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TOPOLOGICAL SENSITIVITY ANALYSIS
FOR TIME-DEPENDENT PROBLEMS
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, Takéo Takahashi

2
and Boris Vexler

3

Abstract. The topological sensitivity analysis consists in studying the behavior of a given shape
functional when the topology of the domain is perturbed, typically by the nucleation of a small hole.
This notion forms the basic ingredient of different topology optimization/reconstruction algorithms.
From the theoretical viewpoint, the expression of the topological sensitivity is well-established in many
situations where the governing p.d.e. system is of elliptic type. This paper focuses on the derivation of
such formulas for parabolic and hyperbolic problems. Different kinds of cost functionals are considered.
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Introduction

Consider a domain Ω ⊂ R
d, d = 2 or 3, and the solution uΩ of a system of partial differential equations

defined in Ω. The topological sensitivity analysis aims at studying the asymptotic behavior of some shape
functional of interest j(Ω) = JΩ(uΩ) with respect to an infinitesimal perturbation of the topology of Ω. This
concept was introduced in the field of shape optimization by Schumacher et al. [14,15,24] and was for the first
time mathematically justified in [16,25]. In these papers, the creation of holes inside the domain is considered.
Given a point x0 ∈ Ω, a domain ω ⊂ R

d containing the origin and a small perforation ωε = x0 + εω, an
asymptotic expansion for ε going to zero is obtained in the form:

j(Ω \ ωε) − j(Ω) = f(ε)g(x0) + o(f(ε)). (0.1)

In this expression, the function ε ∈ R
+ �→ f(ε) ∈ R

+ is smooth and goes to zero with ε. The number g(x0) is
commonly called topological gradient, or topological derivative, at the point x0. It gives an indication on the
sensitivity of the cost functional with respect to the nucleation of a small hole around x0. The map x �→ g(x)
forms the basis of different kinds of topology optimization algorithms. They mainly rely on the following
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principles. For certain problems, the interpretation in one iteration of some special features of this map, such
as peaks, can provide a sufficient information (see e.g. [7,9,10,18]). In an iterative procedure, the topological
gradient can serve as a descent direction for removing matter (see e.g. [16,17,22]). It can also be utilized within
a level-set-based algorithm (see e.g. [1,6,11]).

From the theoretical point of view, most efforts for deriving the expansion (0.1) have been so far focused
on problems associated with state equations of elliptic type, for which several generalizations of the above
notion have been proposed (e.g. creation of a crack [8], exterior topological derivative [20]). To the best of
our knowledge, [9] is the only publication where this issue is addressed for a time-dependent problem. But
the proof presented there is merely formal. For instance, convergence theorems for integrals of multivariate
functions are used without any checking of their applicability. In addition, a restricted class of cost functional
is considered. In another context but still related, one should mention the paper [3], which belongs to a series
of works dedicated to the reconstruction of inhomogeneities from boundary measurements (see e.g. [2,4] and
the references therein). In these works, asymptotic expansions of the state variable uΩ at the location of the
measurements or its integrals against special test functions are derived. Then techniques borrowed from signal
processing are used to recover some features of the unknown inclusions. In the frame of topology optimization,
one would like to be able to deal with general cost functionals, which makes the analysis quite different. In
particular, an adjoint method is generally appreciated for computational convenience.

The present paper investigates the topological sensitivity analysis of shape functionals for governing PDEs
of parabolic and hyperbolic types. For simplicity, the mathematical developments are presented for model
problems. The following heat and wave equations for an inclusion are considered:

ρε
∂puε

∂tp
− div (αεA∇uε) = Fε, p = 1, 2.

The coefficients ρε and αε are positive and piecewise constant, with values inside the inclusion ωε different
from those of the background medium. The right hand side Fε should be smooth in ωε and its complementary,
A denotes some symmetric positive definite matrix. Dirichlet boundary conditions on the external border of Ω
and null initial conditions are prescribed. For these problems, a large class of cost functionals is treated. The
calculus of their sensitivity is performed by means of an adjoint state method, which, in addition to the practical
interest, enables to write the expansion (0.1) in a unified form. This setting allows for some straightforward
generalizations. First, the same results hold for other kinds of linear boundary conditions on ∂Ω (e.g. of
Neumann or Robin type), since they play no role in the analysis except that of guaranteeing well-posedness
and regularity properties. Second, the formulas corresponding to a vector-valued state variable can be easily
inferred, provided that the expression of the first order polarization tensor (also called Pólya-Szegö polarization
tensor, or virtual mass) is known. This notion is however well-documented (see e.g. [2,4]). Third, the case
where ωε is a hole with Neumann boundary condition can be obtained by taking in the final formulas ρε and αε

to be zero inside ωε and the associated polarization tensor. This statement is proved in [5] for elliptic problems.
Here, the proof, which is very similar, is omitted. We also point out that the interest of our result has already
been illustrated by promising numerical experiments [7,9]. Those concern nondestructive testing in elastic media
with acoustic waves and a least-square-type cost function. In [7], the expression of the topological gradient in
the time domain was formally deduced from the harmonic case through the Fourier transform. This formula,
identical to that found in [9], is retrieved as a particular case.

The rest of this article is organized as follows. In Section 1, we recall an abstract result which provides in
a general setting the structure of the topological asymptotic expansion. In Sections 2, 3 and 4, we present our
main result for the heat equation. Some examples of cost functionals are exhibited in Section 5. Sections 6
through 12 contain the proofs. Sections 13 through 17 are devoted to the wave equation, following the same
outline.
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1. A preliminary result

Let X and X0 ⊂ X be two Banach spaces. For all parameter ε ∈ [0, ε0), ε0 > 0, we consider a function
uε ∈ X0 solving a variational problem of the form

Aε(uε, v) = Lε(v) ∀v ∈ X (1.1)

where Aε : X × X → R, and Lε : X → R are a bilinear form on X and a linear functional on X , respectively.
We also consider a functional Jε : X0 → R and the associated reduced cost functional

j(ε) = Jε(uε) ∈ R.

Suppose also that there exists a function f : R → R such that

lim
ε→0

f(ε) = 0, (1.2)

and such that the following holds.
(1) There exist DJε(u0) ∈ X ′

0 and δJ ∈ R such that

Jε(uε) = J0(u0) + 〈DJε(u0), uε − u0〉X′
0,X0 + f(ε)δJ + o(f(ε)), (1.3)

when ε goes to zero. Here X ′
0 denotes the dual space of X0 and 〈., .〉X′

0,X0 is the corresponding duality
pairing. The notation DJε(u0) has been used for the reader’s convenience since in most applications,
it coincides with the Fréchet derivative of Jε evaluated at u0.

