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ASYMPTOTIC BEHAVIOUR OF A CLASS OF DEGENERATE
ELLIPTIC-PARABOLIC OPERATORS: A UNITARY APPROACH

FABIO PARONETTO!

Abstract. We study the asymptotic behaviour of a sequence of strongly degenerate parabolic equa-
tions O (rpu) — div(ap - Du) with r(z,t) > 0, 7, € L*°(Q x (0,7)). The main problem is the lack
of compactness, by-passed via a regularity result. As particular cases, we obtain G-convergence for
elliptic operators (r, = 0), G-convergence for parabolic operators (r, = 1), singular perturbations of
an elliptic operator (ap = a and r, — r, possibly r = 0).
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1. INTRODUCTION

In the papers [5,13,14] De Giorgi and Spagnolo introduced G-convergence for a class of elliptic operators,
precisely for a class of elliptic operators in divergence form defined by an elliptic and simmetric matrix with
bounded coefficients. Tartar extended this convergence to the non-simmetric (and then non-linear) case (see,
for instance, [16] and [17]).

Later in [3] Colombini and Spagnolo defined G-convergence for a class of parabolic operators in divergence
form still defined by a simmetric matrix with bounded coefficients depending, in this case, also on time. Before
introducing the aim of this paper we recall the definition of G-convergence in both cases, denoting the conver-
gence by EG in the elliptic case and by PG in the parabolic one, as extended to non-simmetric operators by
Tartar (for a book containing results about both EG and PG convergences we refer to [7]).

Consider n € N fixed. Moreover, for A\g < Ag and M positive real numbers, denote by My (Mg, Ag, M), with
U open set of R¥, k € N, the class of n x n matrices defined as follows:

a = [ai;(y)]}j=1 € L=U) such that
Ml€l? < (aly) - €,€) < Aoléf? (1)

(a(y) - & )| < M(a(y) - £€)"*(aly) -m,m)""*

for every £,n € R™, for a.e. y € U.
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Definition 1.1. Let Q be a bounded open set of R™ and T' > 0. Consider a sequence (ap)n C Maq (Ao, Ao, M),
ap = ap(x) (referring to (1), in this case k = n). Given a = a(z) € Mq(Xg, Ao, M) we say that

ap &6, a in
if for every f € H~1(Q) it results that
up — U in L?(Q)
ap, - Dup, — a- Du in L?(Q)"-weak,

where up, and u denote respectively the solutions (see Def. 2.5 with r = 0) of

—div(ap - Dv) = f inQ —div(a-Dv)=f in
v=0 in 02 v=0 in 092.

For a sequence (an)n C Maxo,1)(Xo, Ao, M), an, = ap(x,t) (referring to (1), in this case k = n + 1), and given
a=a(x,t) € May o, (X, Ao, M) we say that

an 2% q in Q x (0,T)
if for every f € L?(0,T; H=(Q)) and ¢ € L%(Q) it results that

Up — U in L2(0,T, L?())
ap - Dup, — a - Du in L2(0,T, L?(Q)")-weak,

where uj, and u denote respectively the solutions (see Def. 2.5 with r = 1) of

% —div(ap - Dv)=f inQx(0,T) % —div(a-Dv) =f inQx(0,T)
v=0 in 00 x (0,T) v=0 in 02 x (0,T)
v=1¢ in @ x {0} v=¢ in Q x {0}.

In [3] the authors studied the connection between EG and PG convergence: in particular they proved that if
(an)n € Maxo,1)(Xo, Ao, M) satisfies

lirnosup// lan(x,t +7) — ap(z,t)|de dt =0 VIxwcCC(0,T)xQ, (2)
™Y h JrJw
then

ap(-,t) £q, a(-,t) in Q for a.e. t€ (0,7) iff ap L in Qx (0,7) (3)

and showed with a counterexample that this is not always true.
In this paper we consider strongly degenerate parabolic, or elliptic-parabolic, operators like

Pu— %(ru) _div(a-Du)  withr = r(2,) >0 (4)
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and study the limit behaviour of the sequence of Cauchy-Dirichlet problems (for the existence result we refer
to [8], but see also [11])

2(rhu) —div(ap - Du) = f in Q4+ (t) x(0,7)

ot

—div(ap - Du) = f in Qp,0(t) x(0,7) (5)
u=0 in 002 x (0,7)

u=q in Q,4(0) x {0}

where (the initial condition on 1 (0) will be clarified at the end of Sect. 2) Qp 1 (¢) := {x € Q | rp(x,t) > 0}
and Qp,0(t) := {z € Q| rp(z,t) = 0}, (an)n is a sequence in Mqy (0,7)(Xo, Ao, M, N), the class of matrices a
satisfying (1) and

|la(z,t) — a(z, s)‘ < Nt — s

for a.e. x € Q and every s,t € [0,T], r, belonging to a suitable class F defined in (6). Arising from (3) the
aim of the present paper is to give a more general definition of G-convergence, for problems (5) (see Def. 4.3),
which is independent of the sequence (r), and a compactness result with respect to it (see Th. 4.5). This in
particular justifies (3) and includes other phenomena, as singular perturbations (in which the result is stronger,
see Prop. 5.1), but we refer to the lastgli Studi di Lecce section for examples. We want to stress that, since
r in (4) may be equal to zero on some region with positive measure, a difficulty in this situation is that the
natural compactness result (see Th. 2.7) is not guaranteed. Only for the sequence of the solutions (the solutions
up, to the problems (5)), we are able to obtain the compactness via a regularity result (see Th. 2.8).

We recall that, in the general situation, a first study in this direction was already made, in the periodic case
and with r = r(z), in [9].

Elliptic-parabolic operators like those in (4) were already studied, as regards the existence of the solution,
probably first by Showalter (see, for instance, [10] for one of the first papers and [11] for a recent book) and
recently in [8] for a more general class of operators (nonlinear and possibly forward, backward and stationary).

The interest to study such problems lies on the fact that many diffusion problems lead to differential equations
like

0 .

a(r(m,t)u) —div(a(z,t) - Du) = f
which may be also of mixed type (see for example [1], Chap. 3, and the references therein), i.e. partially elliptic
and partially parabolic. For some applications see also the examples in the last section.

The scheme of the paper is the following: Section 2 is dedicated to existence of the solution to an equation
Pu = f and to the position of the problem. In Section 3 there are some compactness results: since a “classical
type” compactness result (see Th. 2.7, with 7, = 1 for the classical case) does not hold in general, we pass through
a regularity result (Th. 2.8) to obtain it. In Section 4 we define G-convergence and prove a compactness result
in two steps: Theorem 4.1 furnishes, given a sequence of operators Ppu = %(rhu) — div(ap, - Du) in a suitable
class, the existence, up to a subsequence, of a limit operator Pu = Q(ru) — div(a, - Du), Theorem 4.5 states

ot
that a, is independent of r. In the last section we give some examples, including also singular perturbations.

