t, x) = max (v − Φ) ≥ v (s, yt,x,u (s)) − Φ (s, yt,x,u (s)) . (4.9)

By the dynamic programming principle it yields

v (t, x) ≤
∫ s

t

L (r, yt,x,ũ (r) , u) dr + v (s, yt,x,ũ (s)) , for all ũ ∈ U.

This inequality holds true in particular for u. From (4.9) we deduce

Φ (t, x) − Φ (s, yt,x,u (s)) ≤ v (t, x) − v (s, yt,x,u (s)) ≤
∫ s

t

L (r, yt,x,u (r) , u) dr,

hence

Φ (t, x) − Φ (s, x) + Φ (s, x) − Φ (s, yt,x,u (s)) −
∫ s

t

L (r, yt,x,u (r) , u) dr ≤ 0. (4.10)

With assumption (viii) of Section 2 satisfied by L and a classical calculation we obtain:

lim
s↘t

{
Φ (t, x) − Φ (s, x)

s− t
− 1
s− t

∫ s

t

L (r, yt,x,u (r) , u) dr
}

= −∂Φ
∂t

(t, x) − L (t, x, u) . (4.11)

On the other hand,

Φ (s, x) − Φ (s, yt,x,u (s))
s− t

=
Φ (s, x) − Φ

(
s, e(s−t)Ax

)
s− t

+
Φ
(
s, e(s−t)Ax

)− Φ (s, yt,x,u (s))
s− t

· (4.12)
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So,

Φ
(
s, e(s−t)Ax

)− Φ (s, yt,x,u (s))
s− t

=
1

s− t

(
DxΦ (s, ξ (s)) | e(s−t)Ax− yt,x,u (s)

)
X

=
1

s− t

(
DxΦ

(
s, e(s−t)Ax

) | e(s−t)Ax− yt,x,u (s)
)

X
(4.13)

+
1

s− t

(
DxΦ

(
s, ξ (s)

)−DxΦ
(
s, e(s−t)Ax

) | e(s−t)Ax− yt,x,u (s)
)

X
,

where

ξ (s) = λ (s) e(s−t)Ax+ (1 − λ (s)) yt,x,u (s) ,

for a function λ : [t, T ] → ]0, 1[ . We denote by KΦ the Lipschitz constant of DxΦ (t, ·) in X (condition (β) in
the definition of C1

A(]0, T [×X)). With estimate (2.19), we have∣∣∣∣ 1
s− t

(
DxΦ

(
s, ξ
(
s
))−DxΦ

(
s, e(s−t)Ax

) | e(s−t)Ax− yt,x,u (s)
)

X

∣∣∣∣
≤ 1
s− t

KΦ

∣∣∣ξ (s) − e(s−t)Ax
∣∣∣
X

∣∣∣e(s−t)Ax− yt,x,u (s)
∣∣∣
X

=
1

s− t
KΦ (1 − λ (s))

∣∣∣e(s−t)Ax− yt,x,u (s)
∣∣∣2
X

≤ 1
s− t

KΦ

∣∣∣e(s−t)Ax− yt,x,u (s)
∣∣∣2
X

≤ C1(β)KΦ
|s− t|2(1−β)

s− t
= C|s− t|1−2β → 0 when s↘ t, as β < 1/2, (4.14)

and C is independent of u (C depends only on MU ). In the case when β = 1
2 , using (2.20) we obtain

C1

(
β, |x|

D((−A)
1
2 )

)
KΦ|s− t|2β0 in place of C|s− t|1−2β . For the term (4.13), we have

1
s− t

(
DxΦ

(
s, e(s−t)Ax

) | e(s−t)Ax− yt,x,u (s)
)

X

=
(

(−A)βDxΦ
(
s, e(s−t)Ax

) | −1
s− t

∫ s

t

e(s−r)A [Bu− F (r,Λyt,x,u (r))] dr
)

X

. (4.15)

We know that e(s−t)Ax tends to x in D((−A)
1
2 ) when s ↘ t. Thus using condition (δ) in the definition of

C1
A(]0, T [×X) and Proposition 2.2, we can pass to the limit in (4.15), when s↘ t, and we obtain

lim
s↘t

Φ
(
s, e(s−t)Ax

)− Φ (s, yt,x,u (s))
s− t

= −
(
(−A)β DxΦ (t, x) | Bu− F (t,Λx)

)
X
. (4.16)

Moreover

Φ (s, x) − Φ
(
s, e(s−t)Ax

)
s− t

=
(
DxΦ (s, η (s)) | x− e(s−t)Ax

s− t

)
X

, (4.17)

where

η (s) = λ (s) e(s−t)Ax+ (1 − λ (s))x, (4.18)
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for a fonction λ : [t, T ] → ]0, 1[ . We remark that η (s) ∈ D((−A)
1
2 ) as x ∈ D((−A)

1
2 ). Thus DxΦ (s, η (s)) ∈

D((−A)
1
2 ) due to (γ) in the definition of C1

A (]0, T [×X) . The right hand side of (4.17) can be written as follows(
DxΦ (s, η (s)) | −1

s− t

∫ s−t

0

AerAxdr
)

X

=
1

s− t

∫ s−t

0

(
(−A)

1
2 DxΦ (s, η (s)) | (−A)

1
2 erAx

)
X

dr

→
(
(−A)

1
2 DxΦ (t, x) | (−A)

1
2 x
)

X
when s↘ t, (4.19)

because the mapping (s, x) �→ DxΦ (s, x) is continuous from [0, T ]×D((−A)
1
2 ) intoD((−A)

1
2 ). Hence with (4.10),

(4.11), (4.12), (4.16) and (4.19), we conclude that

0 ≥ −∂Φ
∂t

(t, x) − L (t, x, u) +
(
(−A)β

DxΦ (t, x) | F (t,Λx)
)

X

−
(
(−A)β

DxΦ (t, x) | Bu
)

X
+
(
(−A)

1
2 DxΦ (t, x) | (−A)

1
2 x
)

X
.