(2) There exists vε ∈ X solving the adjoint equation

Aε(ϕ, vε) = −〈DJε(u0), ϕ〉X′
0,X0 ∀ϕ ∈ X0. (1.4)

(3) There exist δA, δL ∈ R such that for ε going to zero,

(Aε −A0)(u0, vε) = f(ε)δA + o(f(ε)), (1.5)

(Lε − L0)(vε) = f(ε)δL + o(f(ε)). (1.6)

Proposition 1.1. Under the above assumptions, we have the following asymptotic expansion for ε tending to
zero:

j(ε) − j(0) = f(ε) (δA− δL + δJ ) + o(f(ε)). (1.7)

For the proof, see [5].

Part 1. Topological sensitivity analysis for parabolic problems

2. Setting of the problem

Let Ω be a bounded domain of R
d, d = 2 or 3, with smooth (C∞) boundary ∂Ω. We consider a small

subdomain ωε = x0 + εω, where x0 ∈ Ω and ω ⊂ R
d is a bounded domain containing the origin with smooth

and connected boundary ∂ω.
Let A be a symmetric positive definite matrix and let α0, α1, ρ0, ρ1 be some positive real numbers. For every

parameter ε ∈ [0, ε0), ε0 small enough, we define the piecewise constant coefficients

αε =
{

α1 in ωε

α0 in Ω \ ωε
, ρε =

{
ρ1 in ωε

ρ0 in Ω \ ωε
.
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Given F0, F1 ∈ L2(0, T ; H−1(Ω)), we also define the function

Fε =
{

F1 in ωε × (0, T ),
F0 in (Ω \ ωε) × (0, T ).

We consider the following heat equation:⎧⎪⎨⎪⎩
ρε

∂uε

∂t
− div (αεA∇uε) = Fε in Ω × (0, T ),

uε = 0 on ∂Ω × (0, T ),
uε(·, 0) = 0 in Ω.

(2.1)

The corresponding variational formulation for

X = L2(0, T ; H1
0 (Ω)) ∩ H1(0, T ; H−1(Ω)),

uε ∈ X0 = {u ∈ X, u(., 0) = 0}
can be written as: ∫ T

0

〈
ρε

∂uε

∂t
, v

〉
H−1(Ω),H1

0 (Ω)

dt +
∫ T

0

aε(uε, v) dt =
∫ T

0

	ε(v) dt ∀v ∈ X. (2.2)

Here, the bilinear form aε and the linear functional 	ε are defined by:

aε(u, v) =
∫

Ω

αεA∇u · ∇v dx, (2.3)

	ε(v) =
∫

Ω

Fεv dx. (2.4)

Equation (2.2) can be identified with the generic form (1.1) by setting

Aε(u, v) =
∫ T

0

(〈
ρε

∂u

∂t
, v

〉
H−1(Ω),H1

0 (Ω)

+ aε(u, v)

)
dt,

Lε(v) =
∫ T

0

	ε(v) dt.

To apply the result of Section 1, we deal with a cost function of the form

j(ε) = Jε(uε) =
∫ T

0

Jε(uε) dt (2.5)

where the functional Jε : H1
0 (Ω) → R satisfies the following assumptions:

Jε(u) ∈ L1(0, T ) ∀u ∈ X, ∀ε ∈ [0, ε0), (2.6)

Jε(uε) = Jε(u0) +
∫ T

0

〈DJε(u0), uε − u0〉H−1(Ω),H1
0 (Ω) dt + εdδJ1 + o(εd), (2.7)

Jε(u0) = J0(u0) + εdδJ2 + o(εd), (2.8)
‖DJε(u0) − DJ0(u0)‖L2(0,T ;H−1(Ω)) = o(εd/2), (2.9)

with DJε(u0(t)) ∈ H−1(Ω) for almost all t ∈ (0, T ). These assumptions will be checked for some typical cost
functionals in Section 5.
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Remarks 2.1.

(1) Like in Section 1, we use the notation DJε(u0(·, t)) since in most applications, it coincides with the
Fréchet derivative of Jε evaluated at u0(·, t).

(2) For simplicity, we do not consider the case where the cost functional Jε depends explicitly on time.
However, all the analysis could be easily adapted to this case.

We introduce the adjoint state vε ∈ X defined by (1.4), i.e.,

∫ T

0

〈
ρε

∂ϕ

∂t
, vε

〉
H−1(Ω),H1

0 (Ω)

dt +
∫ T

0

aε(ϕ, vε) dt = −
∫ T

0

DJε(u0)ϕdt ∀ϕ ∈ X0. (2.10)

The strong formulation of the PDE associated with (2.10) reads⎧⎪⎨⎪⎩
−ρε

∂vε

∂t
− div (αεA∇vε) = −DJε(u0) in Ω × (0, T ),

vε = 0 on ∂Ω × (0, T ),
vε(·, T ) = 0 in Ω.

(2.11)

3. Regularity assumptions

To enable the analysis, we make additional regularity assumptions, namely: there exist two neighborhoods ΩF

and ΩJ of x0 such that

F0 ∈ L2(0, T ; H4(ΩF )) ∩ H2(0, T ; L2(ΩF )), (3.1)

F1 ∈ L2(0, T ; W 1,∞(ΩF )), (3.2)

DJ0(u0) ∈ L2(0, T ; H4(ΩJ)) ∩ H2(0, T ; L2(ΩJ )). (3.3)

The condition (3.3) will be checked for the examples of cost functional presented in Section 5. The condi-
tions (3.1) and (3.2) are assumed throughout all this part of the paper. Then we get the following regularity
on the direct and adjoint solutions. The proof is given in Section 6.

Proposition 3.1. Assume that u0 and v0 solve (2.1) and (2.11), respectively, for ε = 0 and that the regularity
assumptions (3.1), (3.3) hold. Then for all subdomains Ω̃F ⊂⊂ ΩF , Ω̃J ⊂⊂ ΩJ , we have

u0 ∈ L2(0, T, H6(Ω̃F )) ∩ H3(0, T ; L2(Ω̃F )), (3.4)

v0 ∈ L2(0, T, H6(Ω̃J )) ∩ H3(0, T ; L2(Ω̃J )). (3.5)

For the sake of readability, we fix some subdomain Ω̃ containing x0 and such that Ω̃ ⊂⊂ ΩF , Ω̃ ⊂⊂ ΩJ , and we
remember in the sequel that

F0, F1 ∈ L2(0, T ; W 1,∞(Ω̃)), (3.6)

u0, v0 ∈ L2(0, T, H6(Ω̃)) ∩ H3(0, T ; L2(Ω̃)). (3.7)

In particular, by interpolation (see [19], Chap. 4, Prop. 2.3), it follows

u0, v0 ∈ H1(0, T, H4(Ω̃)).

