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Abstract. This paper studies the attainable set at time T > 0 for the control system

ẏ(t) = f(y(t), u(t)) u(t) ∈ U

showing that, under suitable assumptions on f , such a set satisfies a uniform interior sphere condition.
The interior sphere property is then applied to recover a semiconcavity result for the value function of
time optimal control problems with a general target, and to deduce C1,1-regularity for boundaries of
attainable sets.
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1. Introduction

It is a fact quite commonly accepted that the structure of the attainable set (from 0) at time T of the control
system {

ẏ(t) = f(y(t), u(t)) (t > 0)

u(t) ∈ U a.e.
(1)

should be related to the geometry of the sets {f(x, U)}x∈Rn of all admissible velocities. Obviously, the form
that such a relationship can take varies from problem to problem. For instance, the attainable set — hereafter
denoted by A(T ) — is compact when all the sets f(x, U) are convex and compact (see, e.g., [1]). Moreover, for
linear systems of the form f(x, u) = Mx + Lu, A(T ) is convex for every T . If, in addition, L = I and U is a
convex body with a C1-smooth boundary, then ∂A(T ) is C1-smooth as well, see [5].

This paper is a contribution to the analysis of the attainable sets of nonlinear control systems like (1). In
particular, we are interested in detecting structural properties of the system which ensure that, for T > 0, A(T )
satisfies a uniform interior sphere condition. This last property is important from various points of view. For
example, it gives a generalized upper bound for the boundary curvature of A(T ). Moreover, it can be used to
study the regularity of the Minimum Time function, as we will explain later on.
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In view of our initial remarks, it seems natural to conjecture that, in order for attainable sets to satisfy
an interior sphere condition, the sets f(x, U) should have the same property. In fact, the rigorous statement
and proof of such a conjecture is the main result of this paper, see Theorem 3.5 and Corollary 3.8. It has to
be underlined, however, that the above condition alone for f(x, U) is not enough to obtain our result, since
the C1,1-smoothness of the map x �→ f(x, u) also plays an important role. Indeed, in Section 4 we provide
an example that shows that A(T ) may not have the interior sphere property if x �→ f(x, u) is just Lipschitz
continuous.

An immediate — yet interesting — application of the above structural analysis, is the C1,1-regularity of
∂A(T ), for T > 0 sufficiently small and f(x, U) a-regular, see Corollary 3.12. This result follows from a classical
convexity criterion proved in [18].

Another application of the interior sphere property of attainable sets concerns the regularity of the value
function of time optimal control problems with a general target. In such problems, as well-known, one seeks
to minimize the time needed to steer the trajectory of system (1), with the initial condition y(0) = x, to a
given closed set K ⊂ R

n called the target (see, e.g., [14]). The Minimum Time function VK(x), defined as the
value function of the above problem, turns out to be nonsmooth, and the maximal regularity one may expect
is local semiconcavity in the complement of the target. Indeed, a semiconcavity result for VK is derived in [8]
(see also [7]) assuming that the target satisfies a uniform interior sphere condition, see Section 5.

In this paper, we extend the result of [8] to problems with a general target. Our method is straightforward:
using the connection of the levet set R(K; t) := {x ∈ R

n : VK(x) ≤ t} with the attainable set at time t for
system (1) with f replaced by −f , we can apply Theorem 3.5 to deduce that R(K; t) satisfies a uniform interior
sphere condition. Then, the Minimum Time function with target R(K; t) is semiconcave in the complement
of R(K; t), owing to the result of [8]. Since VK coincides with such a function — up to the constant t — the
semiconcavity of VK follows. We note that the semiconcavity of the value function of certain exit time problems
has recently been obtained by Sinestrari [20] using a completely different approach, see Remark 5.5.

The outline of the paper is as follows. In Section 2 we have collected notations, basic definitions and
preliminary results. In Section 3 we prove the interior sphere property, discussing the assumptions and some
consequences of our results. Section 4 contains our counterexample. Section 5 is devoted to the analysis of the
Minimum Time function.

2. Preliminaries

We denote by 〈·, ·〉 and |·|, respectively, the Euclidean scalar product and norm in R
n. For any n×n matrix M ,

we denote by M� the transpose of M and by ‖M‖ the usual operator norm of M , that is ‖M‖ = sup|x|=1 |Mx|.
For any x ∈ R

n and any r > 0, we set B(x, r) = {y ∈ R
n : |y − x| < r}, and we use the abbreviations

B(r) = B(0, r), B = B(1).
For any subset S ⊂ R

n, we denote by S the closure of S, by Sc = R
n \ S the complement of S, by ∂S the

boundary of S, and by int(S) the interior of S. For any λ > 0 and z ∈ R
n, we set

λS = {x ∈ R
n : x = λy, y ∈ S} , z + S = {x ∈ R

n : x = z + y, y ∈ S}.

So, x + rB and B(x, r) will be equivalent symbols for the ball of radius r centered at x.
A well-known function that will be used in the sequel is the distance from S, that is

dS(x) = inf
y∈S

|y − x| ∀x ∈ R
n.

Another useful function, related to the one above, is the oriented boundary distance function, or, briefly, signed
distance,

bS(x) = dS(x) − dSc(x) ∀x ∈ R
n, (2)

whose properties have been analyzed in several papers (see, e.g., [12]).
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The contingent cone to S at a point x ∈ S is defined by

TS(x) =
{

v ∈ R
n : lim inf

t↓0
dS(x + tv)

t
= 0

}
·

The contingent cone can also be characterized as follows. A vector v ∈ R
n belongs to TS(x) if and only if there

exist sequences {xi} in S and {λi} in R+ such that xi → x , λi ↓ 0, and

xi − x

λi
−→ v. (3)

If S is convex, then TS(x) is the closed cone spanned by S − x. Moreover, v ∈ int(TS(x)) if and only if, for
some r > 0, x+]0, r] B(v, r) ⊂ int(S) (see, e.g., [19]). This fact may be false when S is not convex.

We denote by NS(x) the normal cone to S at a point x ∈ S, defined as

NS(x) = {p ∈ R
n : 〈p, v〉 ≤ 0, ∀v ∈ TS(x)}.

When S is convex, NS(x) coincides with the normal cone of convex analysis.
Let now S be closed, and let r > 0.

Definition 2.1. We say that S satisfies an interior sphere condition of radius r at a point x ∈ ∂S if x belongs
to some closed ball yx + rB ⊂ S. We say that S satisfies an interior sphere condition of radius r, or that S
has the interior r-sphere property, if S satisfies an interior sphere condition of radius r at every point x ∈ ∂S.
Finally, we say that S satisfies a uniform interior sphere condition if S has the interior r-sphere property for
some r > 0.

Notice that, if S satisfies a uniform interior sphere condition, then it cannot possess “corners” pointing outwards
(but it may well have inward pointing corners). In other terms, if S has the interior r-sphere property, then its
“boundary curvature” is bounded above by 1/r. It is also clear that, if S has the interior r-sphere property,
then S also satisfies an interior sphere condition for any smaller radius 0 < r′ < r.

Example 2.2. A typical example of a set satisfying a uniform interior sphere condition is the ellipsoid

EM = {x ∈ R
n : 〈Mx, x〉 ≤ 1}

where M is a positive definite symmetric n×n matrix. Denoting by λmin and λmax the smallest and the largest
eigenvalue of M , respectively, it is easy to show that EM satisfies an interior sphere condition for a suitable
radius r = r(λmin, λmax) > 0. Moreover, r stays bounded away from 0 as long as neither λmin goes to 0 nor
λmax to ∞. �
Our next result provides a necessary condition for a set to satisfy an interior sphere condition, that will be used
in the analysis of the counterexample of Section 4.

Proposition 2.3. Let S be a closed convex subset of R
n and x ∈ ∂S such that S satisfies an interior sphere

condition of radius r > 0 at x. Then, NS(x) is a half-line and, letting p be the outward unit normal to S at x,
we have:

∀y ∈ ∂S : 〈p, x − y〉 ≤ 2r =⇒ 〈p, x − y〉 ≤ 1
2r

|x − y|2. (4)

Proof. By assumption we have that x ∈ Br(yx) ⊂ S for some point yx ∈ S. Then, NS(x) is a closed convex
cone contained in NBr(yx)(x), not reduced to {0}. Thus, NS(x) is a half-line.