By passing to the supremum with respect to u ∈ U we have:

0 ≥ −∂Φ
∂t

(t, x) +
(
(−A)

1
2 DxΦ (t, x) | (−A)

1
2 x
)

X

+
(
(−A)β

DxΦ (t, x) | F (t,Λx)
)

X
+H

(
t, x (−A)β

DxΦ (t, x)
)
.

Thus the condition (α1) in the definition of subsolutions of equation (1.1) is satisfied.
Step 2. Let Φ be in C1

A (]0, T [×X) , and (t, x) ∈ ]0, T [×D((−A)
1
2 )∩argmin (v − Φ) . For all u (·) ∈ M(0, T ;U)

we have
v (t, x) − v (s, yt,x,u (s)) ≤ Φ (t, x) − Φ (s, yt,x,u (s)) . (4.20)

Thanks to the dynamic programming principle, for all ε > 0, there exists a control uε (·), ε−optimal, such that

ε (s− t) + v (t, x) ≥
∫ s

t

L (r, yt,x,uε (r) , uε (r)) dr + v (s, yt,x,uε (s)) . (4.21)

Setting u = uε in (4.20), and substracting (4.21), we obtain:

Φ (t, x) − Φ (s, yt,x,uε (s)) + ε (s− t) −
∫ s

t

L (r, yt,x,uε (r) , uε (r)) dr ≥ 0,

that is:
Φ (t, x) − Φ (s, yt,x,uε (s))

s− t
+ ε− 1

s− t

∫ s

t

L (r, yt,x,uε (r) , uε (r)) dr ≥ 0. (4.22)

There exist a function η1 : [0, T − t] �→ R, a function λ2 : [t, T ] �→ [0, 1], and a function λ3 : [t, T ] �→ [0, 1]
such that

Φ (t, x) − Φ (s, yt,x,uε (s))
s− t

=
Φ (t, x) − Φ (s, x)

s− t
+

Φ (s, x) − Φ
(
s, e(s−t)Ax

)
s− t

+
Φ
(
s, e(s−t)Ax

)− Φ (s, yt,x,uε (s))
s− t

= −∂Φ
∂t

(t, x) + η1 (s− t) +
(
DxΦ (s, η2 (s)) | x− e(s−t)Ax

s− t

)
X

+
1

s− t

(
DxΦ

(
s, e(s−t)Ax

) | e(s−t)Ax− yt,x,uε (s)
)

X
(4.23)

+
1

s− t

(
DxΦ (s, η3(s)) −DxΦ

(
s, e(s−t)Ax

) | e(s−t)Ax− yt,x,uε (s)
)

X
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where
η1 (s− t) → 0 when s↘ t , η2(s) = λ2(s)e(s−t)Ax+ (1 − λ2(s))x ,

η3(s) = λ3(s)e(s−t)Ax+ (1 − λ3(s))yt,x,uε(s) .
As in (4.14) we have

1
s− t

∣∣∣(DxΦ(s, η3 (s)) −DxΦ
(
s, e(s−t)Ax

) | e(s−t)Ax− yt,x,uε (s)
)

X

∣∣∣ ≤ C1(β)KΦ |s− t|1−2β → 0 when s↘ t.

In (4.19) we have shown that(
DxΦ (s, η2 (s)) | x− e(s−t)Ax

s− t

)
X

=
(
(−A)

1
2 DxΦ (t, x) | (−A)

1
2 x
)

X
+ η4(s− t),

where η4 (s− t) → 0 when s↘ t.
Due to the definition of H , we can use the inequality

−
(
(−A)β e(s−r)ADxΦ

(
s, e(s−t)Ax

)
| Buε (r)

)
− L (r, yt,x,uε (r) , uε (r))

≤ H
(
r, yt,x,uε (r) , (−A)β e(s−r)ADxΦ

(
s, e(s−t)Ax

))
.

Thus

1
s− t

(
DxΦ

(
s, e(s−t)Ax

) | e(s−t)Ax− yt,x,uε (s)
)

=
(
DxΦ

(
s, e(s−t)Ax

) | −1
s− t

∫ s

t

(−A)β e(s−r)A [Buε (r) − F (r,Λyt,x,uε (r))] dr
)

≤ 1
s− t

∫ s

t

[
H
(
r, yt,x,uε (r) , (−A)β e(s−r)ADxΦ

(
s, e(s−t)Ax

))
+ L (r, yt,x,uε (r) , uε (r))

]
dr

+
1

s− t

∫ s

t

(
(−A)β e(s−r)ADxΦ

(
s, e(s−t)Ax

) | F (r,Λyt,x,uε (r))
)

dr.

By collecting together all the terms in (4.22), we obtain

ε+
1

s− t

∫ s

t

H
(
r, yt,x,uε (r) , (−A)β e(s−r)ADxΦ

(
s, e(s−t)Ax

))
(4.24)

−∂Φ
∂t

(t, x) + η1 (s− t) + η4 (s− t) +
(
(−A)

1
2 DxΦ (t, x) | (−A)

1
2 x
)

X

+
1

s− t

∫ s

t

(
(−A)β e(s−r)ADxΦ

(
s, e(s−t)Ax

) | F (r,Λyt,x,uε (r))
)

X

≥ −C1(β)KΦ |s− t|1−2β
.

(If β = 1
2 , we have to replace the last line by −C1

(
β, |x|

D((−A)
1
2 )

)
KΦ |s− t|1−2β0 .) With Proposition 2.2 we

have
Λyt,x,uε (r) → Λx uniformly w.r. to uε when r → t .

By passing to the limit in the previous inequality when s→ t, and after when ε→ 0, we obtain:

0 ≤ −∂Φ
∂t

(t, x) +
(
(−A)

1
2 DxΦ (t, x) | (−A)

1
2 x
)

X

+H
(
t, x (−A)β

DxΦ (t, x)
)

+
(
(−A)β

DxΦ (t, x) | F (t,Λx)
)

X
.