The domains ΩF , ΩJ , Ω̃F and Ω̃J will only be distinguished when studying special cost functionals.
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4. Main result

In order to state the main result, we first introduce the polarization matrix Pω,r ∈ R
d×d, r ∈ R

+. It is
defined as follows:

(1) if r = 1, then Pω,1 = 0;
(2) otherwise, it has the entries

(Pω,r)ij =
∫

∂ω

pjxi ds (4.1)

where xj is the jth coordinate of the point x and the density pi associated with the ith basis vector ei

of R
d is the unique solution of the boundary integral equation

r + 1
r − 1

pi(x)
2

+
∫

∂ω

pi(y)A∇E(x − y).n(x)ds(y) = Aei.n(x) ∀x ∈ ∂ω. (4.2)

Here, E denotes the fundamental solution of the operator u �→ − div (A∇u). We recall that the matrix Pω,r is
symmetric (see, e.g., [4]).

To apply the abstract result of Section 1, we first provide the following lemmas, which will be proved in
Sections 7 through 11.

Lemma 4.1. Assume that the bilinear form aε is defined by (2.3), that u0 and vε solve (2.1) and (2.11),
respectively, that we have the regularity assumptions (3.1)–(3.3) and that (2.9) holds true. Then∫ T

0

(aε − a0)(u0, vε) dt = εd δa + o(εd), (4.3)

with

δa = α0

∫ T

0

∇u0(x0, t) · Pω,
α1
α0

∇v0(x0, t) dt.

Lemma 4.2. Assume that u0 and vε solve (2.1) and (2.11), respectively, that we have the regularity assump-
tions (3.1)–(3.3) and that (2.9) holds true. Then∫ T

0

〈
(ρε − ρ0)

∂u0

∂t
, vε

〉
H−1(Ω),H1

0 (Ω)

dt = εd δρ + o(εd), (4.4)

with

δρ = (ρ1 − ρ0)|ω|
∫ T

0

∂u0

∂t
(x0, t) v0(x0, t) dt.

Lemma 4.3. Assume that the linear functional 	ε is defined by (2.4) and that u0 and vε solve (2.1) and (2.11),
respectively, that we have the regularity assumptions (3.1)–(3.3) and that (2.9) holds true. Then∫ T

0

(	ε − 	0) (vε) dt = εd δ	 + o(εd), (4.5)

with

δ	 = |ω|
∫ T

0

(F1(x0, t) − F0(x0, t)) v0(x0, t) dt.

We are now in position to state the main result of this part.
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Theorem 4.1. Assume that the cost functional J satisfies (2.5)–(2.9). Suppose moreover that u0 and v0

solve (2.1) and (2.11), respectively, for ε = 0 and that the regularity assumptions (3.1)–(3.3) hold. Then we
have the following asymptotic expansion:

j(ε) − j(0) = εd

[
(ρ1 − ρ0)|ω|

∫ T

0

∂u0

∂t
(x0, t) v0(x0, t) dt + α0

∫ T

0

∇u0(x0, t) · Pω,
α1
α0

∇v0(x0, t) dt

− |ω|
∫ T

0

(F1(x0, t) − F0(x0, t)) v0(x0, t) dt + δJ1 + δJ2

]
+ o(εd). (4.6)

This theorem is a direct consequence of Proposition 1.1 combined with the above lemmas and the definitions
δA = δρ + δa, δL = δ	, δJ = δJ1 + δJ2,

〈DJε(u0), ϕ〉X′
0,X0 =

∫ T

0

〈DJε(u0(·, t)), ϕ(t)〉H−1(Ω),H1
0 (Ω) dt.

Remarks 4.1.

(1) The polarization matrix can be determined analytically in some cases. For instance, we have for the
Laplace operator (A is the identity matrix) and ω = B(0, 1):

Pω,r = 2|ω|r − 1
r + 1

I2 in 2D (disc),

Pω,r = 3|ω|r − 1
r + 2

I3 in 3D (sphere),

where I2, I3 denote the identity matrices in dimensions 2 and 3, respectively. For more details on
polarization matrices see, e.g., [2,4,5,21,23] and the references therein.

(2) Theorem 4.1 can be extended to some other situations. First, on the external boundary ∂Ω, we can
replace the Dirichlet condition by any kind of linear boundary condition guaranteeing well-posedness
of the direct and adjoint PDEs, like the Neumann or the Robin boundary condition. Second, the proof
can be easily adapted to other parabolic equations or systems like for instance the Stokes system.

(3) Theorem 4.1 remains valid in the case of a hole with Neumann condition on its boundary. The cor-
responding topological asymptotic expansion is given by (4.6) with ρ1 = 0, α1 = 0, F1 = 0 and the
polarization matrix computed by solving (4.2) for r = 0 (see, e.g., [4,5] for more details).

In the next section we present some examples of cost functional J satisfying the assumptions of the theorem.

5. Examples of cost functional

The proofs of the following results are given in Section 12.

Theorem 5.1. Assume that Jε ∈ C2(L2(Ω), R) (in the sense of Fréchet) and satisfies, for all M ≥ 0,

sup
‖v‖L2(Ω)≤M

‖D2Jε(v)‖B(L2(Ω)) ≤ C(M), (5.1)

with a positive constant C(M) which does not depend on ε and with B(L2(Ω)) denoting the space of bilinear
forms on L2(Ω).

Then Jε is well-defined on X and fulfills (2.7) with δJ1 = 0.
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Corollary 5.1. The asymptotic expansion (4.6) holds true for the following cost functionals with the values of
δJ1 and δJ2 given below.

(1) For the functional

Jε(u) =
∫

Ω

|u − ud|2 dx (5.2)

with ud ∈ L2(Ω)∩H4(B(x0, R)), R > 0, we have δJ1 = 0 and δJ2 = 0. Note that the creation of a hole
with Neumann condition on its boundary cannot be considered for this functional, cf. Remark 4.1 (3).

(2) For the functional

Jε(u) =
∫

Ω

αε|u − ud|2 dx (5.3)

with ud ∈ L2(Ω) ∩ H4(B(x0, R)), R > 0, we have δJ1 = 0 and

δJ2 = (α1 − α0)|ω|
∫ T

0

|u0(x0, t) − ud(x0)|2 dt.

We end this section by giving two other examples of cost functional which are not included in the setting of
Theorem 5.1.

Proposition 5.1. The asymptotic expansion (4.6) holds true for the following cost functionals.
(1) For the functional

Jε(u) =
∫

Ω

η(x)A∇(u − ud).∇(u − ud) dx (5.4)

where ud ∈ L2(0, T ; H1(Ω)) and η is a smooth (C∞) function whose support does not contain x0, we
have δJ1 = 0 and δJ2 = 0.