2. ELLIPTIC-PARABOLIC EQUATIONS AND STATEMENT OF THE PROBLEM

From now on T', A\g, Ag, M will be fixed positive constants, N, C, C5 non-negative constants, 1o a non-positive
constant (indeed po could also be positive, but in that case it is sufficient to consider pp = 0) and Q a bounded
open set of R™ with Lipschitzian boundary. We will denote for brevity

V= L*0,T; Hy (), H:=L*0,T;L*Q)), V' :=L*0,T;H Q).
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We denote by F(C1,Ca, po) the class of measurable functions r satisfying

(i) rel>®Qx(0,1)), r=0,
(i) [rllzee@x (0,1 < Ch,

(i) t— /u(x)v(x)r(x,t)dx absolutely continuous on [0, 77, (6)
)

d
‘E/Qu(x)v(x)r(x,t)dx < Oy HuHHé(Q)HvHHé(Q) for a.e. t € (0,7,

d
v) E/QUQ(@T(CUJ)M 2 po llulltyq) — for ae t€[0,T]

for every u,v € H}(Q). For a r € F(C1,Ca, po) we define
QL (t) :={z Q| r(xt) >0}, Qo) :=={z € Q| r(z,t) =0} (7)

Remark 2.1. The class just defined is compact, i.e. if (ry), is a sequence in F(C1, Ca, po), there is a subse-
quence (r4,;); and a function r € F(C4, Cy, po) such that rp,; — 7 in L>( x (0,T))-weaks. In fact, there is a
subsequence (rp,;); and a function r such that 4, — 7 in L>(Q x (0,T))-weak+. Now verify that » belongs to
F(C1,Cs, pp). Clearly r > 0 and ||r]leo < Ci. To verlfy that r satisfies also (111) (iv), ( ) consider a countable
set Z, dense in Hj(Q), and for every u,v € Z define the functions F;""(t) = [, u(z)v(x)r,(x,t)dz. Since
(rh)n C F(C1,Ca, po) the sequence (Fj' ’U)h turns out to be equicontlnuous and equ1bounded Then there is
a function, denoted by F*“, and a subsequence F;jj’v such that F;;j’” — F™" uniformly in [0,7]. Since Z is

countable we can find a sequence hj, such that F, ;:J Y — F%Y uniformly in [0, 7] for every u,v € Z (and in fact
k

for every u,v € H}(£2)). This in particular implies that

/ EE (0 (t)dt — / For (t)n(t)dt
0 0

for every n € L'(Q). Since r,; — r in L°(2 x (0,T))-weaks

/F“” t)dt = // n(t)rn,, :ctd:cdtﬂ// t)r(z, t)dz dt
0

and then F™(t) = / u(z)v(x)r(z, t)d.
)
Notice that F*“ € W1°°: then for every n € C}(0,T) we have

r d u,v r u,v ! r d
/O E[F’% (t)]n(t)dt = 7/0 Fy(t)n (t)dt%/o &[F () n(t)de
and then we derive
T T d T
-G ||“||Hé<n>”v||H3<n>/0 77(t)dt</0 7 [F O]n(t)dt < Cs I\UI\H5<Q>IIvI\H5<Q>/O n(t)dt

from Wthh d
‘d_[Fuv( ﬂ\ < Co J|ull g oy 10l 13 -

Analogously we derive that < 5 Jou u?(x)r(x, t)dz > po HuHHl(Q)
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Given r € F(Cy, Ca, po) we introduce the families of operators

R:[0,T] — L(L*(Q)) R(t)u :==r(-,t)u(-)

R [0,T] — LH(Q), H-1Q)),  (R(t)u,v) = % /Q w(@)o(@)r(z, t)dz .
R:H—H Ru(t) := R(t)u(t)
RV Rt = [ RO
and define the following Banach space
W={ueV|(Ru)eV'}, [ullw = llullv + [|(Ru)'|v 9)

where (Ru)" denotes the derivative in the distributional sense of Ru with respect to the variable ¢.
An approximation result we will need later is the following.

Lemma 2.2. Consider R defined in (8). Then for every u € W and o > 0 there exist v € C*([0,T]; H3 ()
and S € C?([0,T]; L(HE(Q), H~1(R))) (defined analogously to R by a s € F(Cy,Ca, ), & € F(Ca, K, —K)
where K = K(C1,0)) such that

lu—vlw <o, [[(Ru) = (Sv)'[lv <o

Moreover S can be chosen in such a way that S'(0) = 0.

Proof. Fixu € W = Wz and ¢ > 0. From Proposition 2.4 in [8] we derive the existence of v € C*([0, T]; H}(Q))
such that

lu —vllw < o/2.

Consider a family of mollifiers (p¢)e~o and, after defining

consider

and the corresponding R.u(t) := R.(t)u(t). Note that R € Wh°(0,T; L(HZ(Q),H () and R, — R in
L0, T; L(HL(Q), H Y(Q))) nWhe(0, T; L(HE (), H1(£2))) for every g < +o0.
Clearly (Re(t)u, u) -1(0)x () = (g B (T)pe(t = T)d7 u,u) > pol|ullF -

Observe that, since v € C1([0,T7]; H}(R2)), v € Wr and v € Wg_ for every € > 0. Then, since

[(Ru)" = (Rev)'[lv < [(Ru) = (Ro)' [y + [[(Rv)" = (Rev)[lv,

to prove the result it is sufficient to estimate ||(Rv) — (Rev)’||yr. Since Re — R in L>(0,T; L(H (), H~1(2)))
we have that

R — RV in H,
and therefore it is sufficient to analyse the quantity R.v — R'v. We consider a function ¢ € V and by the
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generalized Holder’s inequality we have for every p > 2

\/J?thv@>R%ﬂv@%¢“”H1XH%d4
g[ATuuw (ﬂ?%Q’dﬂh[AT”“mﬂﬂ ][Aﬂ¢mﬁmm@%~

Taking the supremum with respect to ¢, ||¢[| g1 (q) = 1, we obtain that

|(Riw = R'v, @y

[Rev = R'vllv < | Re = R|| p2vrw-2 0,5 (3 (2,151 () 10 Leco, 03 ()

for a p > 2 and since R, — R’ in L9(0,T; L(H(2), H~1())) for every ¢ < +00 we conclude choosing S = R,
for € sufficiently small.

Moreover we can choose S in such a way S'(0) = 0. To do this it is sufficient to consider the function
n(t) = 6=t in [0,8] and n(t) = 1 in [§, T], and choose

S(t) = /O (PR ()dr + R.(0).

