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ASYMPTOTIC BEHAVIOUR OF A CLASS OF DEGENERATE
ELLIPTIC-PARABOLIC OPERATORS: A UNITARY APPROACH
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Abstract. We study the asymptotic behaviour of a sequence of strongly degenerate parabolic equa-
tions ∂t(rhu) − div(ah · Du) with rh(x, t) � 0, rh ∈ L∞(Ω × (0, T )). The main problem is the lack
of compactness, by-passed via a regularity result. As particular cases, we obtain G-convergence for
elliptic operators (rh ≡ 0), G-convergence for parabolic operators (rh ≡ 1), singular perturbations of
an elliptic operator (ah ≡ a and rh → r, possibly r ≡ 0).

Mathematics Subject Classification. 35J15, 35K10, 35M10, 45J45.

Received May 26, 2005. Revised January 5, 2006 and February 17, 2006.
Published online July 20, 2007.

1. Introduction

In the papers [5, 13, 14] De Giorgi and Spagnolo introduced G-convergence for a class of elliptic operators,
precisely for a class of elliptic operators in divergence form defined by an elliptic and simmetric matrix with
bounded coefficients. Tartar extended this convergence to the non-simmetric (and then non-linear) case (see,
for instance, [16] and [17]).

Later in [3] Colombini and Spagnolo defined G-convergence for a class of parabolic operators in divergence
form still defined by a simmetric matrix with bounded coefficients depending, in this case, also on time. Before
introducing the aim of this paper we recall the definition of G-convergence in both cases, denoting the conver-
gence by EG in the elliptic case and by PG in the parabolic one, as extended to non-simmetric operators by
Tartar (for a book containing results about both EG and PG convergences we refer to [7]).

Consider n ∈ N fixed. Moreover, for λ0 � Λ0 and M positive real numbers, denote by MU (λ0,Λ0,M), with
U open set of Rk, k ∈ N, the class of n× n matrices defined as follows:

a = [aij(y)]ni,j=1 ∈ L∞(U) such that

λ0|ξ|2 �
(
a(y) · ξ, ξ) � Λ0|ξ|2∣∣(a(y) · ξ, η)∣∣ � M

(
a(y) · ξ, ξ)1/2(

a(y) · η, η)1/2

(1)

for every ξ, η ∈ Rn, for a.e. y ∈ U .
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Definition 1.1. Let Ω be a bounded open set of Rn and T > 0. Consider a sequence (ah)h ⊂ MΩ(λ0,Λ0,M),
ah = ah(x) (referring to (1), in this case k = n). Given a = a(x) ∈ MΩ(λ0,Λ0,M) we say that

ah
EG−→ a in Ω

if for every f ∈ H−1(Ω) it results that

uh → u in L2(Ω)
ah ·Duh → a ·Du in L2(Ω)n-weak,

where uh and u denote respectively the solutions (see Def. 2.5 with r ≡ 0) of{ −div(ah ·Dv) = f in Ω
v = 0 in ∂Ω

{ −div(a ·Dv) = f in Ω
v = 0 in ∂Ω.

For a sequence (ah)h ⊂ MΩ×(0,T )(λ0,Λ0,M), ah = ah(x, t) (referring to (1), in this case k = n+ 1), and given
a = a(x, t) ∈ MΩ×(0,T )(λ0,Λ0,M) we say that

ah
PG−→ a in Ω × (0, T )

if for every f ∈ L2(0, T ;H−1(Ω)) and ϕ ∈ L2(Ω) it results that

uh → u in L2(0, T, L2(Ω))
ah ·Duh → a ·Du in L2(0, T, L2(Ω)n)-weak,

where uh and u denote respectively the solutions (see Def. 2.5 with r ≡ 1) of

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂v

∂t
− div(ah ·Dv) = f in Ω × (0, T )

v = 0 in ∂Ω × (0, T )

v = ϕ in Ω × {0}

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂v

∂t
− div(a ·Dv) = f in Ω × (0, T )

v = 0 in ∂Ω × (0, T )

v = ϕ in Ω × {0}.

In [3] the authors studied the connection between EG and PG convergence: in particular they proved that if
(ah)h ∈ MΩ×(0,T )(λ0,Λ0,M) satisfies

lim
τ→0

sup
h

∫
I

∫
ω

|ah(x, t+ τ) − ah(x, t)|dx dt = 0 ∀ I × ω ⊂⊂ (0, T )× Ω, (2)

then

ah(·, t) EG−→ a(·, t) in Ω for a.e. t ∈ (0, T ) iff ah
PG−→ a in Ω × (0, T ) (3)

and showed with a counterexample that this is not always true.
In this paper we consider strongly degenerate parabolic, or elliptic-parabolic, operators like

Pu =
∂

∂t
(ru) − div(a ·Du) with r = r(x, t) � 0 (4)
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and study the limit behaviour of the sequence of Cauchy-Dirichlet problems (for the existence result we refer
to [8], but see also [11]) ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂

∂t
(rhu) − div(ah ·Du) = f in Ωh,+(t) × (0, T )

−div(ah ·Du) = f in Ωh,0(t) × (0, T )

u = 0 in ∂Ω × (0, T )

u = ϕ in Ωh,+(0) × {0}

(5)

where (the initial condition on Ωh,+(0) will be clarified at the end of Sect. 2) Ωh,+(t) := {x ∈ Ω | rh(x, t) > 0}
and Ωh,0(t) := {x ∈ Ω | rh(x, t) = 0}, (ah)h is a sequence in MΩ×(0,T )(λ0, Λ0,M,N), the class of matrices a
satisfying (1) and ∣∣a(x, t) − a(x, s)

∣∣ � N |t− s|
for a.e. x ∈ Ω and every s, t ∈ [0, T ], rh belonging to a suitable class F defined in (6). Arising from (3) the
aim of the present paper is to give a more general definition of G-convergence, for problems (5) (see Def. 4.3),
which is independent of the sequence (rh)h and a compactness result with respect to it (see Th. 4.5). This in
particular justifies (3) and includes other phenomena, as singular perturbations (in which the result is stronger,
see Prop. 5.1), but we refer to the lastgli Studi di Lecce section for examples. We want to stress that, since
r in (4) may be equal to zero on some region with positive measure, a difficulty in this situation is that the
natural compactness result (see Th. 2.7) is not guaranteed. Only for the sequence of the solutions (the solutions
uh to the problems (5)), we are able to obtain the compactness via a regularity result (see Th. 2.8).

We recall that, in the general situation, a first study in this direction was already made, in the periodic case
and with r = r(x), in [9].

Elliptic-parabolic operators like those in (4) were already studied, as regards the existence of the solution,
probably first by Showalter (see, for instance, [10] for one of the first papers and [11] for a recent book) and
recently in [8] for a more general class of operators (nonlinear and possibly forward, backward and stationary).

The interest to study such problems lies on the fact that many diffusion problems lead to differential equations
like

∂

∂t
(r(x, t)u) − div(a(x, t) ·Du) = f

which may be also of mixed type (see for example [1], Chap. 3, and the references therein), i.e. partially elliptic
and partially parabolic. For some applications see also the examples in the last section.

The scheme of the paper is the following: Section 2 is dedicated to existence of the solution to an equation
Pu = f and to the position of the problem. In Section 3 there are some compactness results: since a “classical
type” compactness result (see Th. 2.7, with rh ≡ 1 for the classical case) does not hold in general, we pass through
a regularity result (Th. 2.8) to obtain it. In Section 4 we define G-convergence and prove a compactness result
in two steps: Theorem 4.1 furnishes, given a sequence of operators Phu = ∂

∂t (rhu) − div(ah ·Du) in a suitable
class, the existence, up to a subsequence, of a limit operator Pu = ∂

∂t (ru) − div(ar ·Du), Theorem 4.5 states
that ar is independent of r. In the last section we give some examples, including also singular perturbations.