(2) If we replace in (2.1) the Dirichlet boundary condition on ∂Ω by the Neumann boundary condition (for
instance), then it makes sense to consider the functional

Jε(u) =
∫ T

0

∫
∂Ω

|u − ud|2 ds dt (5.5)

where ud ∈ L2(0, T ; L2(∂Ω)). We have δJ1 = 0 and δJ2 = 0.

The subsequent sections are devoted to the proofs of the results previously stated.

6. Regularity results

Proposition 3.1 is a straightforward application of the following lemma.

Lemma 6.1. Let Ω̃ ⊂⊂ Ω, k be a positive integer, f ∈ L2(0, T ; H−1(Ω))∩L2(0, T ; Hk(Ω̃))∩Hk/2(0, T ; L2(Ω̃)),
g ∈ L2(0, T ; H1/2(∂Ω)) and z be the solution of the system:⎧⎪⎨⎪⎩

ρ0
∂z

∂t
− div (α0A∇z) = f in Ω × (0, T ),

z = g on ∂Ω × (0, T ),
z(·, 0) = 0 in Ω.

(6.1)

Then, for all subdomain Ωk ⊂⊂ Ω̃, we have

z ∈ L2(0, T ; Hk+2(Ωk)) ∩ Hk/2+1(0, T ; L2(Ωk)). (6.2)

The same result holds if the Dirichlet boundary condition on ∂Ω is replaced by a Neumann or Robin condition
of the form ∂z

∂n + λz = g, λ ∈ R, g ∈ L2(0, T ; H−1/2(∂Ω)).
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Proof. The difficulty comes from the fact that the so-called compatibility relations required to apply the standard
parabolic regularity theorems are not satisfied here. We will construct auxiliary functions for which those
relations hold. Our proof follows a bootstrapping argument.

(1) We introduce a domain Ω0 such that Ωk ⊂⊂ Ω0 ⊂⊂ Ω̃. Let η0 be a smooth function with

η0 = 0 in Ω \ Ω̃
η0 = 1 in Ω0.

We consider the function
z0 = η0z.

It solves: ⎧⎪⎨⎪⎩
ρ0

∂z0

∂t
− div (α0A∇z0) = f0 in Ω × (0, T ),

z0 = 0 on ∂Ω × (0, T ),
z0(·, 0) = 0 in Ω,

(6.3)

with
f0 = η0f − 2α0A∇η0.∇z − η0div(α0A∇η0)z. (6.4)

We are guaranteed the minimal regularity z ∈ L2(0, T ; H1(Ω)), from which we deduce that f0 ∈
L2(0, T ; L2(Ω)). Using [19], Chapter 4, Theorem 1.1, we derive that z0 ∈ L2(0; T, H2(Ω))∩H1(0, T ; L2(Ω)),
and consequently that

z ∈ L2(0, T ; H2(Ω0)) ∩ H1(0, T ; L2(Ω0)).

(2) Assume that, given an integer p ∈ {0, ..., k − 1}, there exists a domain Ωp, with Ωk ⊂⊂ Ωp ⊂⊂ Ω̃, such
that

z ∈ L2(0, T ; Hp+2(Ωp)) ∩ Hp/2+1(0, T ; L2(Ωp)). (6.5)

If p + 1 < k, we define a domain Ωp+1 such that Ωk ⊂⊂ Ωp+1 ⊂⊂ Ωp. We introduce a smooth function
ηp+1 satisfying

ηp+1 = 0 in Ω \ Ωp,
ηp+1 = 1 in Ωp+1,

and we define the function
zp+1 = ηp+1z.

It solves ⎧⎪⎨⎪⎩
ρ0

∂zp+1

∂t
− div (α0A∇zp+1) = fp+1 in Ω × (0, T ),

zp+1 = 0 on ∂Ω × (0, T ),
zp+1(·, 0) = 0 in Ω,

(6.6)

with
fp+1 = ηp+1f − 2α0A∇ηp+1.∇z − ηp+1div(α0A∇ηp+1)z. (6.7)

Using [19], Chapter 4, Proposition 2.3, we obtain that fp+1 ∈ L2(0, T ; Hp+1(Ωp))∩H(p+1)/2(0, T ; L2(Ωp)).
It follows (see [19], Chap. 4, Th. 5.3) that zp+1 ∈ L2(0, T ; Hp+3(Ωp))∩H(p+3)/2(0, T ; L2(Ωp)), and thus
that

z ∈ L2(0, T ; Hp+3(Ωp+1)) ∩ H(p+3)/2(0, T ; L2(Ωp+1)).

Hence the relation (6.5) holds true at rank p + 1. The relation (6.2) is obtained by repeating this
procedure up to the rank p + 1 = k. �
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7. Auxiliary results on elliptic problems

We start by introducing a vector field H = (H1, . . . , Hd)� where the components Hi are given as the solutions
of the system: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

div (A∇Hi) = 0 in ω,
div (A∇Hi) = 0 in R

d \ ω,
H+

i − H−
i = 0 on ∂ω,

α1 (A∇Hi · n)+ − α0 (A∇Hi · n)− = (α1 − α0)(An)i on ∂ω,
Hi → 0 at ∞.

(7.1)

In the above equations, n = (n1, . . . , nd)� denotes the outer unit normal of ω and the superscripts + and −
indicate the traces of the restriction to ω and to R

d \ ω, respectively.
The solution Hi can be expressed by means of a single layer potential (see, e.g., [4,13]), namely, there exists

pi ∈ H−1/2(∂ω) such that ∫
∂ω

pids(y) = 0, (7.2)

Hi(x) =
∫

∂ω

pi(y)E(x − y)ds(y), (7.3)

for all x ∈ R
d. To determine the density pi, we use the well-known formula (see, e.g., [4,13]):

(A∇Hi(x) · n(x))± = ± pi(x)
2

+
∫

∂ω

pi(y)(A∇E(x − y) · n(x)) ds(y). (7.4)

Substituting these expressions into the fourth equation of (7.1) leads to the integral equation

(α1 + α0)
pi(x)

2
+ (α1 − α0)

∫
∂ω

pi(y)(A∇Hi(x) · n(x)) ds(y) = (α1 − α0)(An(x))i ∀x ∈ ∂ω.

When α1 �= α0, the above equation is equivalent to (4.2) with r = α1
α0

. When α1 = α0, we get pi = 0 and
Hi = 0. In particular, the following lemma holds with the convention Pω,1 = 0.

Lemma 7.1. Let H = (H1, . . . , Hd)� be the vector field defined as above and k ∈ R
d. Then we have

(α1 − α0)
∫

∂ω

(A∇(H · k) · n)+y ds(y) = −α0Pω,
α1
α0

k + (α1 − α0)|ω|Ak. (7.5)

Proof. Let I = (I1, . . . , Id)� be the vector defined by

I =
∫

∂ω

(A∇(H · k) · n)+y ds(y).