It is sufficient to estimate ||(Rev) — (Sv)'||y. First we estimate R.v' — Sv’ in H:

T
/0 [Re(8)0" () = S(6)0' (8)[[72(0ydt < [ R (0.T:L(H} (), H S 111 62

Similarly we can obtain [R{v — Svllv < [|RC || L0, 1002 ), 51 @) Iv]lv V6. Since § is arbitrary we are
done. O

For the following result see Proposition 2.6 in [8].

Theorem 2.3. For every u,v € W the following holds:

d
3 (Ru®), v(t))r2(0) = (R'u(t), o(8)) p-1 (@) x i (@)
+ (R (1), v(t)) -1 ()< mp ) + (RV' (1), w(t)) -1 () x 2 () -

(10)

Moreover the function t — (R(t)u(t),u(t))r2(q) is continuous and there is a constant c = c(T, |R||) (depending
only on T, ||R| < Cy) such that

o (R(E)u(t) u(t)) 2oy | < ¢ [l (11)

Remark 2.4. Observe that, if R(t)v(z) = r(z,t)v(z) for every v € L?(Q) and for a r € F(C1,Cs, uo), by
Theorem 2.3 we deduce that if w € VW then

u(t) € L*(V, (), (-, 1)) for every ¢ € [0,T7],

where (V') (t) is deﬁned in (7) and L*(Q7.(t),7(-,t)) denotes the completion of L*(Q7 (¢)) with respect to the
norm ||v||? := [, v?(2)r(x,t)dz. Observe that

L*(Q) C L*(Q(t),r(-,t)) and /QT " v (x)r(x, t)de < Cl/Q’l)Q(IL')dLL‘

for every v € L%(Q) and every ¢ € [0, T].
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We recall the definition of the class Mqy (o,7y(Xo, Ao, M), with A9 < Ag and M positive real numbers, given
in (1), characterised by

a = [aij(x, )]} ;24 such that
Xol€? < (alz,t) - €,€) < Aolé[? (12)

|(a(e, ) - &,m)| < M(a(a,t) - )" (a(w, ) -p,m) "

for every §,n € R, for a.e. (x,t) € Q x (0,T). By Max(,r)(Ao, Ao, M, N), N non-negative constant, we
denote the subclass of Mgy (o,7)( Ao, Ao, M) satisfying the further assumption

|la(z,t) — a(z, s)‘ <Nt — s (13)
for a.e. © € Q and every s,t € [0,T]. For simplicity we define the family of operators

A:[0,T) = L(HG(Q), HH Q) (At)u,v) g-1(0)xmi(0) = /Q (a(z,t) - Du(z), Dv(x))dz

AV =V Au(t) = A(t)u(t).

(14)

Observe that under assumption (13) if we choose a € Mgy (o,1)(Ao, Ao, M, N) we can define A" : [0,T] —
L(Hy(Q), H (D))

<A’(t)u,v>H71xH& = /Q(a’(:c,t) - Du(x), Dv(x))da  where aj;(z,t) = a;;j (z,t)

which by (13) turns out to be bounded. We recall now an existence result contained in [8] (Th. 3.8). Before we
give the definition of solution.

Definition 2.5. Given a € Mgy (o,7)(Ao, Ao, M), 7 € F(C1,Ca, o) with pig > —2Xo, f € V', p € L2, (0),
r(-,0)) (see Rem. 2.4 for the definition of this space) a function u € W is a solution of

= (ru) —divla - Du) = f  on 9 x (0,7)
w=0 in 9Q x (0,7) (15)
w(,0) = ¢ in 7, (0)
if
((Ru) ( ) 1@<+ Au), v) g1 @)xmi @) = (), 0) m-1Q)x 1 (9
i (u(z,0) — o(x))*r(z,0)dz = 0

for every v € H{(2) and for a.e. ¢ € [0,T] and the initial datum makes sense in L*(€2’ (0),7(-,0)) thanks to
Theorem 2.3. If » = 0 the initial condition has no meaning and in this case a solution is a function v € V such
that

(Au(t), v) g-1@xmp = (F), V) m-1)x i ()
for every v € H(2) and for a.e. t € [0,T].

Theorem 2.6. Consider a € Mgy o,1)(Xo, Ao, M), © € F(C1,C2, po) with po > —2Xo. For every f € V' and
¢ € L*(.(0),7(-,0)) problem (15) has a unique solution u € W and there exists a constant ¢ = ¢(po, Mo, Ao, Ca2)
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(depending only on uo, Ao, Ao, Co) such that
lulw < e [l + leCr (. 0) 2] (16)
Statement of the problem - Fix f € V' and ¢ € L?(Q) and consider

(an)n € Maxo,r)(Ao, Ao, M, N),
(T.h)h C f(Cla CQ?NO) (17)
Mo > —2Xp.

Assumption pg > —2X¢ is required to have existence to problems (18) (see Th. 2.6).
Then we consider the sequence of elliptic-parabolic problems

2(rhu) —div(ap - Du) = f on 2 x (0,7)

ot
w=0 in 9Q x (0,7) (18)
u(z,0) = ¢ in Q4 (0)

where Qp 4 (t) := Q" (t). We consider ¢ € L*(2) so that problem (18) makes sense for every h € N, since
L2(9) is dense in L?*(Qp,4+(0),7(+,0)) for every h € N (see Rem. 2.4).

We want to study the asymptotic behaviour of the solutions u, when h — +o0o and characterise the limit
problem.

The main difficulty is the lack of compactness of the solutions in L2(0,T; L?(2)) which is natural in the
classical case, i.e. when r, = 1.

In this framework the natural compactness result reads as follows in the theorem below (see Th. 2.14 and
Th. 2.18 in [8]). Before we define

Wh={ueV| (rwu) eV} (19)
Theorem 2.7. Consider a sequence (up)p such that up, € Wy, and ||up||w, < ¢ for a positive constant c. Then
(up)n is relatively compact
(i) in L2(0,T; L*(Q)) if rp, — r in L=(Q x (0,T))-weakly * and r > 0 almost everywhere;
(ii) in L*(Q4;7), the completion of Co(Q4) with respect to the norm ||ur'/?||r2(q, ) where Q4 = {(z,t) €
Qx(0,7)|r(x,t) >0}, if r, = 1 in L°(Q2 x (0,T)) (strongly).

We by-pass the problem of the lack of compactness in L2(0,T; L?(2)) via the following regularity result (see
Th. 3.11 and Cor. 3.13 in [8]).