2. Elliptic-parabolic equations and statement of the problem

From now on T , λ0, Λ0, M will be fixed positive constants, N,C1, C2 non-negative constants, µ0 a non-positive
constant (indeed µ0 could also be positive, but in that case it is sufficient to consider µ0 = 0) and Ω a bounded
open set of Rn with Lipschitzian boundary. We will denote for brevity

V := L2(0, T ;H1
0 (Ω)), H := L2(0, T ;L2(Ω)), V ′ := L2(0, T ;H−1(Ω)).
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We denote by F(C1, C2, µ0) the class of measurable functions r satisfying

(i) r ∈ L∞(Ω × (0, T )), r � 0,

(ii) ‖r‖L∞(Ω×(0,T )) � C1,

(iii) t �→
∫

Ω

u(x)v(x)r(x, t)dx absolutely continuous on [0, T ],

(iv)
∣∣∣ d
dt

∫
Ω

u(x)v(x)r(x, t)dx
∣∣∣ � C2 ‖u‖H1

0(Ω)‖v‖H1
0(Ω) for a.e. t ∈ [0, T ],

(v)
d
dt

∫
Ω

u2(x)r(x, t)dx � µ0 ‖u‖2
H1

0(Ω)
for a.e. t ∈ [0, T ]

(6)

for every u, v ∈ H1
0 (Ω). For a r ∈ F(C1, C2, µ0) we define

Ωr
+(t) :=

{
x ∈ Ω

∣∣ r(x, t) > 0
}
, Ωr

0(t) :=
{
x ∈ Ω

∣∣ r(x, t) = 0
}
. (7)

Remark 2.1. The class just defined is compact, i.e. if (rh)h is a sequence in F(C1, C2, µ0), there is a subse-
quence (rhj )j and a function r ∈ F(C1, C2, µ0) such that rhj → r in L∞(Ω × (0, T ))-weak∗. In fact, there is a
subsequence (rhj )j and a function r such that rhj → r in L∞(Ω × (0, T ))-weak∗. Now verify that r belongs to
F(C1, C2, µ0). Clearly r � 0 and ‖r‖∞ � C1. To verify that r satisfies also (iii), (iv), (v), consider a countable
set Z, dense in H1

0 (Ω), and for every u, v ∈ Z define the functions Fu,v
h (t) =

∫
Ω
u(x)v(x)rh(x, t)dx. Since

(rh)h ⊂ F(C1, C2, µ0) the sequence (Fu,v
h )h turns out to be equicontinuous and equibounded. Then there is

a function, denoted by Fu,v, and a subsequence Fu,v
hj

such that Fu,v
hj

→ Fu,v uniformly in [0, T ]. Since Z is
countable we can find a sequence hjk

such that Fu,v
hjk

→ Fu,v uniformly in [0, T ] for every u, v ∈ Z (and in fact
for every u, v ∈ H1

0 (Ω)). This in particular implies that∫ T

0

Fu,v
hjk

(t)η(t)dt →
∫ T

0

Fu,v(t)η(t)dt

for every η ∈ L1(Ω). Since rhj → r in L∞(Ω × (0, T ))-weak∗∫ T

0

Fu,v
hjk

(t)η(t)dt =
∫ T

0

∫
Ω

u(x)v(x)η(t)rhjk
(x, t)dxdt →

∫ T

0

∫
Ω

u(x)v(x)η(t)r(x, t)dxdt

and then Fu,v(t) =
∫

Ω

u(x)v(x)r(x, t)dx.

Notice that Fu,v ∈ W 1,∞: then for every η ∈ C1
c (0, T ) we have∫ T

0

d
dt

[
Fu,v

hjk
(t)

]
η(t)dt = −

∫ T

0

Fu,v
hjk

(t)η′(t)dt→
∫ T

0

d
dt

[
Fu,v(t)

]
η(t)dt

and then we derive

−C2 ‖u‖H1
0(Ω)‖v‖H1

0 (Ω)

∫ T

0

η(t)dt �
∫ T

0

d
dt

[
Fu,v(t)

]
η(t)dt � C2 ‖u‖H1

0(Ω)‖v‖H1
0(Ω)

∫ T

0

η(t)dt

from which ∣∣∣ d
dt

[
Fu,v(t)

]∣∣∣ � C2 ‖u‖H1
0(Ω)‖v‖H1

0 (Ω).

Analogously we derive that d
dt

∫
Ωu

2(x)r(x, t)dx � µ0 ‖u‖2
H1

0(Ω)
.
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Given r ∈ F(C1, C2, µ0) we introduce the families of operators

R : [0, T ] −→ L(L2(Ω)) , R(t)u := r(·, t)u(·)
R′ : [0, T ] −→ L(H1

0 (Ω), H−1(Ω)) , 〈R′(t)u, v〉 :=
d
dt

∫
Ω

u(x)v(x)r(x, t)dx

R : H −→ H Ru(t) := R(t)u(t)

R′ : V −→ V ′ 〈R′u, v〉V′×V :=
∫ T

0

〈R′(t)u(t), v(t)〉H−1(Ω)×H1
0 (Ω)dt

(8)

and define the following Banach space

W =
{
u ∈ V ∣∣ (Ru)′ ∈ V ′} , ‖u‖W := ‖u‖V + ‖(Ru)′‖V′ (9)

where (Ru)′ denotes the derivative in the distributional sense of Ru with respect to the variable t.
An approximation result we will need later is the following.

Lemma 2.2. Consider R defined in (8). Then for every u ∈ W and σ > 0 there exist v ∈ C1([0, T ];H1
0 (Ω))

and S ∈ C2([0, T ];L(H1
0 (Ω), H−1(Ω))) (defined analogously to R by a s ∈ F(C1, C2, µ0), ∂s

∂t ∈ F(C2,K,−K)
where K = K(C1, σ)) such that

‖u− v‖W < σ , ‖(Ru)′ − (Sv)′‖V′ < σ.

Moreover S can be chosen in such a way that S′(0) = 0.

Proof. Fix u ∈ W = WR and σ > 0. From Proposition 2.4 in [8] we derive the existence of v ∈ C1([0, T ];H1
0 (Ω))

such that

‖u− v‖W < σ/2 .

Consider a family of mollifiers (ρε)ε>0 and, after defining

R̄(t) :=
{
R(t) if t ∈ [0, T ]
0 if t �∈ [0, T ] ,

consider

Rε(t) =
∫
R

R̄(τ)ρε(t− τ)dτ

and the corresponding Rεu(t) := Rε(t)u(t). Note that R ∈ W 1,∞(0, T ;L(H1
0 (Ω), H−1(Ω))) and Rε → R in

L∞(0, T ;L(H1
0 (Ω), H−1(Ω))) ∩W 1,q(0, T ;L(H1

0 (Ω), H−1(Ω))) for every q < +∞.
Clearly 〈R′

ε(t)u, u〉H−1(Ω)×H1
0 (Ω) = 〈∫

R
R̄′(τ)ρε(t− τ)dτ u, u〉 � µ0‖u‖2

H1
0(Ω)

.
Observe that, since v ∈ C1([0, T ];H1

0 (Ω)), v ∈ WR and v ∈ WRε for every ε > 0. Then, since

‖(Ru)′ − (Rεv)′‖V′ � ‖(Ru)′ − (Rv)′‖V′ + ‖(Rv)′ − (Rεv)′‖V′ ,

to prove the result it is sufficient to estimate ‖(Rv)′− (Rεv)′‖V′ . Since Rε → R in L∞(0, T ;L(H1
0 (Ω), H−1(Ω)))

we have that

Rεv
′ → Rv′ in H,

and therefore it is sufficient to analyse the quantity R′
εv − R′v. We consider a function φ ∈ V and by the
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generalized Hölder’s inequality we have for every p > 2

∣∣∣〈R′
εv −R′v, φ〉V′×V

∣∣∣ =
∣∣∣ ∫ T

0

〈R′
ε(t)v(t) −R′(t)v(t), φ(t)〉H−1×H1

0
dt

∣∣∣
�

[ ∫ T

0

‖R′
ε(t) −R′(t)‖2p/(p−2)

L(H1
0 ,H−1)

dt
] p−2

2p
[ ∫ T

0

‖v(t)‖p
H1

0 (Ω)
dt

] 1
p
[ ∫ T

0

‖φ(t)‖2
H1

0 (Ω)dt
] 1

2
.

Taking the supremum with respect to φ, ‖φ‖H1
0 (Ω) = 1, we obtain that

‖R′
εv −R′v‖V′ � ‖R′

ε −R′‖L2p/(p−2)(0,T ;L(H1
0 (Ω),H−1(Ω)))‖v‖Lp(0,T ;H1

0 (Ω))

for a p > 2 and since R′
ε → R′ in Lq(0, T ;L(H1

0 (Ω), H−1(Ω))) for every q < +∞ we conclude choosing S = Rε

for ε sufficiently small.
Moreover we can choose S in such a way S′(0) = 0. To do this it is sufficient to consider the function

η(t) = δ−1t in [0, δ] and η(t) = 1 in [δ, T ], and choose

S(t) =
∫ t

0

η(τ)R′
ε(τ)dτ +Rε(0).

It is sufficient to estimate ‖(Rεv)′ − (Sv)′‖V′ . First we estimate Rεv
′ − Sv′ in H:∫ T

0

‖Rε(t)v′(t) − S(t)v′(t)‖2
L2(Ω)dt � ‖R′

ε‖2
L∞(0,T ;L(H1

0 (Ω),H−1(Ω)))‖v′‖2
V δ

2 .