Then for each j ∈ {1, . . . , d}, we have that

Ij =
∑

i

ki

∫
∂ω

(A∇Hi · n)+yj ds(y). (7.6)

Besides, from (7.4), we have the jump relation

(A∇Hi · n)+ − (A∇Hi · n)− = pi. (7.7)
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Combining (7.7) with the third equation of (7.1) brings

(α0 − α1)(A∇Hi · n)+ = α0pi − (α1 − α0)(An)i.

Equation (7.6) together with the above equality yield

(α1 − α0)Ij =
∑

i

ki

[
−α0

∫
∂ω

piyj ds(y) + (α1 − α0)
∫

∂ω

(An)iyj ds(y)
]

. (7.8)

An integration by parts provides ∫
∂ω

(An)iyj ds(y) = |ω|Aij . (7.9)

Gathering (7.9), (4.1) and (7.8) completes the proof. �
For all ε ∈ [0, ε0) and for all x ∈ R

d, we define the vector field hε as

hε(x) = εH

(
x − x0

ε

)
.

Then, we have the following properties. We refer to [5] for the proof.

Lemma 7.2. Let hε be the vector field defined as above and R be a positive number. Then, for ε going to zero,
the following relations hold:

‖hε‖L2(Ω) = o(εd/2), (7.10)

‖∇hε‖L2(Ω) = O(εd/2), (7.11)

‖∇hε‖L2(Ω\B(x0,R))
= O(εd). (7.12)

8. Asymptotic behavior of the direct and adjoint states

We introduce the function

ĥε(x, t) = −hε(x) · ∇v0(x0, t) ∀(x, t) ∈ R
d × (0, T ). (8.1)

This function fulfills the following equations for all t ∈ (0, T ):⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

div (A∇ĥε(·, t)) = 0 in ωε,

div (A∇ĥε(·, t)) = 0 in (Rd \ ωε),
ĥ+

ε (·, t) = ĥ−
ε (·, t) on ∂ωε,

α1

(
A∇ĥε(·, t) · n

)+

− α0

(
A∇ĥε(·, t) · n

)−
= −(α1 − α0) (A∇v0(x0, t) · n) on ∂ωε,

ĥε(·, t) → 0 at ∞.

(8.2)

Furthermore, let us consider the function eε such that

vε = v0 + ĥε + eε. (8.3)

With the above notations, we have the following estimate whose proof is presented at the end of this section.

Lemma 8.1. The function eε defined as above satisfies

‖eε‖L∞(0,T ;L2(Ω)) + ‖eε‖L2(0,T ;H1(Ω)) = o(εd/2). (8.4)
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As a consequence of the above lemma and of Lemma 7.2 we have the following result.

Lemma 8.2. Let vε and v0 be defined by (2.10). Consider a positive number R. Then, we have the following
relations

‖vε − v0‖L∞(0,T ;L2(Ω)) = o(εd/2), (8.5)

‖vε − v0‖L2(0,T ;H1(Ω)) = O(εd/2), (8.6)

‖∇(vε − v0)‖L2(0,T ;L2(Ω\B(x0,R))) = o(εd/2). (8.7)

We also have the corresponding result on the direct state. Indeed, it solves a similar PDE with a right hand
side whose variation also satisfies ‖Fε − F0‖L2(0,T ;H−1(Ω)) = o(εd/2). This latter statement is a straightforward
consequence of (3.6).

Lemma 8.3. Let uε and u0 be defined by (2.1). Consider a positive number R. Then, we have the following
relations

‖uε − u0‖L∞(0,T ;L2(Ω)) = o(εd/2), (8.8)

‖uε − u0‖L2(0,T ;H1(Ω)) = O(εd/2), (8.9)

‖∇(uε − u0)‖L2(0,T ;L2(Ω\B(x0,R))) = o(εd/2). (8.10)

Proof of Lemma 8.1. Using (2.11) and (8.2) and the fact that ĥε(·, T ) = 0, we easily check that eε solves

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ρ1
∂eε

∂t
− α1 div (A∇eε) = Q1 + Q2 + Q3 + Q4 in ωε × (0, T ),

−ρ0
∂eε

∂t
− α0 div (A∇eε) = Q1 + Q4 in (Ω \ ωε) × (0, T ),

e+
ε = e−ε on ∂ωε × (0, T ),

α1 (A∇eε · n)+ − α0 (A∇eε · n)− = Q5 on ∂ωε × (0, T ),
eε = −ĥε on ∂Ω × (0, T ),

eε(·, T ) = 0 in Ω,

(8.11)

where

Q1 = DJ0(u0) − DJε(u0), Q2 = (ρ1 − ρ0)
∂v0

∂t
,

Q3 = (α1 − α0) div (A∇v0), Q4 = ρε
∂ĥε

∂t
,

and for all (x, t) ∈ ∂ωε × (0, T ),

Q5(x, t) = −(α1 − α0) (A [∇v0(x, t) −∇v0(x0, t)] · n) .

In order to separate difficulties, we make the splitting

eε = e1,ε + e2,ε
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with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ρ1
∂e1,ε

∂t
− α1 div (A∇e1,ε) = Q1 + Q2 + Q3 + Q4 in ωε × (0, T ),

−ρ0
∂e1,ε

∂t
− α0 div (A∇e1,ε) = Q1 + Q4 in (Ω \ ωε) × (0, T ),

e+
1,ε = e−1,ε on ∂ωε × (0, T ),

α1 (A∇e1,ε · n)+ − α0 (A∇e1,ε · n)− = Q5 on ∂ωε × (0, T ),
e1,ε = 0 on ∂Ω × (0, T ),

e1,ε(·, T ) = 0 in Ω,

(8.12)

and ⎧⎪⎨⎪⎩
−ρε

∂e2,ε

∂t
− div (αεA∇e2,ε) = 0 in Ω × (0, T ),

e2,ε = −ĥε on ∂Ω × (0, T ),
e2,ε(·, T ) = 0 in Ω.