Theorem 2.8. Consider the problem (15). Assume that, besides to assumptions of Theorem 2.6, Or/0t €
F(K1, K3), i.e. satisfies (i) — (iv) of (6) with constants K1, Ko, and a satisfies (13). Suppose moreover that f €
H(0,T; H () and that there exists ug € Hg(Q) such that ug = ¢ in Q7 (0) and f(0)+div (a(z,0)Dug(x)) —
9t (2,0) = r(z,0)v(z) for some v € L*(Q,(0)). Then the solution u satisfies

we H'(0,T; Hy(Q))  and lull g0, 1m2 () < €

for a positive constant ¢ depending (only) on jio, \o, Ao, C2, N, Ko, || fll 10,1581 (02))
1772 (-, 0)vll L2y 172 (-, 0)uoll L2 (e -
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3. PRELIMINARY COMPACTNESS RESULTS

In this section we will suppose more regularity on the sequence (rp), than we will require to state the main
theorem (see Th. 4.5). Precisely in this section we require (see (12), (13) and (6))

(an)n € Maxo,1)(Xo, Ao, M, N),

87“h (20)
(ra), € F(C1, Ca, po), (E)h C F (K1, K2,v0)
for some constants K, Ks,vy. Consider the problems
0 .
a(rhu) —div(ap - Du) =g on Q x (0,7)
w=0 in 9Q x (0,7) (21)
u =1y in Q,4(0) x {0}
where g € H'(0,T; H~1(Q)) c C([0,T]; H~(Q)) and vy, is the solution to
: Jrp, .
Epw := —div(ap(z,0) - Dw(x)) + E(m, O)w(x) = g(x,0) in (22)
w=20 in 092,

where the linear, elliptic and bounded operator Ej, : H(2) — H~1(Q) can be considered because aj, and rp,
are continuous in the variable ¢.

Before stating the main result we recall the following lemma. Denote by cp the constant appearing in the
Poincaré’s inequality

/ u?(x)dr < cp / | Du|?(x)dz, u € HY ). (23)
Q Q

Lemma 3.1. Consider a,a,as... € Mq(Xo, Ao, M) and suppose ay, G, (see Def. 1.1). Consider a sequence
of functions (bp)p, C L>®(Q), by, = v for every h € N where —\o/cp < v < 0 and suppose b, — b in L>(Q)-
weakx. Then for every f € H=1(Q) it results that

wp — w in L?(Q)
ap, - Dwp, — a - Dw in L%(Q)"-weak,

where wy, and w denote respectively the solutions

—div(ap - Dv) +bpv=f in Q —div(a-Dv) +bv=f in
v=0 in 0 v=20 in ON).

Proof. Since —Xg/cp < v < 0 we have that

/b;lv2dx>/'yv2dx20p'y/ |Dv|2dx
Q Q Q

and then the elliptic operators v — —div(ay, - Dv) + bpv are equicoercive. Since the solutions are compact
in L2(Q) we have, up to a subsequence, that —bpwy, converges to —bw weakly in L?(Q2) and then strongly in
H _1((2). Then we obtain the thesis observing that wy, solve the problems

7diV(ah . D'U) = fh = f — bhwh in
v=20 in 09.
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Remark 3.2. As a consequence we have that, if ax(-,0) £G a(-,0) and (rp), C F(Ch1,C2, po), (%Tth)h C

F (K1, Ka,1p) for some Ki, Ko,1y and |887't“ (2,0) < « for every h € N with 0 < a < A\g/cp are such that

rp, — rin L=(Q x (0,T))-weak* (see also Rem. 2.1) equation (22) admits a unique solution since

0
/u2(x)ﬁ(x,0)dx > —a/ u?(z)dz > —)\0/ | Dul?(z)d.
Q ot Q Q
The solutions 1, of (22) satisfy
Y — 1 in L*(Q), ap - Dyp — a-Dip  in L*(Q)"-weak,

where 9 is the solution of

ot

{ Bw = —div(a(z,0) - Dw(z)) + 2 (2, 0)w(z) = g(,0) n Q
w=20 in 0.

Now we state the first compactness result.

Lemma 3.3. Consider the problems (21) with the data g € H'(0,T; H~1(Q)) and 1y = E;, 'g(0) and denote
by up € Wy, the corresponding solutions. Then the sequence

(un)n is bounded in H(0,T; H}(Q)).
As a consequence we obtain that

(up)n s relatively compact in C([0,T]; L*()),
the sequence t— /u%(x,t)rh(ac, t)dx s relatively compact in C([0,T1]).
)

Proof. Since ¢g(0) +div(ap(-,0) - Dipp) — E(’ 0)¢n, = 0, hypotheses of Theorem 2.8 are satisfied. Then we have

that the solutions satisfy the estimations
lwnll 10,02 () < €5 lunllcgo,m;mi) < c
We deduce that (up)p is equibounded in C([0,T]; Hi(2)) and therefore the sets {uy(t) | h € N} are relatively

compact in L%(Q) for every t € [0, T]. Moreover

up(t) —up(s) = / up, (7)dT

and then
t
l[wn(t) — wn ()] m1 o) </ g, ()L 13 ey dr < [t = s 2 ||,

so (up)p is also equicontinuous valued in H} () (and in particular in L*(2)). Then by Lemma 1 in [12] we
obtain (up)p, relatively compact in C([0, T]; L?(£2)).

To prove the second statement denote for simplicity by (up)s a subsequence converging in C([0,T]; L?(Q))
and call u the limit in C([0, T]; L?(Q2)). Consider the sequence (rp,)s: by Remark 2.1 we have the existence of
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r € F(C1,Ca, o) such that, up to a subsequence, v, — r in L>°(Q x (0,7"))-weak*. Then, for ¢, s € [0,T],

‘/Qui(x,t)rh(:c,t)dxf/ﬂu%(x,s)rh(xvs)dm‘
< ‘/Qu%(x,t)rh(:c,t)d:c—/Qu%(m,t)rh(m,s)dx‘
+‘/Qu%(x,t)rh(:c,s)dx—/Qui(gg,s)rh(m,s)dx.

By (6) and the continuity of uy, : [0, 7] — L?(2) we infer that t — [, u3 (2, t)ry (2, t)dx is continuous. Moreover

‘/Qu%(x,t)rh(x,t)dx—/QUQ(x,t)r(ac,t)dac‘
< ‘/Qu%(ac,t)rh(x,t)dx—/QuQ(ac,t)rh(x,t)dx‘
Jr‘/Q’U,Q(:L',t)rh(l',t)dl'f/Qu2(£L',t)7’(ﬂC,t)d’JJ‘
< ||rh|\oo/ﬂ|u%(:n,t)7u2(:c,t)|d:£+‘/QUQ(:E,t)(rh(:c,t)fr(x,t))dm‘

by which we obtain the thesis. (I

Theorem 3.4. Consider a sequence of functions vy, € Wy, (h =1,2,...), a function v € W, a constant ¢ such
that

lonllw, <ec1 for every h, v, — v in C([0,T]; L*(Q)), (24)
and a sequence of vectorial functions my,,m € L?(0,T; (L?>(Q)") (h=1,2,...), a constant ca such that

||thL2(O,T;(L2(Q))W) < C2 mp —m in LQ(Oa T; (LQ(Q))")_weak, (25)
Moreover suppose that
(rpvp) —div (mp) = f €V in CL(Q x (0,T)). (26)

Then
(mn, Dvy) — (m, Dv) in D'(Q x (0,T)).