Similarly we can obtain ‖R′
εv − S′v‖V′ � ‖R′

ε‖L∞(0,T ;L(H1
0(Ω),H−1(Ω)))‖v‖V

√
δ. Since δ is arbitrary we are

done. �
For the following result see Proposition 2.6 in [8].

Theorem 2.3. For every u, v ∈ W the following holds:

d
dt

(Ru(t), v(t))L2(Ω) = 〈R′u(t), v(t)〉H−1(Ω)×H1
0 (Ω)

+ 〈Ru′(t), v(t)〉H−1(Ω)×H1
0 (Ω) + 〈Rv′(t), u(t)〉H−1(Ω)×H1

0 (Ω).
(10)

Moreover the function t �→ (R(t)u(t), u(t))L2(Ω) is continuous and there is a constant c = c(T, ‖R‖) (depending
only on T, ‖R‖ � C1) such that

max
[0,T ]

|(R(t)u(t), u(t))L2(Ω)| � c ‖u‖2
W . (11)

Remark 2.4. Observe that, if R(t)v(x) = r(x, t)v(x) for every v ∈ L2(Ω) and for a r ∈ F(C1, C2, µ0), by
Theorem 2.3 we deduce that if u ∈ W then

u(t) ∈ L2(Ωr
+(t), r(·, t)) for every t ∈ [0, T ] ,

where Ωr
+(t) is defined in (7) and L2(Ωr

+(t), r(·, t)) denotes the completion of L2(Ωr
+(t)) with respect to the

norm ‖v‖2 :=
∫
Ω
v2(x)r(x, t)dx. Observe that

L2(Ω) ⊂ L2(Ωr
+(t), r(·, t)) and

∫
Ωr

+(t)

v2(x)r(x, t)dx � C1

∫
Ω

v2(x)dx

for every v ∈ L2(Ω) and every t ∈ [0, T ].
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We recall the definition of the class MΩ×(0,T )(λ0,Λ0,M), with λ0 � Λ0 and M positive real numbers, given
in (1), characterised by

a = [aij(x, t)]ni,j=1 such that

λ0|ξ|2 �
(
a(x, t) · ξ, ξ) � Λ0|ξ|2∣∣(a(x, t) · ξ, η)∣∣ � M

(
a(x, t) · ξ, ξ)1/2(

a(x, t) · η, η)1/2

(12)

for every ξ, η ∈ Rn, for a.e. (x, t) ∈ Ω × (0, T ). By MΩ×(0,T )(λ0,Λ0,M,N), N non-negative constant, we
denote the subclass of MΩ×(0,T )(λ0,Λ0,M) satisfying the further assumption∣∣a(x, t) − a(x, s)

∣∣ � N |t− s| (13)

for a.e. x ∈ Ω and every s, t ∈ [0, T ]. For simplicity we define the family of operators

A : [0, T ] → L(H1
0 (Ω), H−1(Ω)) 〈A(t)u, v〉H−1(Ω)×H1

0 (Ω) =
∫

Ω

(
a(x, t) ·Du(x), Dv(x)

)
dx

A : V → V ′ Au(t) = A(t)u(t).
(14)

Observe that under assumption (13) if we choose a ∈ MΩ×(0,T )(λ0,Λ0,M,N) we can define A′ : [0, T ] →
L(H1

0 (Ω), H−1(Ω))

〈
A′(t)u, v

〉
H−1×H1

0
=

∫
Ω

(
a′(x, t) ·Du(x), Dv(x)

)
dx where a′ij(x, t) =

∂aij

∂t
(x, t)

which by (13) turns out to be bounded. We recall now an existence result contained in [8] (Th. 3.8). Before we
give the definition of solution.

Definition 2.5. Given a ∈ MΩ×(0,T )(λ0,Λ0,M), r ∈ F(C1, C2, µ0) with µ0 > −2λ0, f ∈ V ′, ϕ ∈ L2(Ωr
+(0),

r(·, 0)) (see Rem. 2.4 for the definition of this space) a function u ∈ W is a solution of⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂

∂t
(ru) − div(a ·Du) = f on Ω × (0, T )

u = 0 in ∂Ω × (0, T )

u(x, 0) = ϕ in Ωr
+(0)

(15)

if

〈(Ru)′(t), v〉H−1(Ω)×H1
0 (Ω) + 〈Au(t), v〉H−1(Ω)×H1

0 (Ω) = 〈f(t), v〉H−1(Ω)×H1
0 (Ω)∫

Ω

(
u(x, 0) − ϕ(x)

)2
r(x, 0) dx = 0

for every v ∈ H1
0 (Ω) and for a.e. t ∈ [0, T ] and the initial datum makes sense in L2(Ωr

+(0), r(·, 0)) thanks to
Theorem 2.3. If r ≡ 0 the initial condition has no meaning and in this case a solution is a function u ∈ V such
that

〈Au(t), v〉H−1(Ω)×H1
0 (Ω) = 〈f(t), v〉H−1(Ω)×H1

0 (Ω)

for every v ∈ H1
0 (Ω) and for a.e. t ∈ [0, T ].

Theorem 2.6. Consider a ∈ MΩ×(0,T )(λ0,Λ0,M), r ∈ F(C1, C2, µ0) with µ0 > −2λ0. For every f ∈ V ′ and
ϕ ∈ L2(Ωr

+(0), r(·, 0)) problem (15) has a unique solution u ∈ W and there exists a constant c = c(µ0, λ0,Λ0, C2)
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(depending only on µ0, λ0, Λ0, C2) such that

‖u‖W � c
[
‖f‖V′ + ‖ϕ(·)r1/2(·, 0)‖L2(Ω)

]
. (16)

Statement of the problem - Fix f ∈ V ′ and ϕ ∈ L2(Ω) and consider

(ah)h ⊂ MΩ×(0,T )(λ0,Λ0,M,N),

(rh)h ⊂ F(C1, C2, µ0)

µ0 > −2λ0.

(17)

Assumption µ0 > −2λ0 is required to have existence to problems (18) (see Th. 2.6).
Then we consider the sequence of elliptic-parabolic problems⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂

∂t
(rhu) − div(ah ·Du) = f on Ω × (0, T )

u = 0 in ∂Ω × (0, T )

u(x, 0) = ϕ in Ωh,+(0)

(18)

where Ωh,+(t) := Ωrh
+ (t). We consider ϕ ∈ L2(Ω) so that problem (18) makes sense for every h ∈ N, since

L2(Ω) is dense in L2(Ωh,+(0), rh(·, 0)) for every h ∈ N (see Rem. 2.4).
We want to study the asymptotic behaviour of the solutions uh when h → +∞ and characterise the limit

problem.
The main difficulty is the lack of compactness of the solutions in L2(0, T ;L2(Ω)) which is natural in the

classical case, i.e. when rh ≡ 1.
In this framework the natural compactness result reads as follows in the theorem below (see Th. 2.14 and

Th. 2.18 in [8]). Before we define

Wh =
{
u ∈ V ∣∣ (rhu)′ ∈ V ′}. (19)

Theorem 2.7. Consider a sequence (uh)h such that uh ∈ Wh and ‖uh‖Wh
� c for a positive constant c. Then

(uh)h is relatively compact

(i) in L2(0, T ;L2(Ω)) if rh → r in L∞(Ω × (0, T ))-weakly ∗ and r > 0 almost everywhere;
(ii) in L2(Q+; r), the completion of Cc(Q+) with respect to the norm ‖ur1/2‖L2(Q+) where Q+ = {(x, t) ∈

Ω × (0, T ) | r(x, t) > 0}, if rh → r in L∞(Ω × (0, T )) (strongly).

We by-pass the problem of the lack of compactness in L2(0, T ;L2(Ω)) via the following regularity result (see
Th. 3.11 and Cor. 3.13 in [8]).