Now, to check (4), let y ∈ ∂S be such that 〈p, x − y〉 ≤ 2r. Since x − rp + rB ⊂ S, an elementary geometric
argument (see Fig. 1) shows that a := x − 〈p, x − y〉 p satisfies

|y − a|2 ≥ |u − a|2 = |x − a| |v − a| = 〈p, x − y〉 (2r − 〈p, x − y〉). (5)
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Figure 1. An elementary proof of (5).

Therefore,

|x − y|2 = 〈p, x − y〉2 + |y − a|2 ≥ 2r 〈p, x − y〉
as desired. �

We conclude this section with a brief account of semiconcave functions. A function φ : Ω → R is said to be
semiconcave with linear modulus — or, briefly, semiconcave — in a subset Ω of R

n if there exists a constant
C ∈ R (called a semiconcavity constant) such that x �→ φ(x) − C|x|2 is concave on every convex subset of Ω.
Any semiconcave function in Ω is also locally Lipschitz continuous in Ω, since so are concave functions.

Whenever φ : Ω → R is semiconcave on every compact set Q ⊂ Ω, we say that φ is locally semiconcave in Ω.
Needless to say, in this case the semiconcavity constant CQ may blow up to +∞ as Q approaches the boundary
of Ω.

A function φ is said lo be semiconvex if −φ is semiconcave. It is a fact that φ is both semiconcave and
semiconvex in Ω if and only if φ ∈ C1,1(Ω).

The class of semiconcave functions plays an important role in nonsmooth analysis, control theory, and partial
differential equations, see [9] for a comprehensive exposition of this theory.

3. The interior sphere property of attainable sets

In this section we derive the main results of the paper. The exposition is organized in subsections in order
to achieve a more efficient way of presenting the necessary arguments and computations. First, we present the
standing hypotheses needed in the sequel, describe some of their consequences, and recall classical results for
later use. In Section 3.2, we state and prove our main results, for which we have to introduce an additional
assumption that we discuss later, in Section 3.3. Finally, in Section 3.4, we apply the previous theory to obtain
a regularity result for the boundaries of attainable sets.

3.1. Set-up

Let a compact set U ⊂ R
m , m ≥ 1, and a map f : R

n × U → R
n be given. The set

F (x) := f(x, U)

will be referred to as the set of admissible velocities at x ∈ R
n. The standing hypotheses of this paper are the

following.
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Assumptions (A):

(A0) F (x) is convex for every x ∈ R
n;

(A1) f is continuous and ∃L0 > 0 such that

|f(x, u) − f(y, u)| ≤ L0|x − y| ∀x, y ∈ R
n , ∀u ∈ U ; (6)

(A2) f(·, u) is differentiable for every u ∈ U , and ∃ L1 > 0 such that

‖Dxf(x, u) − Dxf(y, u)‖ ≤ L1|x − y| ∀x, y ∈ R
n , ∀u ∈ U , (7)

where Dxf denotes the Jacobian matrix of f(x, u) with respect to x;
(A3) there exist an open set O ⊂ R

n and a number r > 0 such that, for every x ∈ O, F (x) satisfies an interior
sphere condition of radius r.

Assumptions (A0), (A1) and (A2) are standard in control thery. They have been imposed on the whole space
R

n just for simplicity. For the results of interest to this paper, they can be required — like (A3) — only on a
given open set O ⊂ R

n.
Under assumptions (A0) and (A1), for all x ∈ R

n, all T > 0, and every measurable function u : [0, T ] → U
(usually called an admissible control), the Cauchy problem

{
ẏ(t) = f(y(t), u(t))

y(0) = x
(8)

has a unique solution in [0, T ], that will be hereafter denoted by y(·; x, u). The role of assumption (A2) is to
ensure that y(·; x, u) is differentiable with respect to x.

The geometric assumption (A3) will be crucial for our analysis. It guarantees that the velocity set F (x)
is n-dimensional, and, together with the convexity assumption (A0), ensures that its (topological) boundary,
∂F (x), is of class C1,1.

Further consequences of the above assumptions are discussed in the proposition below. We recall that bF (x)

stands for the oriented distance defined in (2).

Proposition 3.1. Assume (A0) and (A1). Then, for all x, y ∈ R
n,

v ∈ ∂F (x) =⇒ |bF (y)(v)| ≤ L0|x − y|. (9)

If, in addition, (A3) is satisfied, then, for all x ∈ O, the following holds:
(a) the map v �→ bF (x)(v) is of class C1,1 on ∂F (x) + r

2B, |∇bF (x)| = 1 on such a set, and

|∇bF (x)(v) −∇bF (x)(v′)| ≤ 2
r
|v − v′| ∀v, v′ ∈ ∂F (x) + r

2B (10)

(b) for every v ∈ ∂F (x), ∇bF (x)(v) is the outward unit normal to F (x) at v and

v − r∇bF (x)(v) + rB ⊂ F (x) (11)

(c) for every v ∈ (∂F (x) + r
2B) ∩ F (x), we have v − r

2 ∇bF (x)(v) + r
2 B ⊂ F (x).

Proof. To derive (9), let v := f(x, u). Suppose, first, v �∈ F (y). Then,

0 ≤ bF (y)(v) ≤ |f(y, u) − f(x, u)| ≤ L0|x − y|. (12)
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Suppose now v ∈ F (y), and fix a unit vector p in the normal cone to the convex set F (x) at v. Then, for all
v′ = f(y, u′) ∈ F (y),

〈p, v′ − v〉 = 〈p, f(y, u′) − f(x, u′)〉 + 〈p, f(x, u′) − f(x, u)〉 ≤ L0|x − y|.
Let t̄ := max{t ≥ 0 : v + tp ∈ F (y)}. Then, t̄ is an upper bound for the distance of v from F (y)c. So, taking
v′ = v + t̄p we have

|bF (y)(v)| ≤ t̄ ≤ L0|x − y|. (13)
Inequality (9) follows from (12) and (13).

Now, assume (A3). Then, the fact that the signed distance is smooth near ∂F (x) is well-known. We give a
proof for the reader’s convenience. For all x ∈ O, dF (x) is convex and semiconcave on F (x)c, with semiconcavity
constant equal to 1/r, see, e.g., [9], Proposition 2.2.2. Hence, dF (x) is of class C1,1 up to the boundary of F (x)c.
Similarly, dF (x)c is concave on F (x). Moreover, the set Fr(x) := F (x) \ (∂F (x) + r

2B) also satisfies a uniform
interior sphere condition of radius r/2 by construction. So, dFr(x) is semiconcave on Fr(x)c with semiconcavity
constant equal to 2/r. Since dF (x)c(v)+dFr(x)(v) = r/2 for every v ∈ (∂F (x)+ r

2B)∩F (x), dF (x)c is semiconvex
on (∂F (x)+ r

2B)∩F (x) with semiconvexity constant equal to 2/r. Therefore, dF (x)c is of class C1,1 on such a set.
Since the gradients of dF (x)c and −dF (x) agree on ∂F (x), bF (x) = dF (x) − dF (x)c is continuously differentiable
on (∂F (x) + r

2B) ∪ F (x)c, and ∇bF (x) is a unit vector satisfying (10).
Point (b) is clear: (11) follows from (A3).
Finally, to prove (c), observe that v = v − bF (x)(v)∇bF (x)(v) is the projection of v onto ∂F (x). Moreover,

∇bF (x)(v) = ∇bF (x)(v). Then,

v − r
2 ∇bF (x)(v) + r

2 B ⊂ v − r∇bF (x)(v) + r B ⊂ F (x),

thanks to (11). �
Let K ⊂ R

n be a closed set. We introduce below the object of our analysis, that is the notion of attainable
set for system (8). Let t ≥ 0 be given.

Definition 3.2. The attainable set from K at time t, A(K; t), is the set of all points y(t; x, u), where x ∈ K
and u(·) is an admissible control.