HAMILTON-JACOBI EQUATIONS FOR CONTROL PROBLEMS OF PARABOLIC EQUATIONS 339

Step 3. Let us show that
lim
t↘0

sup
x∈X

∣∣v (T − t, x) − g
(
etAx

)∣∣ = 0.

From the definition of v(T − t, x), it follows that

v (T − t, x) − g
(
etAx

) ≤ ∫ T

T−t

L (r, yT−t,x,u (r) , u (r)) dr +Kg

∣∣yT−t,x,u (T ) − etAx
∣∣
X
,

for all u ∈ M(T − t, T ;U). Due to estimate (2.19), there exists a constant C independent of t and u such that∣∣yT−t,x,u (T ) − etAx
∣∣ ≤ Ct1−β .

Then we have

v (T − t, x) − g
(
etAx

) ≤ ∫ T

T−t

L (r, yT−t,x,u (r) , u (r)) dr +KgCt
1−β

for all u (·) ∈ M(T − t, T ;U). Since L is bounded we obtain

lim
t↘0

sup
x∈X

[
v (T − t, x) − g

(
etAx

)] ≤ 0. (4.25)

For the opposite inequality, we choose a control uδ (·) ∈ M(T − t, T ;U), δ-optimal, such that

v (T − t, x) + δ >

∫ T

T−t

L (r, yδ (r) , uδ (r)) dr + g (yδ (T )) ,

where yδ = yT−t,x,uδ
. As L is bounded, for t small enough we have

v (T − t, x) + δ > −δ + g (yδ (T )) .

We can write
g (yδ (T )) ≥ − ∣∣g (yδ (T )) − g

(
etAx

)∣∣+ g
(
etAx

)
,

and
v (T − t, x) − g

(
etAx

)
> −2δ −Kg

∣∣yδ (T )− etAx
∣∣
X

≥ −2δ −KgCt
1−β .

Hence
lim
t↘0

sup
x∈X

[
v (T − t, x) − g

(
etAx

)] ≥ −2δ. (4.26)

We can pass to the limit when δ tends to zero, and we have shown that conditions (β1) and (β2) of Definition 3.2
are satisfied by v. �

5. Examples of optimal control problems

In this section we study the value function of problems of the form

(P̂t,x) min
{
Ĵ (t, u, y) | u ∈ M(t, T ;U) and (y, u) is solution of equation (5.1)

}
.

where
y′ = Ay + (−A)β [

Bu− F̂ (·,Λy) ] in (t, T ), y (t) = x, (5.1)
and

Ĵ(t, y, u) =
∫ T

t

L̂(r, y(r), u(r)) dr + ĝ(y(T )).
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We do not assume that F̂ , L̂ and ĝ obeys the assumptions of Section 2. But we consider examples such that,
for all u ∈ M(t, T ;U), and all x ∈ Y – where Y is a suitably chosen Banach space – equation (5.1) admits a
unique solution which satisfies

‖y‖L∞
w (0,T ;Y ) ≤ R(M0, T ) and ‖Λy‖L∞

w (0,T ;Y0) ≤ R(M0, T ) if |x|Y ≤M0,

for all M0 > 0, where R(M0, T ) is a function of M0 and T , Y0 is a subspace of X0 such that Λ is continuous from
D((−A)α) ∩ Y into Y0. We denote by v̂(t, x) the value function of problem (P̂t,x). We introduce a projection
operator PM0 from X on the ball BY (R(M0, T )) in Y , centered at the origin and with radius R(M0, T ), and
a projection operator P 0

M0
from X0 on the ball BY0(R(M0, T )) in Y0, centered at the origin and with radius

R(M0, T ). We set

FM0(·,Λy) = F̂ (·, P 0
M0

Λy), LM0(r, y, u) = L̂(r, PM0y, u), and gM0(y) = ĝ(PM0y).

In the different examples we verify that FM0 , LM0 , and gM0 obeys the assumptions of Section 2 (with constants
depending on M0). We denote by (PM0

t,x ) the problem (Pt,x) of Section 1, corresponding to FM0 , LM0 , and gM0 ,
and by vM0(t, x) its value function. We verify that

v̂(t, x) = vM0(t, x) for all x ∈ Y such that |x|Y ≤M0.

Due to Theorems 3.5 and 4.5, we know that vM0 is the unique viscosity solution of equation (1.1) corresponding
to FM0 , LM0 , and gM0 . Due to the definition of problem (PM0

t,x ), it is obvious that

vM1(t, x) = vM0(t, x) for all x ∈ Y such that |x|Y ≤M0,

if M1 ≥ M0. Thus, to characterize v̂(t, x) when x ∈ Y , it is enough to characterize vM0 (t, x) for all M0.
And vM0(t, x) is characterized as the unique viscosity solution of equation (1.1) corresponding to FM0 , LM0 ,
and gM0 .

In the following Ω is a bounded open subset in R
N , with a regular boundary Γ, and we set Ωt,T =]t, T [×Ω

and Σt,T =]t, T [×Γ.

5.1. State equation of example 1

Consider the equation

∂y

∂t
− ∆y + y = f in Ωt,T ,

∂y

∂n
+ ĥ(y) = u on Σt,T , y(t) = x0 in Ω, (5.2)

where ĥ is a regular nondecreasing function satisfying h(y) = 0 (e.g. the well known ‘Stefan-Boltzmann radiation
condition’ corresponds to ĥ (y) = kr |y|3 y + kcy, kr is the radiation coefficient and kc the convection coefficient
[23]). We make the following assumptions.

(A1) U is a closed bounded convex and nonempty subset in Lq(Γ) for some q ≥ 2, and it obeys the condition

q > N − 1, |u|L2(Γ) ≤MU and |u|Lq(Γ) ≤MU for all u ∈ U.

(A2) The function f belongs to C0,η1([0, T ];Lp(Ω)) for some p ≥ 2, and it obeys the condition

p ≥ N/2, ‖f‖C([0,T ];Lp(Ω)) ≤Mf , and ‖f‖C([0,T ];L2(Ω)) ≤Mf .
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Let be X = L2 (Ω), XΓ = L2 (Γ), X0 = L2(Γ), and let us define the unbounded operator A in X by

D (A) =
{
x ∈ H2 (Ω) | ∂x

∂n
= 0 on Γ

}
and Ax = ∆x− x for all x ∈ D (A) .