Theorem 2.8. Consider the problem (15). Assume that, besides to assumptions of Theorem 2.6, ∂r/∂t ∈
F(K1,K2), i.e. satisfies (i)− (iv) of (6) with constants K1,K2, and a satisfies (13). Suppose moreover that f ∈
H1(0, T ;H−1(Ω)) and that there exists u0 ∈ H1

0 (Ω) such that u0 = ϕ in Ωr
+(0) and f(0)+div (a(x, 0)Du0(x))−

∂r
∂t (x, 0) = r(x, 0)v(x) for some v ∈ L2(Ωr

+(0)). Then the solution u satisfies

u ∈ H1(0, T ;H1
0(Ω)) and ‖u‖H1(0,T ;H1

0 (Ω)) � c

for a positive constant c depending (only) on µ0, λ0,Λ0, C2, N,K2, ‖f‖H1(0,T ;H−1(Ω)),
‖r1/2(·, 0)v‖L2(Ω), ‖r1/2(·, 0)u0‖L2(Ω).
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3. Preliminary compactness results

In this section we will suppose more regularity on the sequence (rh)h than we will require to state the main
theorem (see Th. 4.5). Precisely in this section we require (see (12), (13) and (6))

(ah)h ⊂ MΩ×(0,T )(λ0,Λ0,M,N),

(rh),⊂ F(C1, C2, µ0),
(∂rh
∂t

)
h
⊂ F(K1,K2, ν0)

(20)

for some constants K1,K2, ν0. Consider the problems⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂

∂t
(rhu) − div(ah ·Du) = g on Ω × (0, T )

u = 0 in ∂Ω × (0, T )

u = ψh in Ωh,+(0) × {0}
(21)

where g ∈ H1(0, T ;H−1(Ω)) ⊂ C([0, T ];H−1(Ω)) and ψh is the solution to{
Ehw := −div(ah(x, 0) ·Dw(x)) +

∂rh
∂t

(x, 0)w(x) = g(x, 0) in Ω

w = 0 in ∂Ω,
(22)

where the linear, elliptic and bounded operator Eh : H1
0 (Ω) → H−1(Ω) can be considered because ah and rh

are continuous in the variable t.
Before stating the main result we recall the following lemma. Denote by cP the constant appearing in the

Poincaré’s inequality ∫
Ω

u2(x)dx � cP

∫
Ω

|Du|2(x)dx, u ∈ H1
0 (Ω). (23)

Lemma 3.1. Consider a, a1, a2... ∈ MΩ(λ0,Λ0,M) and suppose ah
EG−→ a (see Def. 1.1). Consider a sequence

of functions (bh)h ⊂ L∞(Ω), bh � γ for every h ∈ N where −λ0/cP < γ � 0 and suppose bh → b in L∞(Ω)-
weak∗. Then for every f ∈ H−1(Ω) it results that

wh → w in L2(Ω)
ah ·Dwh → a ·Dw in L2(Ω)n-weak,

where wh and w denote respectively the solutions{ −div(ah ·Dv) + bhv = f in Ω
v = 0 in ∂Ω

{ −div(a ·Dv) + bv = f in Ω
v = 0 in ∂Ω.

Proof. Since −λ0/cP < γ � 0 we have that∫
Ω

bhv
2dx �

∫
Ω

γv2dx � cP γ

∫
Ω

|Dv|2dx

and then the elliptic operators v �→ −div(ah · Dv) + bhv are equicoercive. Since the solutions are compact
in L2(Ω) we have, up to a subsequence, that −bhwh converges to −bw weakly in L2(Ω) and then strongly in
H−1(Ω). Then we obtain the thesis observing that wh solve the problems{ −div(ah ·Dv) = fh := f − bhwh in Ω

v = 0 in ∂Ω. �
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Remark 3.2. As a consequence we have that, if ah(·, 0) EG−→ a(·, 0) and (rh)h ⊂ F(C1, C2, µ0), (∂rh

∂t )h ⊂
F(K1,K2, ν0) for some K1,K2, ν0 and |∂rh

∂t |(x, 0) � α for every h ∈ N with 0 � α < λ0/cP are such that
rh → r in L∞(Ω × (0, T ))-weak∗ (see also Rem. 2.1) equation (22) admits a unique solution since∫

Ω

u2(x)
∂rh
∂t

(x, 0)dx � −α
∫

Ω

u2(x)dx > −λ0

∫
Ω

|Du|2(x)dx.

The solutions ψh of (22) satisfy

ψh → ψ in L2(Ω), ah ·Dψh → a ·Dψ in L2(Ω)n-weak,

where ψ is the solution of{
Ew := −div(a(x, 0) ·Dw(x)) +

∂r

∂t
(x, 0)w(x) = g(x, 0) in Ω

w = 0 in ∂Ω.

Now we state the first compactness result.

Lemma 3.3. Consider the problems (21) with the data g ∈ H1(0, T ;H−1(Ω)) and ψh = E−1
h g(0) and denote

by uh ∈ Wh the corresponding solutions. Then the sequence

(uh)h is bounded in H1(0, T ;H1
0(Ω)).

As a consequence we obtain that

(uh)h is relatively compact in C([0, T ];L2(Ω)),

the sequence t �→
∫

Ω

u2
h(x, t)rh(x, t)dx is relatively compact in C([0, T ]).

Proof. Since g(0)+div(ah(·, 0) ·Dψh)− ∂rh
∂t

(·, 0)ψh = 0, hypotheses of Theorem 2.8 are satisfied. Then we have
that the solutions satisfy the estimations

‖uh‖H1(0,T ;H1
0 (Ω)) � c, ‖uh‖C([0,T ];H1

0(Ω)) � c.

We deduce that (uh)h is equibounded in C([0, T ];H1
0 (Ω)) and therefore the sets {uh(t) | h ∈ N} are relatively

compact in L2(Ω) for every t ∈ [0, T ]. Moreover

uh(t) − uh(s) =
∫ t

s

u′h(τ)dτ

and then

‖uh(t) − uh(s)‖H1
0 (Ω) �

∫ t

s

‖u′h(τ)‖H1
0 (Ω)dτ � |t− s|1/2‖u′h‖V ,

so (uh)h is also equicontinuous valued in H1
0 (Ω) (and in particular in L2(Ω)). Then by Lemma 1 in [12] we

obtain (uh)h relatively compact in C([0, T ];L2(Ω)).
To prove the second statement denote for simplicity by (uh)h a subsequence converging in C([0, T ];L2(Ω))

and call u the limit in C([0, T ];L2(Ω)). Consider the sequence (rh)h: by Remark 2.1 we have the existence of



ASYMPTOTIC BEHAVIOUR OF ... : A UNITARY APPROACH 679

r ∈ F(C1, C2, µ0) such that, up to a subsequence, rh → r in L∞(Ω × (0, T ))-weak∗. Then, for t, s ∈ [0, T ],

∣∣∣ ∫
Ω

u2
h(x, t)rh(x, t)dx −

∫
Ω

u2
h(x, s)rh(x, s)dx

∣∣∣
�

∣∣∣ ∫
Ω

u2
h(x, t)rh(x, t)dx −

∫
Ω

u2
h(x, t)rh(x, s)dx

∣∣∣
+

∣∣∣ ∫
Ω

u2
h(x, t)rh(x, s)dx −

∫
Ω

u2
h(x, s)rh(x, s)dx

∣∣∣.
By (6) and the continuity of uh : [0, T ] → L2(Ω) we infer that t �→ ∫

Ω
u2

h(x, t)rh(x, t)dx is continuous. Moreover

∣∣∣ ∫
Ω

u2
h(x, t)rh(x, t)dx −

∫
Ω

u2(x, t)r(x, t)dx
∣∣∣

�
∣∣∣ ∫

Ω

u2
h(x, t)rh(x, t)dx −

∫
Ω

u2(x, t)rh(x, t)dx
∣∣∣

+
∣∣∣ ∫

Ω

u2(x, t)rh(x, t)dx −
∫

Ω

u2(x, t)r(x, t)dx
∣∣∣

� ‖rh‖∞
∫

Ω

|u2
h(x, t) − u2(x, t)|dx +

∣∣∣ ∫
Ω

u2(x, t)
(
rh(x, t) − r(x, t)

)
dx

∣∣∣
by which we obtain the thesis. �
Theorem 3.4. Consider a sequence of functions vh ∈ Wh (h = 1, 2, ...), a function v ∈ W, a constant c1 such
that

‖vh‖Wh
� c1 for every h, vh → v in C([0, T ];L2(Ω)), (24)

and a sequence of vectorial functions mh,m ∈ L2(0, T ; (L2(Ω))n) (h = 1, 2, ...), a constant c2 such that

‖mh‖L2(0,T ;(L2(Ω))n) � c2 mh → m in L2(0, T ; (L2(Ω))n)-weak. (25)

Moreover suppose that
(rhvh)′ − div (mh) = f ∈ V ′ in C1

c (Ω × (0, T )). (26)
Then (

mh, Dvh

) → (
m,Dv

)
in D′(Ω × (0, T )).