Proof. Fix a function ¢ € C°(Q x (0,7)) and multiply equation (26) by vne. We obtain

/OT/Q(mh,D’Uh)SOdl‘ dt = (f — (rpon)’, vnep) — /OT/Q(mh,Dgp)fuh dz dt. (27)

T T

Clearly (f,vnp) — (f,vp) as h — oo and / /(mh,Dgo)vhdx dt — / /(m,Dgo)vdac dt. By (10) and since
0o Ja 0 Ja

¢ has compact support in £ x (0,7) we have that

T T
o)) = [ [ om0 S @nded - [ [ et e nded
0 Q 0 Q

which converges to

/0 /QUQ(x,t)r(ac,t)g—(f(x,t)dxdt—/O /QUQ(ac,t)go%(x,t)dxdt = —2((rv),vp).



680 F. PARONETTO

Then
T T
/ /(mh,Dvh)godacdt — (f — (rv)",vp) —/ /(m,Dap)dedt
0o Jo 0o Jo

and since, multiplying (26) by ¢ € C°(2 x (0,T)) and taking the limit, we also have
(rv) —div (m)=f  inV,
we obtain the thesis. O

4. THE DEFINITION OF (G-CONVERGENCE AND THE COMPACTNESS RESULT

In this section we give the main result, a compactness result with respect to G-convergence defined below
(see Def. 4.3) for a sequence of operators (see (12) and (6))

Pru = g(rhu) —div(ap, - Du),
ot (28)

(an)n € Maxo,1)(Mos Ao, My N),  (ra)n C F(C1, C2, o).

The statement of this result is divided in two theorems. In the first one (Th. 4.1) we suppose the regularity
required in the previous section, i.e. (20), and prove a partial result: the existence of a limit operator in
divergence form. The second result (Th. 4.5) is a kind of uniqueness result: with less assumptions on the
coefficients, i.e. satisfying the assumptions in (28), we will prove that the matrix defining the limit operator is
independent of the sequence (r4,).

Theorem 4.1. Consider a sequence (ap)n C Maxo,1)(Xo, Ao, M, N) and (ri)n C F(C1, Cy, po) with (agt" ) C
F (K1, Ka,vp) and %(:E,O) =0 for every h € N. There exist a matriz a € Mayo.1)(Ao, M2Ao, M\/Ao/Xo)
and a function r € F(Cy, Cy, o) such that for every f € V' and o € L*(Q) the solutions uy, of problems (18),
h € N, satisfy, up to a subsequence,

up — u in L*(0,T; L*()) and an - Dup, — a-Du in L*(0,T, L*(Q)™)-weak

where u is the solution of

5((;:) —div(a- Du) = f in Qx (0,T)
"o in 99  (0,T) 29
v =y in Q1 (0) x {0}.

Remark 4.2. The result is true also if in (18) we consider a sequence of data (fn)n C V', (fn)n relatively
compact in V', and (pp)n C L%(9), ¢n relatively compact in L2(2).

Proof. First, by Remark 2.1, from (r,); we can extract a subsequence, still denoted by (r)n, such that r, — r
in L>®(Q2 x (0,T)-weak * and r € F(C1, Ca, 19). Denote by R the operator defined by

R : L*(0,T; L*(Q)) — L*(0,T; L*(Q)), (Ru)(z,t) = r(z, t)u(x,t). (30)

Analogously (to short) we denote by Ry, the operators associated to rj, and by Ay the operators associated to
ap, as defined in (14). Fix X a countable and dense subset of H'(0,T; H~}(Q)) and Y = {y € H}(Q) | y =
E~1g(0) for g € X} where E is the operator defined in Remark 3.2 (the EG-limit, up to a subsequence, of
{an(-,0)}1). Then consider g € X and ¢» = E~1¢(0) (and denote by uy(g,1) the solutions to the problems (21)
with ¢y, = E,?l (Eg/}) where Fj, are the operators in (22).
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By Lemma 3.3 we have that the solutions uy,(g, 1) are compact in C([0,T]; L?(Q)), and in particular 1, — v

in L2(Q). Denote by Br(g,%) the limit in C([0, T]; L*(Q)) of un(g,v). In this way we have defined an operator
in Z={(g9,9) € X xY|¢=E"1¢(0)}. Br is linear and continuous (see Th. 2.6). For every h € N we have

lun (g, ) llw,, < ¢ [llgllv + 11Vra(0)¢nl 2] -

Since (rpup)’ — (ru)’ weakly in V' and, by Lemma 3.3, \/74(-,0)¢n, — +/7(-,0)¢ in L?(Q), by the lower

semicontinuity of the norm we obtain

1Br(g,9)Iw < e [llglhy + 1V, 0)¢ll 2] (31)
Since Z is dense in V' x L?(Q7,(0),7(-,0)), we can extend Br (and denote it in the same way)
Br : V' x L*(Q}(0),7(-,0)) — W.

Then we define
V’XLQ(Q’“( ), ( 0)) =V,
K= (f )I\Lzm,T;H—l(Q)) << [IIflv + 17 009l L2 @] -

So we have

i(Rhuh) + Apup = f and %(RBR(ﬁ ©)) +Kr(f,¢) = f. (32)

Multiplying the first in (32) by up we have (where (-, -) denotes the duality between V' and V)

T
l/u%(:c,T)rh(:c,T)d:cf1/<,02(:49)rh(:43,O)d:cJr/ /%u%dxdt
2 Jq 2 Ja o Jao Ot
T
+/ / (ah-Duh,Duh)d:E dt = (f, up)
o Jo

and the second by Br(f,¢) we have

/an, ©)2(z, T)r (:cT)d:cf—/ :EOd:E+/ /—an, )2dz dt

Since
<fa ’th> - <fa BR(fa 50)>

/ui(m,T)r;l(x,T)dacﬂ/Bn(f, ©)?(z, T)r(z, T)dx
Q Q (33)
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we deduce that .
/ /Q (an - Dup, Dup)dz dt = (Apun, un) — (Kr(f,9), Br(f,¥))- (34)
0

The operator B is injective: indeed if Br(f,¢) = 0, (Apun,un) — 0 and then ||uplly — 0. Since (Rpun) —
(RBr(f,¥)) weakly in V' we have that Apup, — Kr(f, @) weakly in V'. Since Ay, are equibounded and uj, — 0
we conclude that Kr(f,¢) =0, i.e. f— %(RBR(f, ©)) = 0. Than f = 0. Clearly, since Bz (f,¢) = 0 and, by
Theorem 2.3, we also have that ¢ = 0 in L?(Q7.(0),7(-,0)).