Assumption (i) of Section 2 is clearly satisfied. We define the Neumann operator N ∈ L(XΓ;X) by Nu = z,
where z is the solution of the boundary value problem

−∆z + z = 0 in Ω,
∂z

∂n
= u on Γ.

The operator N is also bounded from XΓ into H3/2(Ω), and from XΓ into D((−A)α) for all 0 < α < 3
4 (see

[21]). With the extrapolation method, the semigroup (etA)t≥0 can be extended to (D(A∗))′ = (D(A))′. Denoting
by (etÂ)t≥0 the corresponding semigroup, (Â,D(Â)), its infinitesimal generator, is an unbounded operator in
(D(A∗))′ with domain D(Â) = X . Thus the operator (−Â)N is bounded from XΓ into (D(A∗))′. The operator
Λ is the trace operator. It satisfies assumption (iii) of Section 2 for all α ∈]14 ,

1
2 [. It is well known – see e.g. [4]

– that equation (5.2) can be rewritten in the form

y′ = Ây + f + (−Â)N
[
u− ĥ (Λy)

]
in (t, T ), y (t) = x0. (5.3)

We define the operator B by B = (−Â)1−βN for some β given fixed in ]1/4, 1/2[. Due to the regularizing
properties of N , mentioned above, we can also verify that B ∈ L(XΓ, X). We set F̂ (t, y) = (−A)−βf(t)+Bĥ(y).
Equation (5.3) is nothing else than

y′ = Ây + (−Â)β
[
Bu− F̂ (Λy)

]
in (t, T ), y (t) = x0. (5.4)

As in [24], Theorem 3.1, we can prove the following result.

Theorem 5.1. For all x0 ∈ L∞(Ω) and all u ∈ M(t, T ;U), equation (5.2) admits a unique weak solution in
C([t, T ];L2(Ω)). This solution belongs to Cb(]t, T ] × Ω) and it satisfies the estimate

‖y‖L∞(Ωt,T ) + ‖y‖L∞(Σt,T ) ≤ |x0|L∞(Ω) + C(p, p̃, q, q̃,Ω, T )
(
‖f‖Lp̃(t,T ;Lp(Ω)) + ‖u‖Lq̃(t,T ;Lq(Γ))

)
, (5.5)

where the exponents 1 < p̃ <∞ and 1 < q̃ <∞ obeys

N

2p
+

1
p̃
< 1 and

N − 1
2q

+
1
q̃
<

1
2
,

and the constant C(p, p̃, q, q̃,Ω, T ) depends on N , p, p̃, q, q̃, Ω, T , but is independent of t.

From Theorem 5.1, and assumptions (A1) and (A2), we deduce

‖y‖L∞(Ωt,T ) ≤ |x0|L∞(Ω) + C(p, p̃, q, q̃,Ω, T )
(
(T − t)1/p̃Mf + (T − t)1/q̃MU

)
.

5.2. Setting of the control problem for example 1

For all t ∈ [0, T [, and all x0 ∈ L∞(Ω), we study the following control problem

(P̂t,x0) min
{
Ĵ (t, u, y) | u ∈ M(t, T ;U) and (y, u) is solution of equation (5.2)

}
,
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where the cost function Ĵ is of the form

Ĵ(t, u, y) =
∫ T

t

∫
Ω

Ĝ(s, ξ, y(s, ξ))dξds+
∫ T

t

∫
Γ

K̂(s, σ, u(s, σ))dσds +
∫

Ω

k̂(ξ, y(T, ξ))dξ. (5.6)

We make the following assumptions on the data of problem (P̂t,x0).

(A3) For all (t, y) ∈ [0, T ]× R, Ĝ (t, ·, y) is measurable in Ω. For almost all ξ ∈ Ω, Ĝ (·, ξ, ·) is continuous in
[0, T ]× R, and we have the estimates:

CĜ ≤ Ĝ (t, ξ, y) ≤ Ĝ1 (ξ) × η (|y|) ,∣∣∣Ĝ (t, ξ, y) − Ĝ (s, ξ, z)
∣∣∣ ≤ Ĝ2(ξ)

(
η(|y|) + η(|z|))( |t− s|η2 + |y − z|

)
,

where Ĝ1 ∈ L1 (Ω), Ĝ2 ∈ L2 (Ω), and η an increasing function from R
+ in R

+.

(A4) For all (t, u) ∈ R
2, K̂ (t, ·, u) is measurable in Γ. For a.e. (t, σ) ∈ Σ, K̂ (t, σ, ·) is convex. For a.e. σ ∈ Γ,

K̂ (·, σ, ·) is continuous in R
2 and we have the estimates:

CK̂ ≤ K̂ (t, σ, u) ≤ K̂1 (σ) + c0 |u|q and
∣∣∣K̂ (t, σ, u) − K̂ (s, σ, u)

∣∣∣ ≤ (K̂1 (σ) + c0 |u|q
)
|t− s|η2 ,

where K̂1 ∈ L1 (Γ).
(A5) For all y ∈ R, k̂ (·, y) is measurable in Ω. For a.e. ξ ∈ Ω, k̂ (ξ, ·) is continuous in R and we have the

estimates:

Ck̂ ≤ k̂ (ξ, y) ≤ k̂1 (ξ) × η (|y|) and
∣∣∣k̂ (ξ, y) − k̂ (ξ, z)

∣∣∣ ≤ k̂2(ξ)
(
η(|y|) + η(|z|))|y − z|,

where k̂1 ∈ L1 (Ω), k̂2 ∈ L2 (Ω), and η as in (A1) .

The value function of problem (P̂t,x0) is defined by

v̂(t, x0) = inf
M(t,T ;U)

Ĵ(t, ŷt,x0,u, u), (5.7)

where ŷt,x0,u is the solution of equation (5.2).