The set A(K; t) is also referred to as the reachable set, or the accessibility set, from K at time t. It is
well-known that A(K; t) is closed for all t ≥ 0 (see, e.g. [1]).

We will first analyze the special case K = {0}, abbreviating notations as follows:

y(·; u) = y(·; 0, u), A({0}; t) = A(t).

It is easy to see that A(t) is bounded for every t ≥ 0. Indeed,

|f(x, u)| ≤ |f(0, u)| + L0|x| ≤ H0 + L0|x| ∀(x, u) ∈ R
n × U ,

where
H0 := max

u∈U
|f(0, u)| (14)

(hereafter, we shall assume H0 > 0, otherwise A(t) = {0}). Then, for every t ≥ 0 and every control u : [0, t] → U ,

|y(t; u)| ≤ H0

L0

(
eL0t − 1

)
, (15)

and so A(t) is bounded. More precisely, for any R > 0 there exists TR > 0 such that A(t) is contained in B(R)
for all real numbers t ∈ [0, TR], a possible choice of TR being

TR :=
1
L0

log
(

1 +
L0R

H0

)
· (16)
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Now, let x ∈ ∂A(T ) for a given T ≥ 0. Since A(T ) is closed, x is the endpoint of a trajectory, i.e., x = y(T ; u)
for some admissible control u(·). Such a trajectory is said to be a boundary trajectory for system (8) for one can
prove that y(t; u) ∈ ∂A(t) for every t ∈ [0, T ]. Boundary trajectories satisfy the Pontryagin Maximum Principle
below (see, for instance, [10, 15], or [13]).

Theorem 3.3. Let y0(·) = y(·; u0) be a boundary trajectory for system (8), associated with a control u0 : [0, T ] →
U . Then, there exists an absolutely continuous function p0, with p0(t) �= 0 for every t ∈ [0, T ], satisfying the
adjoint system

−ṗ(t) = (Dxf)�(y0(t), u0(t))p(t) (17)
and the maximum principle

max
u∈U

〈p(t), f(y0(t), u)〉 = 〈p(t), f(y0(t), u0(t))〉 (18)

for a.e. t ∈ [0, T ].

3.2. Main results

Our analysis of attainable sets requires assumptions (A) described in the previous section, as well as an
additional smoothness property of the set-valued map F (x) = f(x, U) which we introduce in the definition
below. Let r and L0 be the constants appearing in (A).

Definition 3.4. We say that x� ∂F (x) is a Lipschitz boundary map if, for certain real numbers r0 ∈ (0, r
2L0

]
and C0 ≥ 0,

|∇bF (y)(v) −∇bF (x)(v)| ≤ C0|x − y| (19)

for all x ∈ O, all y ∈ B(x, r0) ∩ O, and all v ∈ ∂F (x).

Notice that, in (19), v turns out to be in ∂F (y)+ r
2B in view of (9). So, owing to Proposition 3.1(a), ∇bF (y)(v)

exists and is equal to the outward unit normal to F (y) at the projection of v onto ∂F (y). The above notion
will be further discussed in Section 3.3.

We are now ready for our first main result.

Theorem 3.5. Under assumptions (A), suppose 0 ∈ O and let R > 0 be such that RB ⊂ O. If x� ∂F (x) is
a Lipschitz boundary map, then, for every T ∈ (0, TR)1, there exists ρT > 0 such that A(T ) satisfies an interior
sphere condition of radius ρT .

Proof. To begin with, let 0 < T < TR, let z0 = y(T ; u0) be a boundary point of A(T ), and denote by
y0(·) := y(·; u0) the corresponding boundary trajectory. Then, Theorem 3.3 guarantees the existence of an
absolutely continuous function p0, with p0(t) �= 0 for every t ∈ [0, T ], satisfying the adjoint system (17) and the
Maximum Principle (18). In particular, from the last property, it follows that v0(t) := f(y0(t), u0(t)) stays on
∂F (y0(t)) for a.e. t ∈ [0, T ], and p0(t) is an outward normal vector to F (y0(t)). So,

∇bF (y0(t))(v0(t)) =
p0(t)
|p0(t)| for a.e. t ∈ [0, T ]. (20)

Moreover, p0 can be normalized so that θ0 := p0(T ) is a unit vector. Then,

p0(t) = P �(T, t)θ0 ∀t ∈ [0, T ], (21)

where P (t, s), defined for t, s ∈ [0, T ], is the matrix solution of⎧⎨
⎩

∂P

∂t
(t, s) = Dxf(y0(t), u0(t))P (t, s)

P (s, s) = I.

1TR is defined in (16).
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Clearly,
‖P (t, s)‖ ≤ eL0|t−s| ∀s, t ∈ [0, T ]. (22)

Now, for any vector θ ∈ B, let us set

yθ(t) = y0(t) − τtP (t, T )(θ0 − θ) ∀t ∈ [0, T ] , (23)

where τ > 0 is fixed so that yθ(t) ∈ B(y0(t), r0
2 ) ∩ RB for all t ∈ [0, T ], and r0 ∈ (0, r

2L0
] is the radius provided

by Definition 3.4. For this, in view of (15), it suffices to satisfy the following inequalities:

2τT eL0T ≤ r0

2
, 2τT eL0T +

H0

L0

(
eL0T − 1

) ≤ R. (24)

Notice that R − H0
L0

(eL0T − 1) > 0 since T < TR.
Next, observe that

z0 = yθ0(T ) ∈ {yθ(T ) : θ ∈ B} = z0 − τT θ0 + τTB.

Moreover, yθ(0) = 0. So, in order to show that A(T ) satisfies an interior sphere condition of radius τT at z0, it
suffices to prove that, for every θ ∈ B, yθ is a solution of ẏ = f(y, u) for some control u(·).

Aiming at this, let us set vθ(t) = f(yθ(t), u0(t)). We claim that

vθ(t) ∈
(
∂F (yθ(t)) +

r

2
B

)
∩ F (yθ(t)) for a.e. t ∈ [0, T ]. (25)

Indeed, since yθ(t) ∈ B(y0(t), r0
2 ) and r0 ≤ r

2L0
, we have that

v0(t) ∈ ∂F (yθ(t)) +
r

4
B for a.e. t ∈ [0, T ],

according to (9). Moreover, |vθ(t) − v0(t)| < r
4 due to (A1) and the choice of r0, whence the conclusion (25).

Then, in view of Proposition 3.1(a), we can represent the derivative ẏθ as

ẏθ(t) = vθ(t) − r

2
∇bF (yθ(t))(vθ(t)) + φ(t) +

r

2
w(t) for a.e. t ∈ [0, T ], (26)

where
φ(t) := f(y0(t), u0(t)) − f(yθ(t), u0(t)) − τtDxf(y0(t), u0(t))P (t, T )(θ0 − θ)

and
w(t) := ∇bF (yθ(t))(vθ(t)) − 2τ

r
P (t, T )(θ0 − θ).

The idea of the proof consists in applying Proposition 3.1(c) to the right-hand side of (26), to conclude that
ẏθ(t) ∈ F (yθ(t)). For this, we will have to show that φ(t) + r

2 w(t) ∈ r
2B. Now, an easy computation based

on (7) yields
|φ(t)| ≤ L1|y0(t) − yθ(t)|2 ≤ L1τ

2t2e2L0(T−t)|θ0 − θ|2 ∀t ∈ [0, T ]. (27)
So, let us proceed to estimate w. Recalling (20) and (21), we obtain

|w(t)|2 = 1 − 4τ

r
〈P (t, T )(θ0 − θ),∇bF (yθ(t))(vθ(t))〉 +

(
2τ

r

)2

|P (t, T )(θ0 − θ)|2

= 1 − 4τ

r|p0(t)| 〈P (t, T )(θ0 − θ), P �(T, t)θ0〉 +
(

2τ

r

)2

|P (t, T )(θ0 − θ)|2 (28)

− 4τ

r
〈P (t, T )(θ0 − θ),∇bF (yθ(t))(vθ(t)) −∇bF (y0(t))(v0(t))〉.
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Moreover, since |θ| ≤ 1 = |θ0|,

〈P (t, T )(θ0 − θ), P �(T, t)θ0〉 = 〈θ0 − θ, θ0〉 =
1
2
(|θ0|2 − |θ|2 + |θ0 − θ|2) ≥ 1

2
|θ0 − θ|2.