Now we show that Br (V' x L?(Q.(0),7(-,0))) is dense in V: fix g € V' such that

(9,Br(f,¢)) =0 for every f € V,p € L*((0),7(-,0)).

In particular (g, Bz (g,0)) = 0 and then

( 5 (RBr(0.0)) + Kn(5.0). Ba(5,0) ) = 0

i.e. (Kr(9,0),B=r(g,0)) < 0. But by (34) we know that (Kz(g,0),B=(g,0)) > 0, then it is zero. Therefore
up(g,0) — 0 and as above we deduce that g = 0.
Thus we can define the inverse of Br: if we define

AR : BR(V/ X L2(QQ_(0),7’(,0))) - V'
BR(fa 50) = ’CR(fa 90);

by density we can define an operator, still denoted by Ax,
.AR Y — V’.

Now we need to define a last operator: for every (g,v) € (X,Y) the sequence ay, - Dup(g,%) is bounded in
L2(0,T; L*(Q)") and, up to a subsequence, weakly converges in L?(0,T’; L2(Q)")

ap DUh(g,l/}) Hﬂ(gﬂ/f) (35)
We have that

|a’h(zat) ’ Duh(ng)(lﬂat” = SUuPjy=1 (ah(zat) ’ Duh(ﬂfat),ﬂ)
< MAcl)/2 (a;l(x, t) - Dup(x,t), Dup(z, t))l/Q.

By Lemma 7.8 in [2] and Theorem 3.4 we have that

(g, )| < MAY?(u(g, ), DBr(g, )"

from which
|19, 9)| < M*No| DBR(g, ). (36)
Again by density, using (31), we can extend

p: V' x L2 (0),r(-,0)) — L*(0,T; L*(Q)™).
We define now Pru := (Ru)’ + Agu and

Mp : W —  L%0,T;L*Q)")
u  —  p(Pru, Py (0)u(0))
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where P, (0)w is the restriction to Q7 (0) of a function w defined in €2. Observe that by (36), (32) and the
definition of Az and Pr one has, for every u € W,

|Mgru| < M?Ag|Dul. (38)

By definition we have that for every v € V

T
(Aru,v) :/0 /Q(Mnu,Dv)d:c dt. (39)

Now we want to construct a matrix a such that for every u,v € V

T T
/ / (MRU, Dv)d:c dt = / / (a - Du, Dv)d:c dt.
o Ja 0o Ja

For this purpose fix w CC Q and a function n € C1(Q x [0,T]) with n(-,¢) € C}(2) for every t € [0,7] such
that n =1 on w x [0, T]. Define ¢¢(z,t) = (&, z)n(z,t) (£, x) denotes the scalar product in R™). Finally, if r is
the function in (30), define

ar(z,t) - &= MR(’/)R¢5,P+(O)¢5(JU,O)) for (z,t) € w x [0,T].
From (39) we obtain that
(Agu,v) = /T/ (arDu, Dv)dz dt (40)
and arguing as in [15], Theorem 3, we obtain v
Mlel < (ar(w,t) 6.6, (ar(z,t) - &0) < MAY(ar(2,1) - £,)' 2 |n]'/?
for a.e. (x,t) € Q x (0,T) and for every &, n € R™. Then also for the operator Ax we have

Nollully < (Aru,u) and  [(Aru, v)| < M?Aollullv[|v]v. U

Definition 4.3. Consider a sequence (an)n C Max(o,1)(Ao, Ao, M, N). We say that

an -5 a in Qx(0,7)

if for every f € V', for every ¢ € L?(Q) and for every (rp)n C F(C1,Co,po) and r € F(Cy,Cy, o) with
o > —2X and
Th — T L>°(Q x (0,T))-weaks
it results that
Up — U in L2(0,T, L3(Q))
ap, - Dup, — a- Du in L2(0,T, L?(Q)"
where up and u denote respectively the solutions of

)-weak,

%(rhv) —div(ap - Dv) = f in Q x (0,7T) %(rv) —div(a-Dv) = f in Q x (0,T)
v=0 in 90 x (0,T) v=0 in 9Q x (0,T)

V= in Qp, +(0) x {0} v=¢ in 7, (0) x {0}.
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Before stating the main result we need a short and preliminary lemma regarding the following problems

Apu = —div(ay, - Du) = f in Q x (0,T)
u=0 in 09 x (0,7

where (an)n C Maxo,r)(Xo, Ao, M, N).
Lemma 4.4. Consider the problems (41) with f € H*(0,T; H=*(2)) and suppose the solutions uy, satisfy
up, —u in L*(0,T; L*(Q)) and  ap-Duj, — a-Du in L*(0,T, L*(Q)")-weak
where u is the solution of
Au= —div(a-Du)=f inQx(0,T)
u=0 in 00 x (0,7).

Then t — a(-,t) is continuous (lim;_ |||a(-,t) — a(-, s)|[| Lo (@) = 0 for every s € [0,T]) and ap(-,t) £G a(-,t)
for every t € [0,T).

Proof. Let up, be the solution of (41), where A, : V — V'. Observe that wup(t) solves Ap(t)un(t) = f(t) for
almost every ¢ € [0,7]. Then, by Theorem 2.8, (uy) is equibounded and equicontinuous in [0, 7] with respect
to the H}(Q)-norm and moreover uy, — v in C([0, T]; L?(£2)). Then we have for every ¢ € [0, 7]

AN f(t) — AN () in LA(Q).

Moreover we have that, for every ® € L*(€2)", the functions t — [, (an(z,t)Dup(z,t), ®)da are equicontinuous
and equibounded. Indeed

‘/ ap(z,t)Dup(x,t), ®)dx f/(ah(:c s)Dup(z, s), @)dx‘ <

1/2
N|t78|/‘Duh1’t ‘d:chMAo /‘Duhxt) Dup(x,s) dm/|<I>‘ d:c .
By equicontinuity of (u) in Hg(€2) we conclude that the sequence ¢ — [, (an (2, t)Dup(x,t), ®)dz is relatively
compact in C([0,T7]), and consequently there is a subsequence (ap,); (since Hj(£2) is separable) and a vectorial
function V such that for every ® € L?(2)" and n € C[0, T}, one has

/OT n(t)[/ﬂ(ahj (2, t) Dun, (:c,t),@(:c))d:c} dt — /OT n(t)[/Q(V(:c,t),CD(x))dm dt.

By assumptions we conclude that V' = a - Du. Finally, since this can be derived for every subsequence of
(ap, - Duyp,)p we conclude that the whole sequence ay, (-, t) G a(-,t) for every t € [0,T]. The continuity follows
by Theorem 2.4 in [3]. O

Theorem 4.5. The class Mqy o,1)(Mo, Ao, M, N) of matrices satisfying (2) is relatively compact with respect
to G-convergence.