Proof. Fix a function ϕ ∈ C∞
c (Ω × (0, T )) and multiply equation (26) by vhϕ. We obtain∫ T

0

∫
Ω

(mh, Dvh)ϕdxdt = 〈f − (rhvh)′, vhϕ〉 −
∫ T

0

∫
Ω

(mh, Dϕ)vh dxdt. (27)

Clearly 〈f, vhϕ〉 → 〈f, vϕ〉 as h → ∞ and
∫ T

0

∫
Ω

(mh, Dϕ)vhdxdt →
∫ T

0

∫
Ω

(m,Dϕ)vdxdt. By (10) and since

ϕ has compact support in Ω × (0, T ) we have that

−2〈(rhvh)′, vhϕ〉 =
∫ T

0

∫
Ω

v2
h(x, t)rh(x, t)

∂ϕ

∂t
(x, t)dxdt −

∫ T

0

∫
Ω

v2
h(x, t)ϕ

∂rh
∂t

(x, t)dxdt

which converges to∫ T

0

∫
Ω

v2(x, t)r(x, t)
∂ϕ

∂t
(x, t)dxdt −

∫ T

0

∫
Ω

v2(x, t)ϕ
∂r

∂t
(x, t)dxdt = −2〈(rv)′, vϕ〉.
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Then ∫ T

0

∫
Ω

(mh, Dvh)ϕdxdt → 〈f − (rv)′, vϕ〉 −
∫ T

0

∫
Ω

(m,Dϕ)v dxdt

and since, multiplying (26) by φ ∈ C∞
c (Ω × (0, T )) and taking the limit, we also have

(rv)′ − div (m) = f in V ,

we obtain the thesis. �

4. The definition of G-convergence and the compactness result

In this section we give the main result, a compactness result with respect to G-convergence defined below
(see Def. 4.3) for a sequence of operators (see (12) and (6))

Phu =
∂

∂t
(rhu) − div(ah ·Du),

(ah)h ⊂ MΩ×(0,T )(λ0,Λ0,M,N), (rh)h ⊂ F(C1, C2, µ0).
(28)

The statement of this result is divided in two theorems. In the first one (Th. 4.1) we suppose the regularity
required in the previous section, i.e. (20), and prove a partial result: the existence of a limit operator in
divergence form. The second result (Th. 4.5) is a kind of uniqueness result: with less assumptions on the
coefficients, i.e. satisfying the assumptions in (28), we will prove that the matrix defining the limit operator is
independent of the sequence (rh).

Theorem 4.1. Consider a sequence (ah)h ⊂ MΩ×(0,T )(λ0,Λ0,M,N) and (rh)h ⊂ F(C1, C2, µ0) with (∂rh

∂t )h ⊂
F(K1,K2, ν0) and ∂rh

∂t (x, 0) = 0 for every h ∈ N. There exist a matrix a ∈ MΩ×(0,T )(λ0, M
2Λ0,M

√
Λ0/λ0)

and a function r ∈ F(C1, C2, µ0) such that for every f ∈ V ′ and ϕ ∈ L2(Ω) the solutions uh of problems (18),
h ∈ N, satisfy, up to a subsequence,

uh → u in L2(0, T ;L2(Ω)) and ah ·Duh → a ·Du in L2(0, T, L2(Ω)n)-weak

where u is the solution of ⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂(ru)
∂t

− div(a ·Du) = f in Ω × (0, T )

u = 0 in ∂Ω × (0, T )

u = ϕ in Ωr
+(0) × {0}.

(29)

Remark 4.2. The result is true also if in (18) we consider a sequence of data (fh)h ⊂ V ′, (fh)h relatively
compact in V ′, and (ϕh)h ⊂ L2(Ω), ϕh relatively compact in L2(Ω).

Proof. First, by Remark 2.1, from (rh)h we can extract a subsequence, still denoted by (rh)h, such that rh → r
in L∞(Ω × (0, T )-weak ∗ and r ∈ F(C1, C2, µ0). Denote by R the operator defined by

R : L2(0, T ;L2(Ω)) → L2(0, T ;L2(Ω)), (Ru)(x, t) = r(x, t)u(x, t). (30)

Analogously (to short) we denote by Rh the operators associated to rh and by Ah the operators associated to
ah as defined in (14). Fix X a countable and dense subset of H1(0, T ;H−1(Ω)) and Y = {y ∈ H1

0 (Ω) | y =
E−1g(0) for g ∈ X} where E is the operator defined in Remark 3.2 (the EG-limit, up to a subsequence, of
{ah(·, 0)}h). Then consider g ∈ X and ψ = E−1g(0) (and denote by uh(g, ψ) the solutions to the problems (21)
with ψh = E−1

h

(
Eψ

)
where Eh are the operators in (22).
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By Lemma 3.3 we have that the solutions uh(g, ψ) are compact in C([0, T ];L2(Ω)), and in particular ψh → ψ
in L2(Ω). Denote by BR(g, ψ) the limit in C([0, T ];L2(Ω)) of uh(g, ψ). In this way we have defined an operator
in Z = {(g, ψ) ∈ X × Y |ψ = E−1g(0)}. BR is linear and continuous (see Th. 2.6). For every h ∈ N we have

‖uh(g, ψ)‖Wh
� c

[‖g‖V′ + ‖
√
rh(·, 0)ψh‖L2(Ω)

]
.

Since (rhuh)′ → (ru)′ weakly in V ′ and, by Lemma 3.3,
√
rh(·, 0)ψh → √

r(·, 0)ψ in L2(Ω), by the lower
semicontinuity of the norm we obtain

‖BR(g, ψ)‖W � c
[‖g‖V′ + ‖

√
r(·, 0)ψ‖L2(Ω)

]
. (31)

Since Z is dense in V ′ × L2(Ωr
+(0), r(·, 0)), we can extend BR (and denote it in the same way)

BR : V ′ × L2(Ωr
+(0), r(·, 0)) → W .

Then we define

KR : V ′ × L2(Ωr
+(0), r(·, 0)) → V ′,

KRf = f − d
dt

(RBR(f, ϕ)
)
,

‖KR(f, ϕ)‖L2(0,T ;H−1(Ω)) � c′
[‖f‖V′ + ‖√r(·, 0)ϕ‖L2(Ω)

]
.

So we have
d
dt

(Rhuh) + Ahuh = f and
d
dt

(RBR(f, ϕ)) + KR(f, ϕ) = f. (32)

Multiplying the first in (32) by uh we have (where 〈·, ·〉 denotes the duality between V ′ and V)

1
2

∫
Ω

u2
h(x, T )rh(x, T )dx− 1

2

∫
Ω

ϕ2(x)rh(x, 0)dx +
∫ T

0

∫
Ω

∂rh
∂t

u2
h dxdt

+
∫ T

0

∫
Ω

(
ah ·Duh, Duh

)
dx dt = 〈f, uh〉

and the second by BR(f, ϕ) we have

1
2

∫
Ω

BR(f, ϕ)2(x, T )r(x, T )dx− 1
2

∫
Ω

ϕ2(x)r(x, 0)dx +
∫ T

0

∫
Ω

∂r

∂t
BR(f, ϕ)2dx dt

+〈KR(f, ϕ),BR(f, ϕ)〉 = 〈f,BR(f, ϕ)〉.

Since

〈f, uh〉 → 〈f,BR(f, ϕ)〉∫
Ω

u2
h(x, T )rh(x, T )dx→

∫
Ω

BR(f, ϕ)2(x, T )r(x, T )dx∫
Ω

ϕ2(x)rh(x, 0)dx→
∫

Ω

ϕ2(x)r(x, 0)dx∫ T

0

∫
Ω

∂rh
∂t

u2
hdxdt →

∫ T

0

∫
Ω

∂r

∂t
BR(f, ϕ)2dxdt

(33)
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we deduce that ∫ T

0

∫
Ω

(
ah ·Duh, Duh

)
dxdt = 〈Ahuh, uh〉 → 〈KR(f, ϕ),BR(f, ϕ)〉. (34)

The operator BR is injective: indeed if BR(f, ϕ) = 0, 〈Ahuh, uh〉 → 0 and then ‖uh‖V → 0. Since (Rhuh)′ →
(RBR(f, ϕ))′ weakly in V ′ we have that Ahuh → KR(f, ϕ) weakly in V ′. Since Ah are equibounded and uh → 0
we conclude that KR(f, ϕ) = 0, i.e. f − d

dt (RBR(f, ϕ)) = 0. Than f = 0. Clearly, since BR(f, ϕ) = 0 and, by
Theorem 2.3, we also have that ϕ = 0 in L2(Ωr

+(0), r(·, 0)).
Now we show that BR(V ′ × L2(Ωr

+(0), r(·, 0))) is dense in V : fix g ∈ V ′ such that

〈g,BR(f, ϕ)〉 = 0 for every f ∈ V , ϕ ∈ L2(Ωr
+(0), r(·, 0)).