Furthermore, to bound the last term in (28) we note that

|∇bF (yθ(t))(vθ(t)) −∇bF (y0(t))(v0(t))|
≤ |∇bF (yθ(t))(vθ(t)) −∇bF (yθ(t))(v0(t))| + |∇bF (yθ(t))(v0(t)) −∇bF (y0(t))(v0(t))|
≤ 2

r
|vθ(t) − v0(t)| + C0|yθ(t) − y0(t)|

using (10) since v0(t), vθ(t) ∈ ∂F (yθ(t))+ r
2B, and using (19) since v0(t) ∈ ∂F (y0(t)). Therefore, in view of (22),

|∇bF (yθ(t))(vθ(t)) −∇bF (y0(t))(v0(t))| ≤
(

2L0

r
+ C0

)
τteL0(T−t)|θ0 − θ|.

Then,
|〈P (t, T )(θ0 − θ),∇bF (yθ(t))(vθ(t)) −∇bF (y0(t))(v0(t))〉| ≤ C1τte2L0(T−t)|θ0 − θ|2,

where C1 := 2L0
r + C0. Therefore, again by (22),

|w(t)|2 ≤ 1 − 2τ

r|p0(t)| |θ0 − θ|2 +
(

2τ

r

)2

e2L0(T−t)|θ0 − θ|2 +
4τ2

r
tC1e2L0(T−t)|θ0 − θ|2

≤ 1 − 2τ

r
e−L0(T−t)

{
1 − 2τ

r
e3L0(T−t)(1 + rtC1)

}
|θ0 − θ|2.

Thus, using the elementary inequality
√

1 + α ≤ 1 + α/2, we conclude that

|w(t)| ≤ 1 − τ

r
e−L0(T−t)

{
1 − 2τ

r
e3L0(T−t)(1 + rtC1)

}
|θ0 − θ|2 ∀t ∈ [0, T ]. (29)

Next, combine estimates (27) and (29), to derive

∣∣∣φ(t) +
r

2
w(t)

∣∣∣ ≤ r

2
− τ

2
e−L0(T−t)

{
1 − 2τe3L0(T−t)

(
1
r

+ C1t + L1t
2

)}
|θ0 − θ|2 ∀t ∈ [0, T ].

Now, possibly reducing τ in order to have

1 − 2τe3L0(T−t)

(
1
r

+ C1t + L1t
2

)
≥ 0 ∀t ∈ [0, T ], (30)

we obtain |φ(t) + r
2 w(t)| ≤ r

2 for every t ∈ [0, T ]. So, ẏθ(t) ∈ F (yθ(t)) owing to (26) and Proposition 3.1(c).
Then, the Measurable Selection theorem (see, e.g., [2]) implies that yθ(·) is a trajectory of (8) with x = 0. �
Remark 3.6. From the above proof we obtain an estimate for ρT . Indeed, since ρT = τT and τ must satisfy (24)
and (30) with C1 := 2L0

r + C0, one can take

ρT =
e−L0T

2
min

{
r0

2
, R − H0

L0
(eL0T − 1),

rT e−2L0T

1 + L0T + rC0T + rL1T 2

}
· (31)

Consequently, there exists constants ρ, T0 > 0, depending on the data r0, R, C0, H0, L0, L1, such that, for every
T ∈ (0, T0), the attainable set A(T ) satisfies an interior sphere condition of radius ρT = ρT . Knowing that ρT
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is linear in T — at least for T ∈ (0, T0) — could be useful to further investigate the structure of attainable sets,
as shown in [6] where such a property is used to study the evolution of perimeters for attainable sets. �
Example 3.7. Let us discuss some applications of the above results when our system is affine in the control
variables, i.e.

f(x, u) = M(x)u + g(x) (x, u) ∈ R
n × U

where M(x) = {aij(x)}n
i,j=1 is an n×n matrix, g(x) = (g1(x), . . . , gn(x)) an n-dimensional vector, and U ⊂ R

n

a compact convex set. We will show that, if

(i) U has the interior r-sphere property ;
(ii) aij , gi ∈ C1,1(Rn) for every i, j = 1, . . . , n ;
(iii) M(0) is nonsingular ;

then all the assumptions of Theorem 3.5 are satisfied taking O equal to a suitable open neighbourhood of 0.
Indeed, conditions (6) and 7) are immediate to check. So, let us prove that M(x)U + g(x) has the interior
sphere property. For this, we may as well suppose g ≡ 0 since the interior sphere property is invariant under
translations. Now, on account of (iii), there exists R > 0 such that detM(x) �= 0 for every x ∈ RB. Then,
∂(M(x)U) = M(x)(∂U) for every x ∈ RB. Hereafter, we will only consider points x ∈ RB.

Let v0 ∈ ∂(M(x)U) and u0 ∈ ∂U be such that v0 = M(x)u0. Set u0 = u0 − r∇bU (u0), and observe that

u0 ∈ u0 + rB ⊂ U

in view of (i). It is easy to realize that M(x)(u0 + rB) is the ellipsoid

EΛ(x)(v0, r) := { v ∈ R
n : 〈Λ(x)(v − v0), v − v0〉 ≤ r2 }

where v0 = M(x)u0, M−1(x) denotes the inverse of M(x), and Λ(x) = M−1(x)�M−1(x). Thus,

v0 ∈ EΛ(x)(v0, r) ⊂ M(x)U. (32)

Since, as recalled in Example 2.2, EΛ(x)(r) has the interior sphere property, so does M(x)U .
Finally, assumption (19) is satisfied on account of Proposition 3.9 below. Indeed, the nondegeneracy of M

on RB implies that f satisfies (34). �
Let us now turn to the analysis of general attainable sets A(K; T ). We note, first, that Theorem 3.5 can be

immediately generalized to the set A({x}; T ) for any point x ∈ R
n. Moreover, for any closed set K ⊂ R

n,

A(K; T ) =
⋃

x∈K
A({x}; T ).

Since any union of sets satisfying an interior sphere condition radius ρ satisfies an interior sphere condition of
the same radius, the general result below easily follows recalling Remark 3.6.

Theorem 3.8. Assume (A), and let K ⊂ O be a closed set. Suppose that

|f(x, u)| ≤ H ∀(x, u) ∈ K × U (33)

for some constant H > 0. If x � ∂F (x) is a Lipschitz boundary map, then numbers ρ, T0 > 0 exist such that,
for all T ∈ (0, T0), A(K; T ) satisfies an interior sphere condition of radius ρT .
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3.3. Lipschitz boundary maps

In this section we will discuss the notion of Lipschitz boundary map, introduced in Definition 3.4. To begin
with, we observe that a similar property that could be derived just from (A0), (A1) and (A3), is that x� ∂F (x)
is a “Hölder boundary map” of exponent 1/2, that is

|∇bF (y)(v) −∇bF (x)(v)| ≤ C0|x − y|1/2

for all x ∈ O, all y ∈ B(x, r0) ∩ O, and all v ∈ ∂F (x). However, we will omit further details since we are
interested in the above estimate with exponent 1. We propose, instead, two different sufficient conditions to
guarantee that (19) is satisfied. Our first condition is the following.

Proposition 3.9. Assume (A) and suppose that, for some constant C2 ≥ 0 and every pair (x, u) ∈ O × U
satisfying f(x, u) ∈ ∂F (x) + r

2B,

|[Dxf(x, u′) − Dxf(x, u)]�∇bF (x)(f(x, u))| ≤ C2|f(x, u′) − f(x, u)| ∀u′ ∈ U. (34)

Then, x� ∂F (x) is a Lipschitz boundary map.

The proof of Proposition 3.9 requires the following lemma.