(8.13)

We estimate e1,ε by multiplying the first two equations of (8.12) by e1,ε and by integrating in space and time:

1
2

∫
Ω

ρε|e1,ε(·, t0)|2 dx +
∫ T

t0

∫
Ω

αεA∇e1,ε · ∇e1,ε dx dt ≤
∫ T

t0

∣∣∣∣∫
∂ωε

Q5e1,ε ds

∣∣∣∣ dt +
(
‖Q1‖L2(t0,T ;H−1(Ω))

+ ‖Q2χωε‖L2(t0,T ;H−1(Ω)) + ‖Q3χωε‖L2(t0,T ;H−1(Ω)) + ‖Q4‖L2(t0,T ;H−1(Ω))

)
‖e1,ε‖L2(t0,T ;H1

0 (Ω)), (8.14)

for almost all t0 ∈ [0, T ]. Here, χωε stands for the characteristic function of the set ωε.
Using the Poincaré inequality and taking the supremum for t0 ∈ [0, T ], the above equation yields

‖e1,ε‖2
L∞(0,T ;L2(Ω)) + ‖e1,ε‖2

L2(0,T ;H1(Ω)) ≤ C

∫ T

0

∣∣∣∣∫
∂ωε

Q5e1,ε ds

∣∣∣∣ dt + C

(
‖Q1‖L2(0,T ;H−1(Ω))

+ ‖Q2χωε‖L2(0,T ;H−1(Ω)) + ‖Q3χωε‖L2(0,T ;H−1(Ω)) + ‖Q4‖L2(0,T ;H−1(Ω))

)
‖e1,ε‖L2(0,T ;H1

0 (Ω)). (8.15)

Here and in the sequel, C is used to denote any constant (independent of ε), that may change from place to
place. Using the regularity of ∇v0 and the change of variables x = x0 + εy, we obtain that

∫ T

0

∣∣∣∣∫
∂ωε

Q5e1,ε ds

∣∣∣∣ dt ≤ Cεd‖v0‖L2(0,T ;W 2,∞(Ω̃))

(∫ T

0

∫
∂ω

|e1,ε(εy, t)|2 ds(y) dt

)1/2

. (8.16)

By the trace theorem and the change of variables y = ε−1(x − x0), it comes∫ T

0

∫
∂ω

|e1,ε(εy, t)|2 ds(y) dt ≤ C

∫ T

0

(
ε−d‖e1,ε‖2

L2(ωε) + ε2−d‖∇e1,ε‖2
L2(ωε)

)
dt.

Hence, using the Sobolev inclusion H1(Ω) ⊂ L6(Ω) (since d = 2 or 3) and the Hölder inequality, we obtain that∫ T

0

∫
∂ω

|e1,ε(εy, t)|2 ds(y) dt ≤ C

∫ T

0

(
ε−d/3‖e1,ε‖2

H1(Ω) + ε2−d‖∇e1,ε‖2
L2(ωε)

)
dt.

From (8.16) and the above equation, it follows∫ T

0

∣∣∣∣∫
∂ωε

Q5e1,ε ds

∣∣∣∣ dt ≤ Cε
5d
6 ‖v0‖L2(0,T ;W 2,∞(Ω̃))‖e1,ε‖L2(0,T ;H1(Ω)). (8.17)
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Applying Lemma 7.2 leads to the following estimate on Q4:

‖Q4‖L2(0,T ;H−1(Ω)) � C‖∇v0(x0, ·)‖H1(0,T ) ‖hε‖H−1(Ω) = o(εd/2)‖∇v0(x0, ·)‖H1(0,T ). (8.18)

The Sobolev imbedding L6/5(Ω) ⊂ H−1(Ω) (since d = 2 or 3) leads to the inequalities

‖Q2χωε‖L2(0,T ;H−1(Ω)) � ‖Q2χωε‖L2(0,T ;L6/5(Ω)) � C

∥∥∥∥∂v0

∂t

∥∥∥∥
L2(0,T ;L∞(Ω̃))

ε5d/6 (8.19)

and
‖Q3χωε‖L2(0,T ;H−1(Ω)) � C‖Q3χωε‖L2(0,T ;L6/5(Ω)) � C ‖v0‖L2(0,T ;W 2,∞(Ω̃)) ε5d/6. (8.20)

From (2.9), we have that
‖Q1‖L2(0,T ;H−1(Ω)) = o(εd/2). (8.21)

Gathering (8.15), (8.17)–(8.21), we obtain that

‖e1,ε‖2
L∞(0,T ;L2(Ω)) + ‖e1,ε‖2

L2(0,T ;H1(Ω)) ≤ o(εd/2)‖e1,ε‖L2(0,T ;H1(Ω))

which, combined with the Young inequality, provides

‖e1,ε‖L∞(0,T ;L2(Ω)) + ‖e1,ε‖L2(0,T ;H1(Ω)) = o(εd/2). (8.22)

In order to estimate e2,ε, we consider a smooth function θ : Ω → R such that θ = 0 in B(x0, R) and θ = 1
on ∂Ω. Then we set

h̃ε(x, t) = ĥε(x, t)θ(x), (8.23)

ẽ2,ε(x, t) = e2,ε(x, t) + h̃ε(x, t). (8.24)
The function ẽ2,ε solves⎧⎪⎪⎨⎪⎪⎩

−ρε
∂ẽ2,ε

∂t
− div (αεA∇ẽ2,ε) = −ρε

∂h̃ε

∂t
− div (αεA∇h̃ε) in Ω × (0, T ),

ẽ2,ε = 0 on ∂Ω × (0, T ),
ẽ2,ε(·, T ) = 0 in Ω.

(8.25)

By multiplying by ẽ2,ε and integrating by part, we obtain

‖ẽ2,ε‖L∞(0,T ;L2(Ω)) + ‖ẽ2,ε‖L2(0,T ;H1(Ω)) ≤ C

⎛⎝∥∥∥∥∥∂h̃ε

∂t

∥∥∥∥∥
L2(0,T ;L2(Ω))

+
∥∥∥h̃ε

∥∥∥
L2(0,T ;H1(Ω))

⎞⎠ . (8.26)

From (8.24), (8.26), (8.23) and (8.1), successively, it comes:

‖e2,ε‖L2(0,T ;H1(Ω)) + ‖e2,ε‖L∞(0,T ;L2(Ω)) ≤ ‖ẽ2,ε‖L2(0,T ;H1(Ω)) + ‖ẽ2,ε‖L∞(0,T ;L2(Ω))

+ ‖h̃ε‖L2(0,T ;H1(Ω)) + ‖h̃ε‖L∞(0,T ;L2(Ω))

≤ C
(
‖h̃ε‖H1(0,T ;L2(Ω) + ‖h̃ε‖L2(0,T ;H1(Ω))

)
≤ C ‖∇v0(x0, ·)‖H1(0,T ) ‖hε‖H1(Ω\B(x0,R)) .