In particular 〈g,BR(g, 0)〉 = 0 and then〈
d
dt

(RBR(g, 0)
)

+ KR(g, 0),BR(g, 0)
〉

= 0

i.e. 〈KR(g, 0),BR(g, 0)〉 � 0. But by (34) we know that 〈KR(g, 0),BR(g, 0)〉 � 0, then it is zero. Therefore
uh(g, 0) → 0 and as above we deduce that g = 0.

Thus we can define the inverse of BR: if we define

AR : BR
(V ′ × L2(Ωr

+(0), r(·, 0))
) −→ V ′

BR(f, ϕ) �→ KR(f, ϕ),

by density we can define an operator, still denoted by AR,

AR : V → V ′.

Now we need to define a last operator: for every (g, ψ) ∈ (X,Y ) the sequence ah · Duh(g, ψ) is bounded in
L2(0, T ;L2(Ω)n) and, up to a subsequence, weakly converges in L2(0, T ;L2(Ω)n)

ah ·Duh(g, ψ) → µ(g, ψ). (35)

We have that

|ah(x, t) ·Duh(g, ψ)(x, t)| = sup|η|=1

(
ah(x, t) ·Duh(x, t), η

)
� MΛ1/2

0

(
ah(x, t) ·Duh(x, t), Duh(x, t)

)1/2
.

By Lemma 7.8 in [2] and Theorem 3.4 we have that

|µ(g, ψ)| � MΛ1/2
0

(
µ(g, ψ), DBR(g, ψ)

)1/2

from which
|µ(g, ψ)| � M2Λ0|DBR(g, ψ)|. (36)

Again by density, using (31), we can extend

µ : V ′ × L2(Ωr
+(0), r(·, 0)) → L2(0, T ;L2(Ω)n).

We define now PRu := (Ru)′ + ARu and

MR : W −→ L2(0, T ;L2(Ω)n)
u �→ µ

(PRu, P+(0)u(0)
) (37)
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where P+(0)w is the restriction to Ωr
+(0) of a function w defined in Ω. Observe that by (36), (32) and the

definition of AR and PR one has, for every u ∈ W ,

|MRu| � M2Λ0|Du|. (38)

By definition we have that for every v ∈ V

〈ARu, v〉 =
∫ T

0

∫
Ω

(
MRu,Dv

)
dx dt. (39)

Now we want to construct a matrix a such that for every u, v ∈ V∫ T

0

∫
Ω

(
MRu,Dv

)
dx dt =

∫ T

0

∫
Ω

(
a ·Du,Dv)dx dt.

For this purpose fix ω ⊂⊂ Ω and a function η ∈ C1(Ω × [0, T ]) with η(·, t) ∈ C1
c (Ω) for every t ∈ [0, T ] such

that η = 1 on ω× [0, T ]. Define φξ(x, t) = (ξ, x)η(x, t) ((ξ, x) denotes the scalar product in Rn). Finally, if r is
the function in (30), define

ar(x, t) · ξ = MR
(PRφξ, P+(0)φξ(x, 0)

)
for (x, t) ∈ ω × [0, T ].

From (39) we obtain that

〈ARu, v〉 =
∫ T

0

∫
Ω

(
arDu,Dv

)
dx dt (40)

and arguing as in [15], Theorem 3, we obtain

λ0|ξ|2 � (ar(x, t) · ξ, ξ), (ar(x, t) · ξ, η) � MΛ1/2
0 (ar(x, t) · ξ, ξ)1/2|η|1/2

for a.e. (x, t) ∈ Ω × (0, T ) and for every ξ, η ∈ Rn. Then also for the operator AR we have

λ0‖u‖V � 〈ARu, u〉 and |〈ARu, v〉| � M2Λ0‖u‖V‖v‖V . �

Definition 4.3. Consider a sequence (ah)h ⊂ MΩ×(0,T )(λ0,Λ0,M,N). We say that

ah
G−→ a in Ω × (0, T )

if for every f ∈ V ′, for every ϕ ∈ L2(Ω) and for every (rh)h ⊂ F(C1, C2, µ0) and r ∈ F(C1, C2, µ0) with
µ0 > −2λ0 and

rh → r L∞(Ω × (0, T ))-weak∗
it results that

uh → u in L2(0, T, L2(Ω))
ah ·Duh → a ·Du in L2(0, T, L2(Ω)n)-weak,

where uh and u denote respectively the solutions of⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂

∂t
(rhv) − div(ah ·Dv) = f in Ω × (0, T )

v = 0 in ∂Ω × (0, T )

v = ϕ in Ωh,+(0) × {0}

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂

∂t
(rv) − div(a ·Dv) = f in Ω × (0, T )

v = 0 in ∂Ω × (0, T )

v = ϕ in Ωr
+(0) × {0}.
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Before stating the main result we need a short and preliminary lemma regarding the following problems⎧⎨⎩ Ahu = −div(ah ·Du) = f in Ω × (0, T )

u = 0 in ∂Ω × (0, T )
(41)

where (ah)h ⊂ MΩ×(0,T )(λ0,Λ0,M,N).

Lemma 4.4. Consider the problems (41) with f ∈ H1(0, T ;H−1(Ω)) and suppose the solutions uh satisfy

uh → u in L2(0, T ;L2(Ω)) and ah ·Duh → a ·Du in L2(0, T, L2(Ω)n)-weak

where u is the solution of ⎧⎨⎩ Au = −div(a ·Du) = f in Ω × (0, T )

u = 0 in ∂Ω × (0, T ).

Then t �→ a(·, t) is continuous (limt→s ‖|a(·, t) − a(·, s)|‖L∞(Ω) = 0 for every s ∈ [0, T ]) and ah(·, t) EG−→ a(·, t)
for every t ∈ [0, T ].

Proof. Let uh be the solution of (41), where Ah : V → V ′. Observe that uh(t) solves Ah(t)uh(t) = f(t) for
almost every t ∈ [0, T ]. Then, by Theorem 2.8, (uh)h is equibounded and equicontinuous in [0, T ] with respect
to the H1

0 (Ω)-norm and moreover uh → u in C([0, T ];L2(Ω)). Then we have for every t ∈ [0, T ]

A−1
h (t)f(t) → A−1(t)f(t) in L2(Ω) .

Moreover we have that, for every Φ ∈ L2(Ω)n, the functions t �→ ∫
Ω
(ah(x, t)Duh(x, t),Φ)dx are equicontinuous

and equibounded. Indeed∣∣∣ ∫
Ω

(ah(x, t)Duh(x, t),Φ)dx −
∫

Ω

(ah(x, s)Duh(x, s),Φ)dx
∣∣∣ �

� N |t− s|
∫

Ω

∣∣∣(Duh(x, t),Φ)
∣∣∣dx+MΛ0

[ ∫
Ω

∣∣∣Duh(x, t) −Duh(x, s)
∣∣∣2dx∫

Ω

∣∣Φ∣∣2dx]1/2

.

By equicontinuity of (uh)h in H1
0 (Ω) we conclude that the sequence t �→ ∫

Ω
(ah(x, t)Duh(x, t), Φ)dx is relatively

compact in C([0, T ]), and consequently there is a subsequence (ahj )j (since H1
0 (Ω) is separable) and a vectorial

function V such that for every Φ ∈ L2(Ω)n and η ∈ C[0, T ], one has∫ T

0

η(t)
[ ∫

Ω

(ahj (x, t)Duhj (x, t),Φ(x))dx
]
dt→

∫ T

0

η(t)
[ ∫

Ω

(V (x, t),Φ(x))dx
]
dt.

By assumptions we conclude that V = a · Du. Finally, since this can be derived for every subsequence of
(ah ·Duh)h we conclude that the whole sequence ah(·, t) EG−→ a(·, t) for every t ∈ [0, T ]. The continuity follows
by Theorem 2.4 in [3]. �
Theorem 4.5. The class MΩ×(0,T )(λ0,Λ0,M,N) of matrices satisfying (2) is relatively compact with respect
to G-convergence.

Proof. Consider (ah)h ⊂ MΩ×(0,T )(λ0,Λ0,M,N), f ∈ V ′ and problems (18) with rh ≡ 0 for every h ∈ N
(see Def. (2.5)) and denote by wh the corresponding solutions. By Theorem 4.1 we have that there exists a
subsequence (ahk

)k and a matrix

ā ∈ MΩ×(0,T )(λ0,M
2Λ0,M

√
Λ0/λ0) (42)
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such that the sequence (whk
)k satisfies

whk
→ w in L2(0, T ;L2(Ω)) and ahk

·Dwhk
→ ā ·Dw in L2(0, T ;L2(Ω)n)-weak

where w is the solution of ⎧⎨⎩ −div(ā(x, t) ·Du(x, t)) = f(x, t) in Ω × (0, T )

u = 0 in ∂Ω × (0, T ) .