Lemma 3.10. Assume (A) and (34), and define r1 := min{ r
4L0

, 1
2C2

}. Then, for all x ∈ O, all y ∈ B(x, r1)∩O,
and all u ∈ U satisfying f(x, u) ∈ ∂F (x),

|bF (y)(f(y, u)) − bF (y)(f(x, u)) − 〈∇bF (y)(f(x, u)), f(y, u) − f(x, u)
〉 | ≤ 2L2

0
r |x − y|2 (35)

|bF (y)(f(y, u))| ≤ C3|x − y|2 (36)

for some constant C3 ≥ 0.

Proof. Let x ∈ O, v := f(x, u) ∈ ∂F (x), and recall that, in view of Proposition 3.1(a), bF (y) ∈ C1,1(∂F (y)+ r
2B)

for every y ∈ O. Let us also observe that, on account of (9), f(x, u) ∈ ∂F (y)+ r
4B and so f(y, u) ∈ ∂F (y)+ r

2B
for every y ∈ B(x, r1) ∩O. Hence, owing to (10),

|bF (y)(f(y, u)) − bF (y)(v) − 〈∇bF (y)(v), f(y, u) − v
〉 | ≤ 2

r
|f(y, u) − v|2.

Since |f(y, u)− v| ≤ L0|x − y|, estimate (35) follows.
In order to prove (36), let t ≥ 0 be such that f(y, u) + t∇bF (x)(v) ∈ F (y). Then, for some ut ∈ U ,

f(y, ut) = f(y, u) + t∇bF (x)(v). Therefore, invoking the convexity of F (y) and (34),

t =
〈∇bF (x)(v), f(y, ut) − f(y, u)

〉
≤ 〈∇bF (x)(v), f(x, ut) − f(x, u)

〉
+

〈∇bF (x)(v), [Dxf(x, ut) − Dxf(x, u)](y − x)
〉

+ L1|x − y|2
≤ C2|f(x, ut) − f(x, u)| |x − y| + L1|x − y|2.

On the other hand,

|f(x, ut) − f(x, u)| ≤ |f(x, ut) − f(y, ut)| + |f(y, ut) − f(y, u)| + |f(y, u) − f(x, u)|
≤ 2L0|x − y| + t.
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So, owing to our choice of r1,

t ≤ (2L0C2 + L1)|x − y|2 +
t

2
,

and (36) follows, by a maximality argument, with C3 = 2(2L0C2 + L1). �
Proof of Proposition 3.9. Define r1 as in Lemma 3.10, and let x ∈ O, y ∈ B(x, r1)∩O, and v = f(x, u) ∈ ∂F (x).
In view of (11), v − r∇bF (x)(v) + r∇bF (y)(v) ∈ F (x). So,

v − r∇bF (x)(v) + r∇bF (y)(v) = f(x, uy)

for some uy ∈ U . Consider the projection vy = v − bF (y)(v)∇bF (y)(v) of v onto ∂F (y). Invoking convexity and
the fact that ∇bF (y)(vy) = ∇bF (y)(v), we obtain

0 ≥ 〈∇bF (y)(vy), f(y, uy) − vy

〉
=

〈∇bF (y)(v), f(x, uy) − vy

〉
+

〈∇bF (y)(v), f(y, uy) − f(x, uy)
〉

= −r
〈∇bF (y)(v),∇bF (x)(v)

〉
+ r + bF (y)(v) +

〈∇bF (y)(v), f(y, uy) − f(x, uy)
〉 ·

Therefore, owing to Lemma 3.10,

r
〈∇bF (y)(v),∇bF (x)(v)

〉 ≥ r + bF (y)(f(y, u)) +
〈∇bF (y)(v), f(x, u) − f(y, u)

〉
+

〈∇bF (y)(v), f(y, uy) − f(x, uy)
〉 − 2L2

0

r
|x − y|2

≥ r +
〈∇bF (y)(v), [f(y, uy) − f(y, u)] − [f(x, uy) − f(x, u)]

〉 − (
C3 +

2L2
0

r

)
|x − y|2.

On the other hand, in view of (A2), (10), and (34), we have

〈∇bF (y)(v), [f(y, uy) − f(y, u)] − [f(x, uy) − f(x, u)]
〉

≥ 〈∇bF (y)(f(x, u)), [Dxf(y, uy) − Dxf(y, u)](y − x)
〉 − L1|x − y|2

≥ 〈∇bF (y)(f(y, u)), [Dxf(y, uy) − Dxf(y, u)](y − x)
〉 − (

4L0

r
+ L1

)
|x − y|2

≥ −C2|f(y, uy) − f(y, u)| |x − y| −
(

4L0

r
+ L1

)
|x − y|2.

Moreover,

|f(y, uy) − f(y, u)| ≤ |f(y, uy) − f(x, uy)| + |f(x, uy) − f(x, u)| + |f(x, u) − f(y, u)|
≤ 2L0|x − y| + r|∇bF (x)(v) −∇bF (y)(v)|.

Now, combine the above estimates with the binomial inequality αβ ≤ α2

4 + β2, to conclude that

r
〈∇bF (y)(v),∇bF (x)(v)

〉
≥ r − rC2|∇bF (x)(v) −∇bF (y)(v)| |x − y| −

(
L1 + C3 + 2L0C2 +

4L0

r
+

2L2
0

r

)
|x − y|2

≥ r − r

4
|∇bF (x)(v) −∇bF (y)(v)|2 −

(
L1 + C3 + 2L0C2 + rC2

2 +
4L0

r
+

2L2
0

r

)
|x − y|2.
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Thus, recalling that ∇bF (x) and ∇bF (y) are unit vectors,

|∇bF (x)(v) −∇bF (y)(v)|2 = 2(1 − 〈∇bF (y)(v),∇bF (x)(v)
〉
)

≤ 1
2
|∇bF (x)(v) −∇bF (y)(v)|2 + C4|x − y|2 ,

where C4 = 2
r

(
L1 + C3 + 2L0C2 + rC2

2 + 4L0
r + 2L2

0
r

)
. The conclusion follows, with C0 =

√
2C4. �

Our second sufficient condition for x� ∂F (x) to satisfy (19) is expressed in Hamiltonian form. Let

H(x, p) := max
v∈F (x)

〈v, p〉 x, p ∈ R
n

be the Hamiltonian associated with F (x), and denote by Sn−1 the unit sphere in R
n.

Proposition 3.11. Under assumptions (A), suppose H is differentiable with respect to p on O × (Rn \ {0}),
and ∇pH(·, p) is Lipschitz continuous on O, uniformly in p ∈ Sn−1. Then, x� ∂F (x) is a Lipschitz boundary
map.

Proof. Observe that, for all (x, p) ∈ O × Sn−1, H(x, p) = 〈vx,p, p〉 for some vx,p ∈ ∂F (x). Moreover, for any
such vector vx,p, we have that p = ∇bF (x)(vx,p) and ∇pH(x, p) = vx,p. Therefore, for all x ∈ O and p, q ∈ Sn−1,
inequality (10) yields

|p − q| ≤ 2
r
|∇pH(x, p) −∇pH(x, q)|. (37)

Now, fix x ∈ O , y ∈ B(x, r
2L0

), and v ∈ ∂F (x). Let w be the projection of v onto ∂F (y). Consider the unit
vectors p := ∇bF (x)(v) and q := ∇bF (y)(w) = ∇bF (y)(v). Then, in view of (37) we have

|∇bF (y)(v) −∇bF (x)(v)| ≤ 2
r
|∇pH(x, p) −∇pH(x, q)|

≤ 2
r

(|∇pH(x, p) −∇pH(y, q)| + L|x − y|)

where L denotes a Lipschitz constant for ∇pH(·, q). Since ∇pH(x, p) = v and ∇pH(y, q) = w, (9) ensures

|∇pH(x, p) −∇pH(y, q)| = |bF (y)(v)| ≤ L0|x − y|.

The conclusion follows from the last two inequalities above. �
3.4. C1,1 regularity

We conclude this section with a C1,1 regularity result for attainable sets. We recall that a subset S of R
n

is called a-regular, for some given real number a > 0, if, for all points x0, x1 ∈ S and numbers λ ∈ (0, 1), the
closed ball

{ x ∈ R
n : |x − λx1 − (1 − λ)x0| ≤ aλ(1 − λ)|x1 − x0|2 }

is contained in S. Clearly, any a-regular set is convex.