Then using Lemma 7.2 we derive

‖e2,ε‖L∞(0,T ;L2(Ω)) + ‖e2,ε‖L2(0,T ;H1(Ω)) = o(εd/2). (8.27)

Combining (8.22) and (8.27) yields (8.4). �
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9. Variation of the bilinear form

This section is devoted to the proof of Lemma 4.1. We study the behavior of the following quantity:∫ T

0

(aε − a0)(u0, vε) dt =
∫ T

0

∫
ωε

(α1 − α0)A∇u0 · ∇vε dxdt. (9.1)

Adopting the decomposition (8.3), we write

∫ T

0

(aε − a0)(u0, vε) dt =
∫ T

0

∫
ωε

(α1 − α0)A∇u0 · ∇v0 dxdt +
∫ T

0

∫
ωε

(α1 − α0)A∇u0 · ∇ĥε dxdt

+
∫ T

0

∫
ωε

(α1 − α0)A∇u0 · ∇eε dxdt. (9.2)

We shall prove later that:

∫ T

0

∫
ωε

(α1 − α0)A∇u0 · ∇ĥε dxdt = εdα0

∫ T

0

∇u0(x0, t) · Pω,
α1
α0

∇v0(x0, t) dt

− εd|ω|(α1 − α0)
∫ T

0

A∇u0(x0, t) · ∇v0(x0, t) dt + o(εd). (9.3)

Besides, we deduce from (8.4) and the Cauchy-Schwarz inequality, that∫ T

0

∫
ωε

(α1 − α0)A∇u0 · ∇eε dxdt = ‖∇u0‖L2(0,T ;L∞(Ω̃)) o(εd), (9.4)

and from the regularity of u0 and v0, that∣∣∣∣∣
∫ T

0

∫
ωε

(α1 − α0)A∇u0 · ∇v0 dxdt − εd|ω|
∫ T

0

(α1 − α0)A∇u0(x0, t) · ∇v0(x0, t) dt

∣∣∣∣∣
� Cεd+1‖u0‖L2(0,T ;W 2,∞(Ω̃))‖v0‖L2(0,T ;W 2,∞(Ω̃)). (9.5)

Gathering (9.2)–(9.5) leads to Lemma 4.1.
It remains to prove (9.3). We recall that

ĥε(x, t) = −εH

(
x − x0

ε

)
· ∇v0(x0, t).

Starting from the relation∫ T

0

∫
ωε

(α1 − α0)A∇u0 · ∇ĥε dxdt =
∫ T

0

∫
ωε

(α1 − α0)A∇(u0(x, t) − u0(x0, t)) · ∇ĥε(x, t) dxdt,

integrating by parts and using (8.2), we obtain∫ T

0

∫
ωε

(α1 − α0)A∇u0 · ∇ĥε dxdt =
∫ T

0

∫
∂ωε

(α1 − α0)(u0(x, t) − u0(x0, t))(A∇ĥε(x, t) · n)+ ds(x) dt.
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Using the change of variables x = x0 + εy, we proceed by

∫ T

0

∫
ωε

(α1 − α0)A∇u0 · ∇ĥε dxdt

= −εd−1(α1 − α0)
∫ T

0

∫
∂ω

(u0(x0 + εy, t) − u0(x0, t))(A∇(H(y) · ∇v0(x0, t)) · n)+ ds(y) dt.

The regularity of u0 leads to

∫ T

0

∫
ωε

(α1−α0)A∇u0·∇ĥε dxdt = −εd(α1−α0)
∫ T

0

∇u0(x0, t)·
∫

∂ω

(A∇(H(y)·∇v0(x0, t))·n)+y ds(y) dt + o(εd).

Finally, applying Lemma 7.1 yields (9.3).

10. Variation of the term involving the time derivative

This section is devoted to the proof of Lemma 4.2. First we have that

∫ T

0

〈
(ρε − ρ0)

∂u0

∂t
, vε

〉
H−1(Ω),H1

0 (Ω)

dt =
∫ T

0

∫
ωε

(ρ1 − ρ0)
∂u0

∂t
vε dxdt

and thus, we can write

∫ T

0

〈
(ρε − ρ0)

∂u0

∂t
, vε

〉
H−1(Ω),H1

0 (Ω)

dt = εd(ρ1 − ρ0)|ω|
∫ T

0

∂u0

∂t
(x0, t) v0(x0, t) dt + S1 + S2,

where

S1 =
∫ T

0

∫
ωε

(ρ1 − ρ0)
∂u0

∂t
( vε − v0) dxdt,

S2 =
∫ T

0

∫
ωε

(ρ1 − ρ0)
[
∂u0

∂t
(x, t)v0(x, t) − ∂u0

∂t
(x0, t)v0(x0, t)

]
dxdt.

It stems from the regularity assumptions on u0 and v0 that

|S2| ≤ Cεd+1‖u0‖H1(0,T ;W 1,∞(Ω̃))‖v0‖L2(0,T ;W 1,∞(Ω̃)). (10.1)

Moreover, by using the Cauchy-Schwarz inequality in time and the Hölder inequality in space together with the
imbedding H1(Ω) ⊂ L6(Ω), it comes

|S1| ≤ Cε5d/6‖u0‖H1(0,T ;L∞(Ω̃))‖vε − v0‖L2(0,T ;H1(Ω̃)).

Applying (8.6), it follows

|S1| = O(ε4d/3), (10.2)

which completes the proof.
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11. Variation of the linear form

We turn to the variation ∫ T

0

(	ε − 	0) (vε) dt =
∫ T

0

∫
ωε

(F1 − F0) vε dx dt.

We have that ∫ T

0

(	ε − 	0) (vε) dt = εd|ω|
∫ T

0

(F1(x0, t) − F0(x0, t)) v0(x0, t) dt + R1 + R2, (11.1)

where

R1 =
∫ T

0

∫
ωε

(F1 − F0) (vε − v0) dx dt,

R2 =
∫ T

0

∫
ωε

[(F1(x, t) − F0(x, t)) v0(x, t) − (F1(x0, t) − F0(x0, t)) v0(x0, t)] dx dt.

Using the regularity assumptions on F0 and F1, we obtain that

|R2| � Cεd+1(‖F1‖L2(0,T ;W 1,∞(Ω̃)) + ‖F0‖L2(0,T ;W 1,∞(Ω̃)))‖v0‖L2(0,T ;W 1,∞(Ω̃)). (11.2)

Besides, thanks to the Cauchy-Schwarz inequality, we have

|R1| � Cεd/2(‖F1‖L2(0,T ;L∞(Ω̃)) + ‖F0‖L2(0,T ;L∞(Ω̃)))‖v0 − vε‖L2(0,T ;L2(Ω̃)).

Hence, by using (8.5), we derive
|R1| = o(εd). (11.3)

Gathering (11.1), (11.2) and (11.3), we obtain Lemma 4.3.

12. Variation of the cost functional

Proof of Theorem 5.1. First, since Jε ∈ C(L2(Ω); R), and

X ⊂ C([0, T ]; L2(Ω)),

we have that for any v ∈ X , Jε(v) : [0, T ] → R is a continuous function. Therefore,

Jε(v) =
∫ T

0

Jε(v(t)) dt

is well-defined.
Now, we check (2.7) with δJ1 = 0. We proceed by the Taylor formula:

Jε(uε) − Jε(u0) −
∫ T

0

〈DJε(u0(t)), uε(t) − u0(t)〉H−1(Ω),H1
0 (Ω) dt

=
1
2

∫ T

0

D2Jε(wε(t))(uε(t) − u0(t), uε(t) − u0(t)) dt,

where wε(t) ∈ [u0(t), uε(t)] for almost all t ∈ [0, T ]. From Lemma 8.3, we have that

‖uε(t) − u0(t)‖L∞(0,T ;L2(Ω)) = o(εd/2), (12.1)



444 S. AMSTUTZ, T. TAKAHASHI AND B. VEXLER

and thus
‖wε(t) − u0(t)‖L∞(0,T ;L2(Ω)) = o(εd/2).