Proof. Consider (an)n C Maxo,1)(Xo, Ao, M, N), f € V' and problems (18) with r, = 0 for every h € N
(see Def. (2.5)) and denote by wy, the corresponding solutions. By Theorem 4.1 we have that there exists a
subsequence (ap, ) and a matrix

ac MQX(O,T)()\(),MQA(),M A0/>\0) (42)
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such that the sequence (wp, ) satisfies

wp, —w in L*(0,T; L*(Q)) and an, - Dwp, — a-Dw in L?(0,T; L*(Q)")-weak

where w is the solution of

—div(a(x,t) - Du(z,t)) = f(z,t) in Qx (0,7)
u=0 in 09 x (0,7T).

Now consider a sequence (rp,)n, C F(Cy, Ca, po) with (%)h C F(K1, K2, 10). Up to a subsequence

orp, or . o
e in L*(2 x (0,T))-weaks

r, —1r and

for a r € F(C1,Ca, o) with % € F(Ki1,Ka,1p) (see Rem. 2.1). Consider this function r and the matrix a
in (42) and define the operators in L(H(Q), H=1(Q))

Ep(t)u := —div(ap(-,t) - Du) + aa%(, tu, E(t)u:= —div(a(-,t) - Du) + %(-,t)u

for every t € [0,7T] (this is possible thanks to Lem. 4.4). Now consider f € V' and ¢ € L?(), the following
problems

2(7“;1u) —div(ap - Du) = f on 2 x (0,7)

ot
u=0 in 09 x (0,7
u=¢p in Qp,4(0) x {0}

and let up, be the corresponding solutions. For every € > 0 we can find ¢ € H}(Q) and g € H'(0,T; H=1(Q2))
such that

E(0)=g(0), lle=vlr2@ <€/2,  If =gl <e/2
and define v, := E5,(0)"1g(0). We have that the sequence of the solutions (vp,) of

2(7"hu) —div(ap - Du) =g on Q x (0,7)

ot
u=0 in 09 x (0,7
u =1y in Qp, +(0) x {0}

satisfies, by Theorem 2.6,

lun = vnllL2(0,m;22(0)) < ¢(Ch)e (43)

||ah . Duh — ap DU}LHL2(O7T;L2(Q)H) < C(M, Ao)é

and moreover is relatively compact in C([0, T]; L?(£2)) by Lemma 3.3. Denote by R}, the operator in £(L?(0,T; L?(92)))
defined by Rpu = rpu and R the operator in £(L?(0,T; L?(Q))) defined by Ru = ru. By Theorem 2.8 we have
that, in particular, (Rpvs)’ is relatively compact in C([0,T]; H=1(2)). Then, up to a subsequence,

(Ruvn) — (Rw)’ in C([0,T); H~1(Q)).
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Observe then that vy solves the following problem in V

—div(ap(x,t) - Dv(z,t)) = g(x,t) — %(rh(x,t)vh(x,t)) =: gn(z,1) in Q% (0,7)
v=0 in 90 x (0,T)

with, up to a subsequence, g, — g — % strongly in V' and moreover v (z,0) = ¢p(z) in Q4 +(0). By

Remark 4.2 we have that if we consider the subsequence (ap, )i (or if necessary extracting from this another
subsequence because of (7)) we have that

vp, — v in C([0,T); L3())  and

(44)
an, - Dvp, — a-Dv in L2(0,T; L3(Q)")-weak

where v is the solution of

—div(a(x,t) - Dv(x)) = f(x,t) — %(r(m,t}v(x,t)) in Qx(0,7)

v=0 in 90 x (0,7)
and moreover, by Lemma 3.3,
(i (,0)) %o, (2,0) — (r(2,0))*0(2,0)  in LX(Q).

Since (74, (x,0))?vh, (x,0) = (rp, (x,0)) %9y, (z) and ¢y, — 1 in L(Q) (by Lemma 3.1 and Remark 3.2) we
conclude that v solves

%(m}) —div(@a-Dv)=g onQx(0,T)
v=0 in 092 x (0,7
v =1 in Q7 (0) x {0}.

Now consider the solution u to the problem

0 (ru) —div(a- Du) = f on 2 x (0,7)

ot
u=0 in 092 x (0,7
u=gq in Q7 (0) x {0}.

Then taking the limit in
un, — ullv < l[un, — vnllv + [lon, —vllv + v —ullv

we obtain thanks to (43) and (44) that limy ||up, — ully < ¢ €. In the same way we obtain that

T
‘liin/ /[(ahk~Duhk,<I>)f(d-Du,@)}dx at| < ce
0 Q

for every ® € C}(2)™. This concludes the proof that the matrix @ does not depend on the sequence (rp,); and
on the limit r.

Now we show that the hypothesis (8(;5“);1 C F(K1,Ka,vy) can be dropped. Then suppose only (ry), C
F(Ch,Ca, o), let r be the limit of , as before and denote by wy, the solutions to problems (18). By Lemma 2.2 for
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every h € N we can consider a sequence of functions vy, € V and a sequence of functions sy, (sp)n C F(C1, Ca, o)
and (%)h C F(Cy, K, —K), with K independent of h, such that (we denote by S}, the operator defined by
Shw = spw and recall the definition of W, is given in (19))

1 1
lun — vnlw, < = l(Rrun)" — (Spvn)'|lv: < —,  and moreover S} (0) = 0.

h’ h’

By the first of these estimates and by (11) we obtain that

1
/ lun (2,0) — vp(,0)[*ry (z,0)dz < ¢ 72
Q

and since up(z,0) = p(x) in Q4+ we have

1
[ 1o@) = (. 0P, 000 < €
Q
Observe that the function vy, solve the following problem

(Shw)" + Apw = fr := f + (Shvn)" — (Ruun)’ + Apvn — Apup,
Py 1(0)w(0) = @p := ¢+ (va(0) — ux(0)).
By Lemma 2.2 we have that f, — f in V" and finally, by Remark 4.2 since Sy, satisfy hypotheses of Theorem 4.1,

we obtain, taking the limit, that there exist a function v € V and a function s € F(C1, Ca, po) such that, up to
a subsequence,

v, — v in L2(0,T; L*(Q))
ap - Dv, — a-Dv  in L%(0,T; L?(Q)")-weak,

where v solves the problem

%(sv) —div(a- Dv) = f on Q x (0,7)
v=0 in 90 x (0,T)
v=o in ©%(0) x {0}.