Corollary 3.12. Assume (A) and (33), where K ⊂ O is a closed set. Suppose that, for some a > 0, K and
F (x) are a-regular for every x ∈ O. If x � ∂F (x) is a Lipschitz boundary map, then there exists T1 > 0 such
that, for every T ∈ (0, T1), the oriented distance bA(K;T ) is of class C1,1 on some neighborhood of ∂A(K; T ). In
particular, ∂A(K; T ) ∈ C1,1 for all T ∈ (0, T1).

Proof. In view of Theorem 3.8 we have that A(K; T ) satisfies a uniform interior sphere condition for every
T ∈ (0, T0). Moreover, for T sufficiently small, A(K; T ) is convex as shown in [18]. Then, the conclusion follows
arguing as in the proof of Proposition 3.1(a). �
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4. A counterexample

This section completes the previous one showing that the result of Theorem 3.5 is sharp. Indeed, we will
construct a control system ẏ = f(y, u), with f(·, u) Lipschitz and f(x, U) satisfying a uniform interior sphere
condition, such that, for all sufficiently small t > 0, the attainable set at time t fails to possess such a property.

Consider the control system in R
n , n ≥ 2,{

ẏ = (1 − |y|)u(s) − q0, u(s) ∈ B

y(0) = 0
(38)

where q0 is a unit vector. Observe that y ≡ 0 is a solution to the above system corresponding to the constant
control u = q0 and, for all small t > 0, the origin belongs to the boundary of A(t). Indeed, for every solution y
to (38) and t > 0 small enough,

〈q0, y(t)〉 =
∫ t

0

〈q0, (1 − |y(s)|)u(s)〉 ds − t ≤
∫ t

0

(1 − |y(s)|)ds − t ≤ 0.

This implies that zero is a boundary point of A(t).
Clearly the sets F (x) := (1 − |x|)B − q0 satisfy an interior sphere condition of radius 1/2 for all x ∈ B(1

2 ).
Let t > 0 be such that tet < 1

4 and every solution y(·) to (38) verifies y([0, t]) ⊂ B(1
2 ).

Claim 1. The reachable set A(t) of (38) is convex and compact.
The compactness of A(t) was recalled in Section 3. As for its convexity, we note that the set of all trajectories
of (38) is convex. Indeed, since map x �→ 1 − |x| is concave, for any pair of solutions y0 , y1 to (38) and any
λ ∈ [0, 1], we have

(λy1 + (1 − λ)y0)′(t) ∈ (λ(1 − |y1(t)|) + (1 − λ)(1 − |y0(t)|))B − q0

⊂ (1 − |λy1(t) + (1 − λ)y0(t)|)B − q0.

Claim 2. If y is a solution to (38) and y(t) = 0, then y ≡ 0 in [0, t].
Indeed, by the nonsmooth Maximum Principle (see, for instance, [13]), there exists a nonvanishing absolutely
continuous function p(s) satisfying, for a.e. s ∈ [0, t],

ẏ(s) = (1 − |y(s)|) p(s)
|p(s)| − q0

Consider ỹ = 1
2y. Since ỹ(t) = 0 ∈ ∂A(t), again by the Maximum Principle, there exists a control u, with

|u(s)| = 1, such that, for a.e. s ∈ [0, t],

ỹ′(s) =
(

1 − 1
2
|y(s)|

)
u(s) − q0 =

1
2
(1 − |y(s)|) p(s)

|p(s)| −
1
2
q0.

So,
1
2
(1 − |y(s)|) p(s)

|p(s)| +
1
2
q0 =

(
1 − 1

2
|y(s)|

)
u(s),

whence, since |u(s)| = 1,

1 − 1
2
|y(s)| =

∣∣∣∣12(1 − |y(s)|) p(s)
|p(s)| +

1
2
q0

∣∣∣∣ ≤ 1
2
(1 − |y(s)|) +

1
2

= 1 − 1
2
|y(s)|.

This yields p(s)
|p(s)| = q0 for a.e. s ∈ [0, t]. But p(s)

|p(s)| is the control corresponding to y and q0 is the control
corresponding to the zero trajectory. So y = 0 on [0, t].
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Claim 3. NA(t)(0) contains exactly one unit vector, namely q0.
Indeed, let p0 ∈ NA(t)(0) be a unit vector and y(·) be the solution of (38) with u ≡ p0. Note that y(s) ∈ A(t),
hence 〈p0, y(s)〉 ≤ 0, for every s ∈ [0, t]. Moreover, 〈p0, y(0)〉 = 0. Therefore,

0 ≥ d
ds

〈p0, y(s)〉
∣∣∣
s=0

= 1 − 〈p0, q0〉,

and so p0 = q0 since p0 and q0 are unit vectors.

We will now complete the analysis of system (38) showing that A(t) fails to satisfy an interior sphere condition.
This will follow from Proposition 2.3 provided we can construct a sequence {yi} of boundary trajectories
satisfying 0 �= yi(t) → 0 as i → ∞, and

lim
i→∞

〈q0,−yi(t)〉
|yi(t)|2 = +∞. (39)

In fact, we will prove that (39) is true for any sequence of boundary trajectories such that 0 �= yi(t) → 0 as
i → ∞. Indeed, let {yi} be any such sequence (here, the fact that n ≥ 2 is used), let ui(·) be the corresponding
controls, and recall that |ui(s)| = 1 for a.e. s ∈ [0, t].

Claim 4. {ui} converges to the constant vector q0 uniformly in [0, t].
Indeed, by the nonsmooth Maximum Principle there exist adjoint states pi(·) corresponding to yi such that
|pi(t)| = 1, pi(t) ∈ NA(t)(yi(t)) and pi are Lipschitz with the same constant. From Claim 3 we deduce that
pi(t) → q0. By the Maximum Principle,

ui(s) =
pi(s)
|pi(s)| for a.e. s ∈ [0, t].

From the Lipschitz continuity of pi we deduce that the above identity holds for all s ∈ [0, t] and that ui are
Lipschitz continuous with the same Lipschitz constant. Since ui(t) → q0 we deduce that the set {ui}i≥1 is
precompact in C([0, t]). Let ū be a cluster point of this set and ȳ be the corresponding trajectory. Then,
y(t) = 0. Therefore, by Claim 2, y ≡ 0. Consequently, u ≡ q0. This implies that ui → q0 uniformly on [0, t].

Claim 5. The map s �→ |yi(s)| is nondecreasing.
Indeed, from [16] it follows that pi(s) ∈ NA(s)(yi(s)) for a.e. s ∈ [0, t]. Therefore,

〈
pi(s)
|pi(s)| , yi(s)

〉
≥ 0

by definition. Similarly, 〈q0, yi(s)〉 ≤ 0. Thus, from Claim 1 and Claim 3, we obtain

〈ẏi(s), yi(s)〉 =
〈

(1 − |yi(s)|) pi(s)
|pi(s)| − q0, yi(s)

〉
≥ 0,

which in turn proves our claim.

Now, let βi(s) ∈ [−1, 1] , vi(s) ∈ {q0}⊥ and αi(s) ≥ 0 be such that

|vi(s)| = 1, αi(s)2 + βi(s)2 = 1 and ui(s) = αi(s)vi(s) + βi(s)q0 (s ∈ [0, T ]).

By Claim 4, βi(·) → 1 uniformly on [0, t]. Thus, αi → 0 uniformly, implying that

lim
i→∞

∫ t

0
|yi(s)|αi(s)ds∫ t

0
|yi(s)|ds

= 0. (40)
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By Claim 5,

|yi(s)| ≥
∣∣∣∣
∫ s

0

(ui(τ) − q0)dτ

∣∣∣∣ −
∫ s

0

|yi(τ)|dτ ≥
∣∣∣∣
∫ s

0

(ui(τ) − q0)dτ

∣∣∣∣ − s|yi(s)|.