5.3. Existence of solution to (P̂t,x0)

We have the following theorem [23, Th. 6.1].

Theorem 5.2. For all t ∈ [0, T [, all x0 ∈ L∞(Ω), problem (P̂t,x0) admits at least one solution.

By setting

L̂(t, y, u) =
∫

Ω

Ĝ(t, ξ, y(ξ))dξ +
∫

Γ

K̂(t, σ, u(σ))dσ, ĝ(y) =
∫

Ω

k(ξ, y(ξ))dξ,

we notice that problem (P̂t,x0) is an optimal control problem of the form of problems studied in Section 4.
However L̂, ĝ, and F̂ do not satisfy assumptions of Section 2. Thus we cannot apply Theorem 4.5 to the
value function v̂, and we cannot claim that v̂ is the viscosity solution to Hamilton-Jacobi-Bellman equation
corresponding to L̂, ĝ, and F̂ . To overcome this drawback, we introduce in the next section a family of problems
whose value function is locally equal to v̂ and is the unique viscosity solution to a Hamilton-Jacobi-Bellman
equation.
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5.4. Definition of a problem (Pt,x0) equivalent to (P̂t,x0)

For all M0 > 0, we set R(M0, T ) = M0 + C(p, p̃, q, q̃,Ω, T )(T 1/q̃MU + T 1/p̃Mf), where C(p, p̃, q, q̃,Ω, T ) is
the constant appearing in (5.5). We set

TR(M0,T )(y) = min
(
R(M0, T ),max(−R(M0, T ), y)

)
for all y ∈ R.

In this example Y = L∞(Ω), Y0 = L∞(Γ), PM0 (respectively P 0
M0

) is the projection operator from L2(Ω) (re-
spectively L2(Γ)) into the ball in L∞(Ω) (respectively L∞(Γ)), centered at the origin and with radius R(M0, T ),
defined by

PM0y(ξ) = TR(M0,T )(y(ξ)) for a.e. ξ ∈ Ω (resp. P 0
M0
y(ξ) = TR(M0,T )(y(ξ)) for a.e. ξ ∈ Γ).

We set
G(t, ξ, y(ξ)) = Ĝ(t, ξ, PM0y(ξ)) and k (ξ, y(ξ)) = k̂(ξ, PM0y(ξ)) for all y ∈ L2(Ω),

and h (y( ξ)) = ĥ(P 0
M0
y(ξ))) for all y ∈ L2(Γ). The mappings h, G, and k clearly depend on M0. We have not

noticed this dependence in order not to load the notation. We set

L (t, y, u) =
∫

Ω

G (t, ξ, y (ξ)) dξ +
∫

Γ

K̂ (t, σ, u(σ)) dσ, g (y) =
∫

Ω

k(ξ, y(ξ))dξ, and F (y) = h(y).

Proposition 5.3. The mappings L, g and F satisfy the assumptions of Section 2.

Proof. With (A3) , (A4), and the definition of G, for all (t, y, u) ∈ [0, T ]× L2 (Ω) × L2 (Γ), we have:

|L (t, y, u)| ≤
∫

Ω

|G (t, ξ, y(ξ))| dξ +
∫

Γ

∣∣∣K̂ (t, σ, u(σ))
∣∣∣dσ

≤ η(R(M0, T ))|Ĝ1|L1(Ω) + |K̂1|L1(Γ) + c0M
q
U = ML .

With (A3) and Cauchy-Schwarz inequality, we have

|L (t, y, u) − L (s, z, u)| =
∣∣∣∣∫

Ω

(G (s, ξ, y(ξ)) −G (t, ξ, z(ξ))) dξ
∣∣∣∣+ ∣∣∣∣∫

Γ

(
K̂ (t, σ, u(σ)) dσ − K̂ (s, σ, u(σ))

)
dσ
∣∣∣∣

≤ 2η(R(M0, T ))
(|Ĝ2|L2(Ω) + |Ĝ2|L1(Ω)

)(|y − z|L2(Ω) + |t− s|η2
)

+
(|K̂1|L1(Γ) + c0M

q
U

)|t− s|η2 ,

that is
|L (t, y, u) − L (s, z, u)| ≤ KL

(|y − z|L2(Ω) + |t− s|η2
)
.

The estimates for g can be obtained in a similar way with (A5). The estimates for F directly follows from the
definition of h. �

For all t ∈ [0, T [, and all x0 ∈ L2(Ω), we consider the optimal control problem

(Pt,x0) min
{
J (t, u, y) | u ∈ M(t, T ;U) and (y, u) is solution of equation (5.8)

}
,

where the cost function J is defined by

J(t, u, y) =
∫ T

t

L (s, y(s), u(s)) ds+ g(y(T )) ,

and the state equation is

∂y

∂t
− ∆y + y = f in Qt,T ,

∂y

∂n
+ h(Λy) = u on Σt,T , y(t) = x0 in Ω. (5.8)
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Equation (5.8) can be written in the form

y′ = Ây + (−Â)β [Bu− F (Λy)] in (t, T ), y (t) = x0,

where F̂ (t, y) = (−A)−βf(t) + Bh(y) satisfies assumption (iv) of Section 2. The value function of problem
(Pt,x0) is defined by

v(t, x0) = inf
u∈M(t,T ;U)

J(t, yt,x0,u, u) , (5.9)

where yt,x0,u is solution of equation (5.8). From Theorems 3.5 and 4.5, we deduce that v is the unique viscosity
solution of equation (1.1) corresponding to F , L, and g.

Theorem 5.4. Let t be in [0, T [ and assume that |x0|L∞(Ω) ≤M0. A pair (y, u) is a solution of problem (P̂t,x0)
if and only if it is a solution of (Pt,x0).