Now consider a sequence (rh)h ⊂ F(C1, C2, µ0) with (∂rh

∂t )h ⊂ F(K1,K2, ν0). Up to a subsequence

rh → r and
∂rh
∂t

→ ∂r

∂t
in L∞(Ω × (0, T ))-weak∗

for a r ∈ F(C1, C2, µ0) with ∂r
∂t ∈ F(K1,K2, ν0) (see Rem. 2.1). Consider this function r and the matrix ā

in (42) and define the operators in L(H1
0 (Ω), H−1(Ω))

Eh(t)u := −div(ah(·, t) ·Du) +
∂rh
∂t

(·, t)u , E(t)u := −div(ā(·, t) ·Du) +
∂r

∂t
(·, t)u

for every t ∈ [0, T ] (this is possible thanks to Lem. 4.4). Now consider f ∈ V ′ and ϕ ∈ L2(Ω), the following
problems ⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂

∂t
(rhu) − div(ah ·Du) = f on Ω × (0, T )

u = 0 in ∂Ω × (0, T )

u = ϕ in Ωh,+(0) × {0}
and let uh be the corresponding solutions. For every ε > 0 we can find ψ ∈ H1

0 (Ω) and g ∈ H1(0, T ;H−1(Ω))
such that

E(0)ψ = g(0) , ‖ϕ− ψ‖L2(Ω) < ε/2 , ‖f − g‖V′ < ε/2

and define ψh := Eh(0)−1g(0). We have that the sequence of the solutions (vh)h of⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂

∂t
(rhu) − div(ah ·Du) = g on Ω × (0, T )

u = 0 in ∂Ω × (0, T )

u = ψh in Ωh,+(0) × {0}

satisfies, by Theorem 2.6,

‖uh − vh‖L2(0,T ;L2(Ω)) � c(C1)ε

‖ah ·Duh − ah ·Dvh‖L2(0,T ;L2(Ω)n) � c(M,Λ0)ε
(43)

and moreover is relatively compact in C([0, T ];L2(Ω)) by Lemma 3.3. Denote by Rh the operator in L(L2(0, T ;L2(Ω)))
defined by Rhu = rhu and R the operator in L(L2(0, T ;L2(Ω))) defined by Ru = ru. By Theorem 2.8 we have
that, in particular, (Rhvh)′ is relatively compact in C([0, T ];H−1(Ω)). Then, up to a subsequence,

(Rhvh)′ → (Rv)′ in C([0, T ];H−1(Ω)).
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Observe then that vh solves the following problem in V⎧⎨⎩ −div(ah(x, t) ·Dv(x, t)) = g(x, t) − ∂

∂t

(
rh(x, t)vh(x, t)

)
=: gh(x, t) in Ω × (0, T )

v = 0 in ∂Ω × (0, T )

with, up to a subsequence, gh → g − ∂(rv)
∂t strongly in V ′ and moreover vh(x, 0) = ψh(x) in Ωh,+(0). By

Remark 4.2 we have that if we consider the subsequence (ahk
)k (or if necessary extracting from this another

subsequence because of (rh)h) we have that

vhk
→ v in C([0, T ];L2(Ω)) and

ahk
·Dvhk

→ ā ·Dv in L2(0, T ;L2(Ω)n)-weak
(44)

where v is the solution of⎧⎨⎩ −div(ā(x, t) ·Dv(x)) = f(x, t) − ∂

∂t
(r(x, t)v(x, t)) in Ω × (0, T )

v = 0 in ∂Ω × (0, T )

and moreover, by Lemma 3.3,(
rhk

(x, 0)
)1/2

vhk
(x, 0) → (

r(x, 0)
)1/2

v(x, 0) in L2(Ω).

Since (rhk
(x, 0))1/2vhk

(x, 0) = (rhk
(x, 0))1/2ψhk

(x) and ψhk
→ ψ in L2(Ω) (by Lemma 3.1 and Remark 3.2) we

conclude that v solves ⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂

∂t
(rv) − div(ā ·Dv) = g on Ω × (0, T )

v = 0 in ∂Ω × (0, T )

v = ψ in Ωr
+(0) × {0}.

Now consider the solution u to the problem⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂

∂t
(ru) − div(ā ·Du) = f on Ω × (0, T )

u = 0 in ∂Ω × (0, T )

u = ϕ in Ωr
+(0) × {0}.

Then taking the limit in

‖uhk
− u‖V � ‖uhk

− vhk
‖V + ‖vhk

− v‖V + ‖v − u‖V
we obtain thanks to (43) and (44) that limk ‖uhk

− u‖V � c ε. In the same way we obtain that∣∣∣ lim
k

∫ T

0

∫
Ω

[(
ahk

·Duhk
,Φ

) − (
ā ·Du,Φ)]

dx dt
∣∣∣ � c ε

for every Φ ∈ C1
c (Ω)n. This concludes the proof that the matrix ā does not depend on the sequence (rh)h and

on the limit r.
Now we show that the hypothesis (∂rh

∂t )h ⊂ F(K1,K2, ν0) can be dropped. Then suppose only (rh)h ⊂
F(C1, C2, µ0), let r be the limit of rh as before and denote by uh the solutions to problems (18). By Lemma 2.2 for
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every h ∈ N we can consider a sequence of functions vh ∈ V and a sequence of functions sh, (sh)h ⊂ F(C1, C2, µ0)
and (∂sh

∂t )h ⊂ F(C2,K,−K), with K independent of h, such that (we denote by Sh the operator defined by
Shw = shw and recall the definition of Wh is given in (19))

‖uh − vh‖Wh
<

1
h
, ‖(Rhuh)′ − (Shvh)′‖V′ <

1
h
, and moreover S′

h(0) = 0.

By the first of these estimates and by (11) we obtain that∫
Ω

|uh(x, 0) − vh(x, 0)|2rh(x, 0)dx < c
1
h2

and since uh(x, 0) = ϕ(x) in Ωh,+ we have∫
Ω

|ϕ(x) − vh(x, 0)|2rh(x, 0)dx < c
1
h2

·

Observe that the function vh solve the following problem⎧⎨⎩ (Shw)′ + Ahw = fh := f + (Shvh)′ − (Rhuh)′ + Ahvh −Ahuh

P+,h(0)w(0) = ϕh := ϕ+
(
vh(0) − uh(0)

)
.

By Lemma 2.2 we have that fh → f in V ′ and finally, by Remark 4.2 since Sh satisfy hypotheses of Theorem 4.1,
we obtain, taking the limit, that there exist a function v ∈ V and a function s ∈ F(C1, C2, µ0) such that, up to
a subsequence,

vh → v in L2(0, T ;L2(Ω))

ah ·Dvh → ā ·Dv in L2(0, T ;L2(Ω)n)-weak,

where v solves the problem ⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂

∂t
(sv) − div(ā ·Dv) = f on Ω × (0, T )

v = 0 in ∂Ω × (0, T )

v = ϕ in Ωs
+(0) × {0}.

By estimations above we deduce that v = u and that s = r and that

uh → u in L2(0, T ;L2(Ω))

ah ·Duh → ā ·Du in L2(0, T ;L2(Ω)n)-weak

and then the result is completely proved. �

5. Examples

In this section we present first some possible choices in the class F(C1, C2, µ0), then some particular cases
of G-convergence: in Subsection 5.2 the classical variational convergences, in 5.3 the result in homogenization,
in 5.4 the singular perturbations, in which the convergence of the solutions is stronger (Lem. 5.1).
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5.1. Examples of admissible r

1) r ≡ r(x) – Besides r ≡ 1 and r ≡ 0, one can consider more general situations. Every non-negative
r ∈ L∞(Ω), i.e. r = r(x) depending only on x, belongs to the class F(C1, C2, µ0) with C1 = ‖r‖∞ and
C2 = µ0 = 0. Then also

r(x) =
{

1 in a Cantor type set Ω+

0 outside Ω+,

Ω+ with positive measure, is admitted.
2) r = r(t) – Every regular function satisfying suitable bounds can be admitted. Since

t �→
∫

Ω

u(x)v(x)r(t)dx

is required to be absolutely continuous we will require r ∈W 1,∞(0, T ). In this way

d
dt

∫
Ω

u(x)v(x)r(t)dx = r′(t)
∫

Ω

u(x)v(x)dx

and it is sufficient to require (remember µ0 � 0)

0 � r � C1 ,
µ0

cP
� r′(t) � C2,

where cP is the constant appearing in (23), to have r ∈ F(C1, C2, µ0).
As particular case we want to observe that if r(0) = 0 and r(t) > 0 for every t > 0 the initial condition

is not needed. For example, if r(t) = t the problem⎧⎨⎩
∂

∂t
(tv) − div(a(x, t) ·Dv) = f in Ω × (0, T )

v = 0 in ∂Ω × (0, T )

has a unique solution (without any condition at time t = 0).
3) r = r(x, t) - If r, ∂r

∂t ∈ L∞(Ω × (0, T )) then r ∈ F(C1, C2, µ0) with C1 = ‖r‖∞ and C2 = ‖∂r
∂t ‖∞.