We complete {q0} to an orthogonal basis of R
n. In this basis we write vi(s) = (v1

i (s), ..., vn−1
i (s), 0). Then,

recalling that s < 1, we have

|yi(s)| ≥ 1
2

∣∣∣∣
∫ s

0

(ui(τ) − q0)dτ

∣∣∣∣ ≥ 1
2

∣∣∣∣
∫ s

0

αi(τ)vj
i (τ)dτ

∣∣∣∣ (41)

for all 1 ≤ j ≤ n − 1. Consequently,

∫ t

0

|yi(s)|ds ≥ 1
2

∫ t

0

∣∣∣∣
∫ s

0

αi(τ)vj
i (τ)dτ

∣∣∣∣ ds. (42)

In order to prove (39), observe that

〈q0,−yi(t)〉 =
∫ t

0

(1 − βi(s))ds +
∫ t

0

|yi(s)|βi(s)ds

and

|yi(t)|2 = 〈q0, yi(t)〉2 +
∣∣∣∫ t

0
(1 − |yi(s)|)αi(s)vi(s)ds

∣∣∣2 .

Hence, to obtain (39), it is enough to show that

lim
i→∞

∣∣∣∫ t

0 (1 − |yi(s)|)αi(s)vi(s)ds
∣∣∣2∫ t

0
(1 − βi(s))ds +

∫ t

0
|yi(s)|βi(s)ds

= 0. (43)

Since, for i large enough, ∫ t

0

|yi(s)|βi(s)ds ≥ inf
s∈[0,t]

βi(s)
∫ t

0

|yi(s)|ds,

(40) implies that, in order to prove (43), it suffices to show that

lim
i→∞

∣∣∣∫ t

0
αi(s)vi(s)ds

∣∣∣2∫ t

0 |yi(s)|ds
= 0. (44)

But ∣∣∣∣
∫ t

0

αi(s)vi(s)ds

∣∣∣∣
2

=
n−1∑
j=1

∣∣∣∣
∫ t

0

αi(s)v
j
i (s)ds

∣∣∣∣
2

.

Therefore, by (42), it is enough to show that

lim
i→∞

∣∣∣∫ t

0
αi(s)v

j
i (s)ds

∣∣∣2∫ t

0

∣∣∣∫ s

0 αi(τ)vj
i (τ)dτ

∣∣∣ ds
= 0 (45)
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where we have set 0
0 = 0. Notice that

(∫ t

0

αi(s)v
j
i (s)ds

)2

=
∫ t

0

d
ds

(∫ s

0

αi(τ)vj
i (τ)dτ

)2

ds

= 2
∫ t

0

αi(s)v
j
i (s)

∫ s

0

αi(τ)vj
i (τ)dτds ≤ 2 sup

s∈[0,t]

αi(s)
∫ t

0

∣∣∣∣
∫ s

0

αi(τ)vj
i (τ)dτ

∣∣∣∣ ds.

Since {αi} converges uniformly to zero, the last inequality yields (45).

5. Application to time optimal control

The subject of this last section is strictly related to the analysis of Section 3. The control system we will be
concerned with is again (8), still subject to assumptions (A). There will be, however, an important difference
in perspective: in Section 3 we studied the attainable set A(K; T ) from a given closed set K ⊂ O; here, we will
rather consider the controllable set to K in time T , that is, the set of all points x ∈ R

n such that y(t; x, u) ∈ K
for some t ∈ [0, T ] and some control u.

More specifically, for any control u : [0,∞) → U , let us consider the transfer time to K, i.e.,

τK(x, u) = inf{ t ≥ 0 : y(t; x, u) ∈ K},

where τK(x, u) = ∞ if there exists no control steering y(t; x, u) to K in finite time. Then, the controllable set
to K, hereafter denoted by R(K), is defined as the set of all points x ∈ R

n such that τK(x, u) < ∞ for some
control u.

The time optimal control problem for system (8), with target K, consists in minimizing the transfer time to
K over all admissible controls. This classical problem, investigated from several points of view, is the object of
an immense literature, see, e.g., the monographs [3,9,11,14]. A well-known result guarantees that time optimal
controls — that is, controls minimizing τK(x, ·) — do exist for any x ∈ R(K).

The value function of the above problem, namely

VK(x) = inf
u(·)

τK(x, u) ∀x ∈ R(K),

is the so-called Minimum Time function. Its level set

R(K; t) := { x ∈ R
n : VK(x) ≤ t } (t ≥ 0)

is the so-called controllable set to K in time ≤ t. Moreover, R(K; t) is closed and ∂R(K; t) ⊂ { x ∈ R
n :

VK(x) = t } whenever VK is upper semicontinuous.
Guaranteeing sufficient regularity properties of VK is one of the basic issues of modern Dynamic Programming.

While mild controllability assumptions on ∂K ensure that the Minimum Time function is continuous in R(K)
(see, e.g., [3]), the situation is different for Lipschitz continuity. The first Lipschitz continuity result for VK was
obtained by Petrov in [17], for the case of K = {0}, under the so-called positive-basis condition. Such a result
was then extended to more general target sets in [4, 8, 21, 22]. For any closed target K, it turns out that VK is
locally Lipschitz in R(K) (and R(K) is open), provided that

∃µ > 0 such that min
u∈U

〈f(x, u), p〉 < −µ|p|, ∀x ∈ ∂K, ∀p ∈ NK(x) (46)

where NK(x) denotes the normal cone to K at x. Moreover, condition (46) is satisfied if and only if VK(x) ≤
Cd(x,K) holds, for some constant C ≥ 0, in a neighbourhood of K.

Stronger regularity properties of the Minimum Time function are harder to recover, since VK is known to be,
in general, a nonsmooth function even for very smooth data. The maximal kind of regularity we can expect for
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VK is local semiconcavity in R(K)\K (see Sect. 2 for the definition of semiconcave functions). Since semiconcave
functions are locally Lipschitz continuous, condition (46) is necessary, in some sense, for VK to be semiconcave.
The result below, ensuring that such a condition is also sufficient when K satisfies a uniform interior sphere
condition, follows from [8].

Proposition 5.1. Assume (A), (33) and (46). If K satisfies a uniform interior sphere condition, then VK is
semiconcave in R(K) \ K.

Actually, in [8], condition (46) is imposed for every proximal normal to K, rather than for every ν ∈ NK(x)
as we do here. However, these two formulations of the controllability property are equivalent in our context,
see the Appendix.

The main result of this section is the following alternative criterion for the semiconcavity of VK. Here, we
assume that the velocity sets f(x, U), instead of K, satisfy a uniform interior sphere condition. Notice that
VK may fail to be semiconcave when neither K nor f(x, U) satisfy an interior sphere condition, as shown in
Example 5.4 below.

Theorem 5.2. Assume (A), (33) and (46). If x � ∂F (x) is a Lipschitz boundary map, then VK is locally
semiconcave in R(K) \ K.

The proof of Theorem 5.2 relies on the following lemma.

Lemma 5.3. Assume (A), (33) and (46). Then, for any t > 0 sufficiently small,

min
u∈U

〈f(x, u), p〉 < − µ

2
|p|, ∀x ∈ ∂R(K; t), ∀p ∈ NR(K;t)(x).

Proof. Let x ∈ ∂R(K; t) be fixed. Since VK is continuous, VK(x) = t. Let ū(·) be time optimal at x, i.e.,
y(t; x, ū) ∈ K. Then, the arc x(s) := y(t − s; x, ū) satisfies⎧⎪⎪⎨

⎪⎪⎩
ẋ(s) = −f(x(s), u(s)) s ∈ (0, t) a.e.

x(0) ∈ K
x(t) = x

where u(s) = ū(t − s). Moreover, by assumptions (A) and (33), we have

|x(s) − x(0)| ≤ tHetL0 ∀s ∈ [0, t]. (47)

Now, denote by X(·) the matrix solution of{
X ′(s) = −Dxf(x(s), u(s))X(s) (0 < s < t)

X(0) = I.

Again, observe that
‖X(s) − I‖ ≤ tL0etL0 ∀s ∈ [0, t]. (48)

By well-known properties of the variational equation, we have that

w ∈ TK(x(0)) =⇒ X(t)w ∈ TR(K;t)(x(t)).