Proof. If |x0|L∞(Ω) ≤ M0, with Theorem 5.1 we can easily verify that, for all u ∈ M(t, T ;U), the solution
ŷt,x0,u of equation (5.2) obeys ‖ŷt,x0,u‖L∞(Ωt,T ) ≤ R(M0, T ). Thus F̂ (ŷt,x0,u) = F (ŷt,x0,u), and ŷt,x0,u is also
the solution of (5.8). That is ŷt,x0,u = yt,x0,u. Thus we do not distinguish ŷt,x0,u and yt,x0,u up to the end of
the proof. Assume that (yt,x0,ū, ū) is a solution of (P̂t,x0), then for all u ∈ M(t, T ;U), we have

J(t, yt,x0,ū, ū) = Ĵ(t, yt,x0,ū, ū) ≤ Ĵ(t, yt,x0,u, u) = J(t, yt,x0,u, u),

that is (yt,x0,ū, ū) is a solution of (Pt,x0). We prove that any solution of (Pt,x0) is a solution of (P̂t,x0) in a
similar way. �

Corollary 5.5. For all t ∈ [0, T [ and all x0 satisfying |x0|L∞(Ω) ≤M0, we have v̂(t, x0) = v(t, x0).

5.5. State equation of example 2

Consider the following Burgers type equation in 2-D:

∂y

∂t
− ∆y + ∂x1(y

2) = uχω in Ωt,T , y = 0 on Σt,T , y(t) = x0 in Ω. (5.10)

In this example, ω is an open subset in Ω, χω is the characteristic function of ω, and (A1) is replaced by
(A′

1) U is a closed bounded convex and nonempty subset in L10(ω) and it obeys the condition

|u|L10(ω) ≤MU for all u ∈ U.

Set X = L2 (Ω), XΓ = L2 (ω), X0 = L2 (Ω), α = 0, and let Λ be the identity in X . We now define the
unbounded operator A in X by

D (A) = H2 (Ω) ∩H1
0 (Ω) and Ax = ∆x for all x ∈ D (A) .

Equation (5.10) can be rewritten in the form

y′ = Ây + (−A)
1
2

[
Bu− F̂ (Λy)

]
in (t, T ), y (t) = x0, (5.11)

where
F̂ (y) = 2(−A)−

1
2
(
y∂x1y

)
and Bu = (−A)−

1
2 (uχω) .

In this example we take β = 1
2 .
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Theorem 5.6. For all x0 ∈ L∞(Ω) and all u ∈ M(t, T ;U), equation (5.10) admits a unique weak solution in
C([t, T ];L2(Ω)). This solution belongs to L∞(]t, T [×Ω) and it satisfies the estimate

‖y‖L∞(Ωt,T ) ≤ C(Ω, T )(|x0|L∞(Ω) + |x0|3L∞(Ω) + ‖u‖L10((t,T )×ω) + ‖u‖3
L10((t,T )×ω)

)
. (5.12)

Proof. It is well known that equation (5.10) admits a unique weak solution in C([t, T ];L2(Ω))∩L2(t, T ;H1
0 (Ω))

and that
‖y‖C([t,T ];L2(Ω)) + ‖y‖L2(t,T ;H1

0 (Ω)) ≤ 2|x0|L2(Ω) + C(Ω)‖u‖L2((t,T )×ω).

If we multiply equation (5.10) by |y|2p−2y, and if we integrate over (t, τ) × Ω, after integration by parts, we
formally obtain:

1
2p

∫
Ω

|y(τ)|2p +
∫ τ

t

∫
Ω

(2p− 1)|∇y|2|y|2p−2 =
1
2p

∫
Ω

|x0|2p +
∫ τ

t

∫
ω

u|y|2p−2y.

This identity leads to the estimate:

‖y‖L∞(t,T ;L2p(Ω)) ≤ C(Ω, p)
(|x0|L2p(Ω) + ‖u‖L2p((t,T )×ω)

)
for all 1 ≤ p ≤ 5.

This formal estimate can be justified (see [22], Th. 5). Thus we have

‖y2‖L∞(t,T ;Lp(Ω)) ≤ C
(|x0|2L2p(Ω) + ‖u‖2

L2p((t,T )×ω)

)
.

Passing the term ∂x1(y2) in the right hand side of the equation and using regularity results for the heat equation,
we obtain:

‖y‖Lp̃(t,T ;W 1,p(Ω)) ≤ C1(Ω, p, p̃)
(|x0|Lp(Ω) + ‖u‖Lp((t,T )×ω) + ‖y2‖Lp̃(t,T ;Lp(Ω))

)
≤ C2(Ω, p, p̃)

(|x0|Lp(Ω) + ‖u‖Lp((t,T )×ω) + |x0|2L2p(Ω) + ‖u‖2
L2p((t,T )×ω)

)
,

for all 1 < p̃ < 2 and all 1 ≤ p ≤ 5. In addition we have:

‖y ∂x1y‖Lp̃(t,T ;Lp/2(Ω)) ≤ ‖y‖L∞(t,T ;Lp(Ω))‖∂x1y‖Lp̃(t,T ;Lp(Ω)) .

Using this estimate and regularity results for the heat equation we can write:

‖y‖L∞(Ωt,T ) ≤ |x0|L∞(Ω) + C(Ω, p, p̃)
(‖u‖Lp((t,T )×ω) + ‖y ∂x1y‖Lp̃(t,T ;Lp/2(Ω))

)
,

provided that 2
p + 1

p̃ < 1. Choosing p = 5, p̃ = 15
8 , and combining the previous estimates we obtain the desired

result. �

From Theorem 5.6, and assumption (A′
1), we deduce

‖y‖L∞(Ωt,T ) ≤ C(Ω, T )
(
|x0|L∞(Ω) + |x0|3L∞(Ω) + (T − t)1/10MU + (T − t)3/10M3

U

)
.

5.6. Setting of the control problem for example 2

For all t ∈ [0, T [, and all x0 ∈ L∞(Ω), we study the following control problem

(P̂t,x0) min
{
Ĵ (t, u, y) | u ∈ M(t, T ;U) and (y, u) is solution of equation (5.10)

}
,
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where the cost function Ĵ is

Ĵ(t, u, y) =
∫ T

t

∫
Ω

Ĝ(s, ξ, y(s, ξ))dξds +
∫ T

t

∫
ω

K̂(s, ξ, u(s, ξ))dξds +
∫

Ω

k̂(ξ, y(T, ξ))dξ.