Precisely, if cP is the constant appearing in (23), r can be choosen such that

0 � r � C1 ,
µ0

cP
� ∂r

∂t
� C2

(C2 � 0, µ0 � 0).
Also functions r for which ∂r

∂t �∈ L∞(Ω × (0, T )) can be considered. For example if

r(x, t) = χA(x, t), A ⊂ Ω × (0, T ).

In this case, if we denote Ω+(t) = {x ∈ Ω | r(·, t) > 0}, we need

t �→
∫

Ω+(t)

u(x)v(x)dx differentiable. (45)

We refer to [8] for more details and to [6] (Prop. 3, Sect. 3.4.4) for differentiability of (45).
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5.2. Variational convergences

4) If rh ≡ 0 for every h we have a result for a class of elliptic operators and we have that

ah
G−→ a in Ω × (0, T ) ⇐⇒ ah(·, t) EG−→ a(·, t) in Ω for a.e. t ∈ [0, T ].

5) If rh ≡ 1 for every h we have a result for a class of parabolic operators and we have that

ah
G−→ a in Ω × (0, T ) ⇐⇒ ah

PG−→ a in Ω × (0, T ).

6) Suppose ah to be symmetric matrices. Then, choosing rh ≡ 0 and using the classical result (see for
instance [4] for the definition of Γ-convergence) we obtain that

ah
G−→ a in Ω × (0, T ) ⇐⇒ ah(·, t) Γ−→ a(·, t) in Ω for a.e. t ∈ [0, T ].

5.3. Homogenization

7) If r(x) is aQ-periodic function in the variable x and aij , the entries of a matrix a ∈ MΩ×(0,T )(λ0,Λ0,M),
are Q-periodic in the variable x, Q cube of Rn, then the solution (see [9]) of⎧⎪⎪⎪⎨⎪⎪⎪⎩

r(hx)
∂u

∂t
− div(a(hx, t) ·Du) = f in Ω × (0, T )

u = 0 in ∂Ω × (0, T )

u = ϕ in Ωh,+ × {0}
(46)

converge in L2(0, T ;L2(Ω)) to the solution of the problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[ 1
|Q|

∫
Q

r
]∂u
∂t

−
n∑

i,j=1

âij(t)
∂2u

∂xi∂xj
= f in Ω × (0, T )

u = 0 in ∂Ω × (0, T )

u = ϕ in Ω × {0}

(for the definition of â see for example [9]). Notice that if the mean value of r |Q|−1
∫

Q r > 0 the limit
problem is given by a standard parabolic equation and in this case the initial condition is obtained in
all Ω even if for every h the problems above are partially elliptic and partially parabolic. This happens
also if r is positive only on a Cantor set of positive measure.

The only case in which the limit problem is elliptic is when r ≡ 0: in this case problems (46) are the
sequence of elliptic problems⎧⎨⎩ −div(a(hx, t) ·Du) = f(x, t) in Ω

u = 0 in ∂Ω
for a.e. t ∈ (0, T )

and the initial conditions u = ϕ in Ωh,+ × {0} are meaningless.
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5.4. Singular perturbations

8) Suppose to have a fixed elliptic operator u �→ −div(a(x, t) ·Du), with a ∈ MΩ×(0,T )(λ0, Λ0,M). Then

a
G−→ a in particular means that the solutions of⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
h

∂u

∂t
− div(a ·Du) = f in Ω × (0, T )

u = 0 in ∂Ω × (0, T )

u = ϕ in Ω × {0}

converge in L2(0, T ;L2(Ω)) to the solution of the problem⎧⎨⎩ −div(a ·Du) = f in Ω × (0, T )

u = 0 in ∂Ω × (0, T ).

Indeed rh = 1/h and r ≡ 0 belong to the class F(C1, C2, µ0).
But in fact we have more. The following convergence result holds.

Proposition 5.1. Consider A,Ah : L2(0, T ;H1
0 (Ω)) → L2(0, T ;H−1(Ω)) the operators Au = −div(a(x, t)·

Du), Ahu = −div(ah(x, t) ·Du) with a, a1, a2, . . . ∈ MΩ×(0,T ) (λ0, Λ0,M,N). Suppose Ahv → Av in
L2(0, T ;H−1(Ω)) for every v ∈ L2(0, T ;H1

0 (Ω)). Then

uh → u in L2(0, T,H1
0 (Ω))

ah ·Duh → a ·Du in L2(0, T, L2(Ω)n),

where uh and u are respectively the solutions to (18) and (29), and ah
G−→ a.

Proof. Since Ah −A = Ah(A−1 −A−1
h )A, fix f ∈ L2(0, T ;H−1(Ω)) and choose v = A−1f . Then

A−1f −A−1
h f = A−1

h (Ahv −Av).

By our assumptions and (16) we conclude that ‖A−1
h f−A−1f‖L2(0,T,H1

0 (Ω)) → 0. In particular ‖A−1
h f−

A−1f‖L2(0,T,L2(Ω)) → 0 and, for every Φ ∈ L2(0, T ;L2(Ω)n) by (12)

sup
‖Φ‖=1

∣∣∣ ∫ T

0

∫
Ω

(ah ·DA−1
h f − a ·DA−1f,Φ)dx dt

∣∣∣
� c(M,Λ0)〈Ahu−Au, u〉L2(0,T ;H−1(Ω))×L2(0,T ;H1

0 (Ω)) → 0.

By Theorem 4.5 we derive that ah
G−→ a. �

Remark 5.2. Observe that assumptions of Proposition 5.1 are guaranteed if (ah)h ⊂ MΩ×(0,T )(λ0,Λ0,M,N)
and ah → a in L1

loc(Ω × (0, T )), but the converse is not true (see [14]).

We conclude that under assumptions of Proposition 5.1, for every (rh)h ⊂ F(C1, C2, µ0) converging
to r ∈ F(C1, C2, µ0) in L∞(Ω × (0, T ))-weak∗, we have that

uh → u in L2(0, T,H1
0 (Ω))

ah ·Duh → a ·Du in L2(0, T, L2(Ω)n), (47)
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where uh and u denote respectively the solutions of⎧⎨⎩
∂t(rhv) − div(ah ·Dv) = f Ω × (0, T )
v = 0 ∂Ω × (0, T )
v = ϕ Ωh,+(0) × {0}

⎧⎨⎩
∂t(rv) − div(a ·Dv) = f Ω × (0, T )
v = 0 ∂Ω × (0, T )
v = ϕ Ωr

+(0) × {0}.
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[5] E. De Giorgi and S. Spagnolo, Sulla convergenza degli integrali dell’energia per operatori ellittici del secondo ordine. Boll. Un.

Mat. Ital. 8 (1973) 391–411.
[6] L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press, USA (1992).
[7] A. Pankov, G-convergence and Homogenization of Nonlinear Partial Differential Operators. Kluwer Academic Publishers,

Dordrecht (1997).
[8] F. Paronetto, Existence results for a class of evolution equations of mixed type. J. Funct. Anal. 212 (2004) 324–356.
[9] F. Paronetto, Homogenization of degenerate elliptic-parabolic equations. Asymptotic Anal. 37 (2004) 21–56.

[10] R.E. Showalter, Degenerate parabolic initial-boundary value problems. J. Diff. Eq. 31 (1979) 296–312.
[11] R.E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. American Mathematical

Society (1997).
[12] J. Simon, Compact sets in the space Lp(0, T ; B). Ann. Mat. Pura Appl. 146 (1987) 65–96.
[13] S. Spagnolo, Sul limite delle soluzioni di problemi di Cauchy relativi all’equazione del calore. Ann. Scuola Norm. Sup. Pisa

Cl. Sci. 21 (1967) 657–699.
[14] S. Spagnolo, Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche. Ann. Scuola Norm. Sup. Pisa Cl. Sci.

22 (1968) 571–597.
[15] S. Spagnolo, Convergence of parabolic equations. Boll. Un. Mat. Ital. 14-B (1977) 547–568.
[16] L. Tartar, Convergence d’operateurs defferentiels, Proceedings of the Meeting “Analisi convessa e Applicazioni”. Roma (1974).
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