By estimations above we deduce that v = u and that s = r and that

up, —u  in L2(0,T; L3(Q))
ap - Dup — a-Du  in L(0,T; L3(Q)")-weak

and then the result is completely proved. (I

5. EXAMPLES

In this section we present first some possible choices in the class F(C1, Ca, o), then some particular cases
of G-convergence: in Subsection 5.2 the classical variational convergences, in 5.3 the result in homogenization,
in 5.4 the singular perturbations, in which the convergence of the solutions is stronger (Lem. 5.1).
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5.1. Examples of admissible r

1)

r = r(z) — Besides r = 1 and r = 0, one can consider more general situations. Every non-negative
r € L*®(Q), i.e. » =r(x) depending only on x, belongs to the class F(C1, Ca, pi9) with Cy = ||| and
Cy = po = 0. Then also

r(z) = 1 in a Cantor type set
“ 1 0 outside 4,

Q4 with positive measure, is admitted.
r = r(t) — Every regular function satisfying suitable bounds can be admitted. Since

t»—»/gu(:c)v(:c)r(t)d:c

is required to be absolutely continuous we will require r € W°°(0,T). In this way

d
— [ u(x)v(z)r(t)dz = r'(t)/ w(x)v(z)dz
and it is sufficient to require (remember g < 0)
0<r<Cy, B <o,
cp

where cp is the constant appearing in (23), to have r € F(C1, Ca, o).
As particular case we want to observe that if »(0) = 0 and r(¢) > 0 for every ¢ > 0 the initial condition
is not needed. For example, if (¢) = ¢ the problem

0 . .
a(tv) —div(a(x,t)-Dv) = f inQx(0,T)

v=20 in 002 x (0,7)

has a unique solution (without any condition at time t = 0).
r = r(z,t) - If r,% € L>®°(Q x (0,7)) then r € F(Cy,Ca, o) with C1 = ||7||ec and Cy = ||%HOO.
Precisely, if c¢p is the constant appearing in (23), r can be choosen such that

Ho or

o<r<C —
xTx Uy, Cp\at

N

Cs

(02 2 07 Ho g O)
Also functions r for which &2 ¢ L>(Q x (0,T)) can be considered. For example if

r(z,t) = xalx,t), AcCQx(0,T).

In this case, if we denote Q4 (t) = {x € Q| r(-,t) > 0}, we need

t— u(x)v(z)de differentiable. (45)
Q4 (t)

We refer to [8] for more details and to [6] (Prop. 3, Sect. 3.4.4) for differentiability of (45).



ASYMPTOTIC BEHAVIOUR OF ... : A UNITARY APPROACH 689

5.2. Variational convergences

4) If rp, = 0 for every h we have a result for a class of elliptic operators and we have that

an - a in Qx 0,7y <= ap(-?t) £G a(-,t) inQ for ae te€l0,T].

5) If rp, = 1 for every h we have a result for a class of parabolic operators and we have that
an -2 a inx(0,7) < an 25 a in Q x (0,7).

6) Suppose aj to be symmetric matrices. Then, choosing 7, = 0 and using the classical result (see for
instance [4] for the definition of I'-convergence) we obtain that

an %5 a in Qx 0,7y <= ap(-?t) 4 a(-,t) inQ for ae t€l0,T].

5.3. Homogenization

7) Ifr(z) is a Q-periodic function in the variable 2 and a;;, the entries of a matrix a € Mg 0,1)(Ao, Ao, M),
are @-periodic in the variable x, @ cube of R™, then the solution (see [9]) of

r(h:c)% —div(a(hz,t) - Du)=f inQx (0,7)
w=0 in 9Q % (0,7) (46)
u=q in Qp, + x {0}

converge in L2(0,T; L?(£2)) to the solution of the problem

1 / o e~ 0u )

— | = - a;;(t) =—=—=f inQx(0,T
|:|Q| Q ] ot i;::l j( )axiaxj ( )
u=0 in 90 x (0,7)
u=¢ in Q x {0}

(for the definition of @ see for example [9]). Notice that if the mean value of r |Q]~! fQ r > 0 the limit
problem is given by a standard parabolic equation and in this case the initial condition is obtained in
all Q even if for every h the problems above are partially elliptic and partially parabolic. This happens
also if r is positive only on a Cantor set of positive measure.

The only case in which the limit problem is elliptic is when r = 0: in this case problems (46) are the
sequence of elliptic problems

—div(a(hz,t) - Du) = f(z,t) inQ
u=20 in 092

for a.e. t € (0,T)

and the initial conditions u = ¢ in O, 4+ x {0} are meaningless.
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5.4. Singular perturbations

8) Suppose to have a fixed elliptic operator u +— —div(a(x,t) - Du), with a € Maqxo,7)(Ao, Ao, M). Then

a < ain particular means that the solutions of

10u . .

Eafdw(wDu)ff in Qx(0,7)
u=0 in 992 x (0,7
U= in  x {0}

converge in L2(0,T; L?(€2)) to the solution of the problem

—div(a-Du)=f inQx(0,7)
u=0 in 00 x (0,7).

Indeed rp, = 1/h and r = 0 belong to the class F(C1, Ca, uo).-
But in fact we have more. The following convergence result holds.

Proposition 5.1. Consider A, Ay, : L*(0,T; H}(Q)) — L?(0,T; H=Y(Q)) the operators Au = —div(a(x,t)-
Du), Apu = —div(ap(z,t) - Du) with a,a1,az,... € Maxo,r) (Mo, Ao, M, N). Suppose Apv — Av in
L2(0,T; H=Y(Q)) for every v € L2(0,T; HL(Y)). Then

up — U in L2(0,T, H}(2))
ap, - Dup, — a - Du in L2(0, T, L2(Q)"),

where up, and u are respectively the solutions to (18) and (29), and ay, <, a

Proof. Since A, — A= Ap(A~' — A, A, fix f € L2(0,T; H-*(2)) and choose v = A~!f. Then
AN — AT = A (A — Av).

By our assumptions and (16) we conclude that ||.A; ' f —A_1f|\Lz(07T7Hé(Q)) — 0. In particular ||A; ' f—
A7 fll 20,7, 2()) — 0 and, for every ® € L*(0,T; L*(Q)") by (12)

T
sup ‘ / / (an - DA f —a- DA™ f,®)dz dt
o Jo

ll®fl=1

< oM, Ao){Apu — Au, w) 20,711 () x L2 (0,13 H () — 0-

By Theorem 4.5 we derive that ay, <, . (I

Remark 5.2. Observe that assumptions of Proposition 5.1 are guaranteed if (an)n C Mayx o,1)(Xo, Ao, M, N)

and ap, — a in L], (2 x (0,T)), but the converse is not true (see [14]).

We conclude that under assumptions of Proposition 5.1, for every (ry), C F(Cq,Ca, 1) converging
to r € F(Ch,Ca, o) in L®(Q x (0,T))-weaks, we have that

up — U in L2(0,T, H}(2))

ap - Dup, — a - Du in L2(0,T, L3()"), (47)
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where u, and u denote respectively the solutions of

Ot (rpv) —div(ap - Dv) = f Q x (0,T) Ot(rv) —div(a- Dv) = f Q% (0,T)
v=0 o0 x (0,T) v=0 o0 x (0,T)
b=y QO x {0} | v=¢ (0) x {0},
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