We assume that Ĝ obeys (A3), k̂ obeys (A5), and that K̂ obeys

(A′
4) For all (t, u) ∈ R

2, K̂ (t, ·, u) is measurable in ω. For a.e. (t, ξ) ∈ R × ω, K̂ (t, ξ, ·) is convex. For
a.e. ξ ∈ ω, K̂ (·, ξ, ·) is continuous in R

2 and we have the estimates:

CK̂ ≤ K̂ (t, ξ, u) ≤ K̂1 (ξ) + c0 |u|q and
∣∣∣K̂ (t, ξ, u) − K̂ (s, ξ, u)

∣∣∣ ≤ (K̂1 (ξ) + c0 |u|q
)
|t− s|η2 ,

where q = 10, K̂1 ∈ L1 (ω).
For all M0 > 0, we set

R(M0, T ) = C(Ω, T )
(
M0 +M3

0 + T 1/10MU + T 3/10M3
U

)
,

and we define the truncated problem in a similar way as in example 1, with obvious modifications. More
precisely, Y , PM0 , G, k, and g are defined as in Example 1,

L (t, y, u) =
∫

Ω

G (t, ξ, y (ξ)) dξ +
∫

ω

K̂ (t, ξ, u(ξ)) dξ, and F (y) = 2(−A)−
1
2
(
PM0y ∂x1PM0y

)
,

for all y ∈ L2(Ω). We can take any β0 in (0, 1/2). For example setting β0 = 1/4, we have

|F (y)|
D((−A)

1
4 )

≤ C|(PM0y
)2|

D((−A)
1
4 )

≤ C|y|2
D((−A)

1
2 )

for all y ∈ D((−A)
1
2 ) = H1

0 (Ω) ,

and the additional condition in assumption (iv) when β = 1
2 is satisfied. The other conditions in assumption (iv)

are also satisfied. We can define (Pt,x0) similarly as in Example 1. In particular the state equation for (Pt,x0) is

y′ = Ay + (−A)
1
2 [Bu− F (Λy)] in (t, T ), y (t) = x0.

Denoting by v̂(t, x0) the value function of problem (P̂t,x0), and by v(t, x0) the value function of problem (Pt,x0),
as in example 1, we can prove the following Theorem.

Theorem 5.7. The value function v(t, x0) is the unique viscosity solution of the Hamilton-Jacobi-Bellman
equation (1.1) associated with (Pt,x0). For all t ∈ [0, T [ and all x0 ∈ X satisfying |x0|L∞(Ω) ≤ M0, we have
v̂(t, x0) = v(t, x0).

5.7. Example 3

We consider the same equation as in Example 2, and now (A1) is replaced by
(A′′

1 ) U is a closed bounded convex and nonempty subset in L8(ω) and it obeys the condition

|u|L8(ω) ≤MU for all u ∈ U.

Set X = L2 (Ω), XΓ = L2 (ω), X0 = H
3/4
0 (Ω), α = 3

8 , and let Λ be the identity in X0 (thus Λ is considered as an
unbounded operator in X). We define the unbounded operator (A,D(A)) in X as in Example 2. Equation (5.10)
can be rewritten in the form

y′ = Ay + (−A)
ε′
2 [Bu− F̂ (y)] in (t, T ), y (t) = x0, (5.13)



HAMILTON-JACOBI EQUATIONS FOR CONTROL PROBLEMS OF PARABOLIC EQUATIONS 347

where
F̂ (y) = 2(−A)−

ε′
2
(
y∂x1y

)
and Bu = (−A)−

ε′
2 (uχω) , with 0 ≤ ε′ ≤ 1.

In this example, we take β = ε′
2 (below we choose ε′ = 5/8).

Theorem 5.8. For all x0 ∈ H
3/4
0 (Ω) and all u ∈ M(t, T ;U), equation (5.10) admits a unique weak solution in

C([t, T ];H3/4
0 (Ω)), and it satisfies the estimate

‖y‖
C([t,T ];H

3/4
0 (Ω))

≤ C(Ω, T )(|x0|H3/4
0 (Ω)

+ |x0|3
H

3/4
0 (Ω)

+ ‖u‖L8((t,T )×ω) + ‖u‖3
L8((t,T )×ω)

)
. (5.14)

Proof. Observe that H3/4
0 (Ω) ↪→ L8(Ω). As in Example 2, we have

‖y2‖L∞(t,T ;Lp(Ω)) ≤ C
(|x0|2L2p(Ω) + ‖u‖2

L2p((t,T )×ω)

)
,

‖y‖Lp̃(t,T ;W 1,p(Ω)) ≤ C2(Ω, p, p̃)
(|x0|Lp(Ω) + ‖u‖L2p((t,T )×ω) + |x0|2L2p(Ω) + ‖u‖2

L2p((t,T )×ω)

)
,

for all 1 < p̃ < 2 and all 1 < p ≤ 4, and

‖y ∂x1y‖Lp̃(t,T ;Lp/2(Ω)) ≤ ‖y‖L∞(t,T ;Lp(Ω))‖∂x1y‖Lp̃(t,T ;Lp(Ω)) if in addition 2 ≤ p ≤ 4.

Using this estimate and regularity results for the heat equation we can write:

‖y‖
C([t,T ];H

3/4
0 (Ω))

≤ C(Ω, p̃)
(|x0|H3/4

0 (Ω)
+ ‖u‖L2((t,T )×ω) + ‖y ∂x1y‖Lp̃(t,T ;L2(Ω))

)
, (5.15)

if 1
p̃ <

5
8 . Thus, choosing p = 4, p̃ = 16

9 , and combining the above estimates, we obtain:

‖y‖
C([t,T ];H

3/4
0 (Ω))

≤ C(Ω, T )
(|x0|H3/4

0 (Ω)
+ |x0|3H3/4

0 (Ω)
+ ‖u‖L8((t,T )×ω) + ‖u‖3

L8((t,T )×ω)

)
. (5.16)

�

From Theorem 5.8, and assumptions (A′′
1 ) and (A5), we deduce

‖y‖
C([t,T ];H

3/4
0 (Ω))

≤ C(Ω, T )(|x0|H3/4
0 (Ω)

+ |x0|3H3/4
0 (Ω)

+ (T − t)1/8MU + (T − t)3/8M3
U

)
.