Therefore, 〈p, X(t)w〉 ≤ 0 for all w ∈ TK(x(0)) and p ∈ NR(K;t)(x). Hereby, X∗(t)p ∈ NK(x(0)) for all
p ∈ NR(K;t)(x).

Let p be a fixed unit vector of NR(K;t)(x). Then, in view of (46),

〈f(x(0), u), X∗(t)p〉 < −µ |X∗(t)p| (49)
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for some u ∈ U . We claim that

〈f(x, u), p〉 < − µ

2
∀t ∈

(
0,

µ

2eL0(2M + µ)

)
· (50)

Indeed, owing to (47), (48) and (49),

〈f(x, u), p〉 ≤ 〈f(x(0), u), p〉 + tL0HetL0

≤ −µ|X∗(t)p| + 2tL0HetL0 ≤ tL0etL0(2H + µ) − µ.

Our claim follows noting that tL0etL0(2H + µ) ≤ µ
2 when t is chosen as in (50). �

Proof of Theorem 5.2. Let us observe, first, that ∂R(K; t) ⊂ ∂A(K; t), where A(K; t) now denotes the attainable
set for the control system associated with −f . Indeed, let x̄ ∈ ∂R(K; t). Arguing as in the proof of the previous
lemma we conclude that x ∈ A(K; t). Moreover, x must be on the boundary of A(K; t) for otherwise there
would be a ball Bρ(x) ⊂ A(K; t). Then, the same standard argument as above, based on time inversion, would
show that VK(x) ≤ t for all the points x of such a ball, contradicting x̄ ∈ ∂R(K; t).

Therefore, in view of Theorem 3.8, we conclude that R(K; t) satisfies a uniform interior sphere condition for
t sufficiently small, say 0 < t < t0. Moreover, invoking Lemma 5.3, we have that R(K; t) satisfies (46), with
µ replaced by µ/2, for all t of a possibly smaller interval (0, t1). Therefore, by Proposition 5.1, the Minimum
Time function with target R(K; t), VR(K;t), is semiconcave in R(K)\ R(K; t) for every t ∈ (0, t1).

Next, we claim that, for any t ∈ (0, t1),

VK(x) = VR(K;t)(x) + t ∀x ∈ R(K) \ R(K; t). (51)

Indeed, the optimality principle implies that, for any x ∈ R(K)\ R(K; t) and any control u(·),

VK(x) ≤ τR(K;t)(x, u) + VK(y(τR(K;t)(x, u); x, u)) ≤ τR(K;t)(x, u) + t,

whence VK(x) ≤ VR(K;t)(x)+t. For the converse inequality, let u∗(·) be time-optimal at x and denote by y∗(·) the
corresponding trajectory. Since y∗(τR(K;t)(x, u∗)) ∈ ∂R(K; t) and VK is continuous, VK(y∗(τR(K;t)(x, u∗))) = t.
Thus, again the optimality principle yields

VK(x) = τR(K;t)(x, u∗) + t ≥ VR(K;t)(x) + t,

which proves our claim.
Now, in view of (51), VK is semiconcave in R(K)\ R(K; t) since so is VR(K;t). Moreover, this must be true

for every t ∈ (0, t1). But {R(K; t)} is an increasing family of sets, and

⋂
0<t<t1

R(K; t) = K.

Hence, VK is locally semiconcave in R(K) \ K. �
Example 5.4. Consider the control system ẏ = u, with y ∈ R

2 and u(t) ∈ U = [−1, 1] × [−1, 1]. Taking
K = {(0, 0)} as our target, we have that

VK(x1, x2) = max{|x1|, |x2|}·

Since VK is convex and not differentiable at all points (x1, x2) with |x1| = |x2|, VK cannot be semiconcave.
Observe, also, that the points where VK is not differentiable are exactly the ones where the time optimal
trajectory is unique. �
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Remark 5.5. For certain optimal exit time problems including the minimum time problem, Sinestrari [20]
obtained a semiconcavity result under the same assumptions of Theorem 5.2, except for (19) that he replaced
with the condition

‖Dxf(x, u′) − Dxf(x, u)‖ ≤ C|f(x, u′) − f(x, u)| ∀x ∈ O, ∀u, u′ ∈ U

for some constant C ≥ 0. It is then straightforward to show that the level sets R(K; t) satisfy a uniform interior
sphere condition for t > 0.

On the one hand, let us note that the above condition is stronger than (34). So, as shown by Proposition 3.9,
it is also stronger than requiring x� ∂F (x) to be a Lipschitz boundary map.

On the other hand, we would like to point out that the perspective of the present paper differs from the one
of [20]: our main result is the interior sphere property of attainable sets, for which we need no controllability
assumption of type (46). Then, applying such a property together with assumption (46), we can deduce the
semiconcavity of VK (which in turn yields the interior sphere property of controllable sets).

It is easy to see that, without assumption (46), the interior sphere property may fail for R(K; t). For example,
let u0 ∈ R

n , n ≥ 2, be any vector of norm 2, and consider the control system ẏ(t) = u(t) with u(t) ∈ U := u0+B
and K = {0}. Then,

A(K; t) = tU = Bt(tu0)
has the interior sphere property, unlike the star-shaped set

R(K; t) =
{
su : 0 ≤ s ≤ t , u ∈ u0 + B

} · �

Appendix

Let K ⊂ R
n be a closed set and x ∈ ∂K. We recall that a vector p ∈ R

n is called a proximal normal to K
at x if

∃λ > 0 such that dK(x + λp) = λ|p| (52)

In this case, one has that B(x + λ′p, λ′|p|) ∩ K = {x} for every λ′ ∈ (0, λ). We denote by Nprox
K (x) the cone of

all proximal normals to K at x. We note that, for any x ∈ ∂K,

Nprox
K (x) ⊂ NK(x), (53)

whilst the opposite inclusion is false, in general.

Proposition 5.6. Let F : R
n � R

n be an upper semicontinuous set-valued map with compact convex values,
and let α > 0. Then, the following properties are equivalent:

(a) for all x ∈ K and p ∈ NK(x) there exists v ∈ F (x) such that 〈p, v〉 ≥ α|p| ;
(b) for all x ∈ K and p ∈ Nprox

K (x) there exists v ∈ F (x) such that 〈p, v〉 ≥ α|p|.

Proof. Since the implication (a)⇒(b) follows from (53), we need only prove the opposite implication (b)⇒(a).
Incidentally, we note this fact is related to the approximation property in [19], 6.18(a).

Let a point x0 ∈ ∂K and a vector p0 ∈ NK(x0) be fixed, with |p0| = 1. For any λ > 0, let xλ ∈ K be such
that

|xλ − (x0 + λp0)| = d(x0 + λp0, K). (54)
We claim that

xλ − x0

λ
−→ 0 as λ ↓ 0. (55)

Indeed, suppose λi ↓ 0, let wλ := (xλ − x0)/λ, and observe that, in view of (54), |wλ| ≤ 1 + λ. Then, up to
extracting a subsequence, wλi will converge to some limit as i → ∞, say to w0. Also, w0 ∈ TK(x0) owing to (3),
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and so 〈p0, w0〉 ≤ 0 by definition. Since, again by (54), |wλi − p0|2 ≤ 1, we have that |wλi |2 ≤ 2 〈p0, wλi〉. In
the limit as i → ∞, this implies that w0 = 0. Since this is true for any sequence λi ↓ 0, our claim is proved.

Now, let us note that x0 + λp0 − xλ ∈ Nprox
K (xλ). Therefore, (b) guarantees that, for some vλ ∈ F (xλ),

〈x0 + λp0 − xλ, vλ〉 ≥ α|x0 + λp0 − xλ|. (56)

Since F is usc, we conclude that, for some sequence λi ↓ 0, vλi will converge to some limit in F (x0), say v0.
Moreover, dividing by λi both sides of (56), we obtain〈

p0 − xλi − x0

λi
, vλi

〉
≥ α

∣∣∣∣p0 − xλi − x0

λi

∣∣∣∣ ·
Hereby, (55) implies that 〈p0, v0〉 ≥ α|p0|, as required. �
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