Now we set
R(M0, T ) = C(Ω, T )

(
M0 +M3

0 + T 1/8MU + T 3/8M3
U

)
.

Let us denote by P 0
M0

the orthogonal projection in H
3/4
0 (Ω) on the ball centered at zero and with radius

R(M0, T ). Let us set

F (y) = 2(−A)−
ε′
2
(
P 0

M0
y ∂x1

(
P 0

M0
y
))

for all y ∈ H
3/4
0 (Ω).

Let us show that F is bounded and Lipschitz from H
3/4
0 (Ω) into X . We have

|F (y)|L2(Ω) = 2|P 0
M0
y ∂x1

(
P 0

M0
y
) |H−ε′ (Ω) = 2|P 0

M0
y ∂x1

(
P 0

M0
y
) |

B−ε′
2,2 (Ω)

.

Using the product estimate [25], page 171

Bs1
p1,q1

(Ω) ·Bs2
p2,q2

(Ω) ↪→ Bs1
p,q(Ω),

with
s1 = −ε′ = −5

8
, s2 = ε =

3
4
, p1 =

32
11
, p2 = p = 2, q1 = q2 = q = 2,
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we have
|F (y)|L2(Ω) ≤ C|P 0

M0
y|Bε

2,2(Ω)|∂x1

(
P 0

M0
y
) |

B−ε′
p1,2(Ω)

.

Recall that
Bε

2,2(Ω) = Hε(Ω), B−ε′
2,2 (Ω) = H−ε′

(Ω), and B−ε′
p1,2(Ω) =

(
Bε′

p′
1,2(Ω)

)′
,

where p′1 = p1/(p1 − 1). Moreover

Bε′
p′
1,2(Ω) ↪→ Bε′′

p′
1,p′

1
(Ω) = W ε′′,p′

1(Ω) ↪→ H ε̂(Ω),

for all ε̂ < ε′′ < ε′, and if 2 = 2p′
1

2−(ε′′−ε̂)p′
1
. We choose ε̂ = 1

4 and ε′′ = 9
16 , we have H−ε̂(Ω) ↪→ B−ε′

p1,2(Ω), and we
obtain

|F (y)|L2(Ω) ≤ C|P 0
M0
y|

H
3/4
0 (Ω)

|∂x1

(
P 0

M0
y
) |H−ε̂(Ω) ≤ C|P 0

M0
y|

H
3/4
0 (Ω)

|P 0
M0
y|

H
3/4
0 (Ω)

.

Thus F is bounded from X0 into X . Let us verify that F is Lipschitz. We have

|F (y) − F (z)|L2(Ω) ≤ 2|P 0
M0
y ∂x1

(
P 0

M0
y
)− P 0

M0
z ∂x1

(
P 0

M0
z
) |H−ε′ (Ω)

≤ 2|P 0
M0
y ∂x1

(
P 0

M0
y − P 0

M0
z
) |H−ε′ (Ω) + 2|P 0

M0
z ∂x1

(
P 0

M0
y − P 0

M0
z
) |H−ε′ (Ω)

≤ C
(
|P 0

M0
y|

H
3/4
0 (Ω)

+ |P 0
M0
y|

H
3/4
0 (Ω)

)
|P 0

M0
y − P 0

M0
z|

H
3/4
0 (Ω)

≤ C
(
|P 0

M0
y|

H
3/4
0 (Ω)

+ |P 0
M0
y|

H
3/4
0 (Ω)

)
|y − z|

H
3/4
0 (Ω)

.

To obtain the last inequality we have used the Lipschitz continuity of P 0
M0

from H
3/4
0 (Ω) into itself. We define

(P̂t,x0) as in Example 2, and we assume that Ĝ obeys (A′′
3 ), k̂ obeys (A′′

5), and K̂ obeys (A′′
4 ), where (A′′

3),
(A′′

5 ), and (A′′
4 ) respectively correspond to (A3), (A5), and (A′

4), where η(|y|) = |y|r, 1 ≤ r ≤ 4, Ĝ1 ∈ Lρ1(Ω),
Ĝ2 ∈ Lρ2(Ω), k̂1 ∈ Lρ1(Ω), k̂2 ∈ Lρ2(Ω), and q = 8, with r

8 + 1
ρ1

= 1 and r
8 + 1

ρ2
= 1

2 . We define (P̂t,x0) as in
Example 2. Next we define (Pt,x0) with the state equation

y′ = Ay + (−A)
ε′
2 [Bu− F (Λy)] in (t, T ), y (t) = x0,

and with G, k, g, and L defined as in example 2, but where PM0 is now the projection in L2(Ω) on the ball in
H

3/4
0 (Ω) centered at zero and with radius R(M0, T ). Recall that PM0 is Lipschitz continuous from L2(Ω) into

itself. Since the embedding from H
3/4
0 (Ω) into L8(Ω) is continuous, with assumptions (A′′

3 ), (A′′
5 ), and (A′′

4 ), we
easily verify that assumptions of Section 2 are satisfied by L, g, and F . Denoting by v̂(t, x0) the value function
of problem (P̂t,x0), and by v(t, x0) the value function of problem (Pt,x0), we can prove the following Theorem.

Theorem 5.9. The value function v(t, x0) is the unique viscosity solution of the Hamilton-Jacobi-Bellman
equation (1.1) associated with (Pt,x0). For all t ∈ [0, T [ and all x0 satisfying |x0|H3/4

0 (Ω)
≤ M0, we have

v̂(t, x0) = v(t, x0).
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