Consequently, for some positive number M , we have

‖wε(t)‖L2(Ω) ≤ M ∀t ∈ [0, T ].

From this bound together with (5.1), we derive that

‖D2Jε(wε(t))‖B(L2(Ω)) ≤ C(M) ∀t ∈ [0, T ],

which implies, by using (12.1),∣∣∣∣∣
∫ T

0

D2Jε(wε(t))(uε(t) − u0(t), uε(t) − u0(t)) dt

∣∣∣∣∣ ≤ C(M)
∫ T

0

‖uε(t) − u0(t)‖2
L2(Ω) dt = o(εd). �

Proof of Corollary 5.1.
(1) For the functional

Jε(u) =
∫

Ω

|u − ud|2 dx,

it is obvious that Jε ∈ C2(L2(Ω), R) and that (5.1) is satisfied, so that we can apply Theorem 5.1.
Therefore (2.7) holds true. Since in this case Jε does not depend on ε, relations (2.8) and (2.9) (with
δJ2 = 0) hold true. The regularity condition (3.3) is also fulfilled since u0 satisfies (3.4) and ud ∈
H4(B(x0, R)). Therefore we can apply Theorem 4.1 and we obtain the asymptotic expansion (4.6).

(2) For the functional

Jε(u) =
∫

Ω

αε|u − ud|2 dx,

Theorem 5.1 can also be applied. Therefore (2.7) holds true. The condition (3.3) is fulfilled for the
same reasons as before. Next, we have

Jε(u0) − J0(u0) =
∫ T

0

∫
ωε

(α1 − α0)|u0(x, t) − ud(x)|2 dx dt.

From the regularity assumptions on u0 and ud, we have that

Jε(u0) − J0(u0) =
∫ T

0

|ωε|(α1 − α0)|u0(x0, t) − ud(x0)|2 dt + O(εd+1),

which implies (2.8). Finally, for any ϕ ∈ L2(0, T ; H1
0(Ω)),∫ T

0

〈DJε(u0(t)) − DJ0(u0(t)), ϕ(t)〉H−1(Ω),H1
0 (Ω) dt = 2

∫ T

0

∫
ωε

(α1 − α0)(u0(x, t) − ud(x))ϕ(x, t) dx dt.

From the Cauchy-Schwarz inequality, it comes

∫ T

0

〈DJε(u0(t)) − DJ0(u0(t)), ϕ(t)〉H−1(Ω),H1
0 (Ω) dt

≤ C

∫ T

0

(∫
ωε

|u0(x, t) − ud(x)|2 dx

)1/2(∫
ωε

|ϕ(x, t)|2 dx

)1/2

dt.
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Using the Sobolev embedding H1(Ω) ⊂ L6(Ω) and the Hölder inequality, we obtain

∫ T

0

〈DJε(u0(t)) − DJ0(u0(t)), ϕ(t)〉H−1(Ω),H1
0 (Ω) dt ≤ Cε2d/3

∫ T

0

‖u0(t) − ud‖H1(Ω)‖ϕ(t)‖H1(Ω) dt.

Another application of the Cauchy-Schwarz inequality provides

∫ T

0

〈DJε(u0(t)) − DJ0(u0(t)), ϕ(t)〉H−1(Ω),H1
0 (Ω) dt ≤ Cε2d/3‖u0 − ud‖L2(0,T ;H1(Ω))‖ϕ‖L2(0,T ;H1(Ω)),

which leads to (2.9). The condition (3.3) can be checked in the same way as in the previous example. �

Proof of Proposition 5.1.

(1) For the functional

Jε(u) =
∫

Ω

η(x)A∇(u − ud).∇(u − ud) dx,

we easily see that Jε is well-defined on X and fulfills (2.8) with δJ2 = 0. The condition (2.9) holds true
since Jε does not depend on ε. Next we consider the variation∣∣∣∣∣Jε(uε) − Jε(u0) −

∫ T

0

〈DJε(u0), (uε − u0)〉H−1(Ω),H1
0 (Ω) dt

∣∣∣∣∣ =
∫ T

0

∫
Ω

η(x)A∇(uε − u0).∇(uε − u0) dx dt.

The above equation together with (8.10) yield δJ1 = 0. We now check (3.3). We have

DJ0(u0) = −2 div (ηA∇(u0 − ud)).

This function belongs to L2(0, T ; H4(ΩJ )) ∩ H2(0, T ; L2(ΩJ )) for any ΩJ ⊂ B(x0, R).

(2) For the functional

Jε(u) =
∫ T

0

∫
∂Ω

|u − ud|2 ds dt,

we easily check that Jε is well-defined on X and fulfills (2.8), (2.9) with δJ2 = 0. We have that∣∣∣∣∣Jε(uε) − Jε(u0) −
∫ T

0

〈DJε(u0), (uε − u0)〉(H1(Ω))′,H1(Ω) dt

∣∣∣∣∣ =
∫ T

0

∫
∂Ω

(uε − u0)2 dx dt.

It follows from (8.8) and (8.10) that δJ1 = 0. The adjoint state v0 satisfies a non-homogeneous Neumann
boundary condition with source term

g = 2(u0 − ud).

The regularity v0 ∈ L2(0, T ; H6(Ω̃J )) ∩ H3(0, T ; L2(Ω̃J )), for some suitable Ω̃J , stems from
Lemma 6.1. �
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Part 2. Topological sensitivity analysis for hyperbolic problems

13. Setting of the problem

With the same notations as before, we consider now the wave equation:⎧⎪⎨⎪⎩
ρε

∂2uε

∂t2
− div (αεA∇uε) = Fε in Ω × (0, T ),

uε = 0 on ∂Ω × (0, T ),
uε(·, 0) = ∂uε

∂t (·, 0) = 0 in Ω.

(13.1)

The corresponding variational formulation for

X = C([0, T ]; H1
0 (Ω)) ∩ C1([0, T ]; L2(Ω)) ∩ C2([0, T ]; H−1(Ω)), (13.2)

uε ∈ X0 =
{

u ∈ X, u(., 0) =
∂uε

∂t
(·, 0) = 0

}
reads ∫ T

0

〈
ρε

∂2uε

∂t2
, v

〉
H−1(Ω),H1

0 (Ω)

dt +
∫ T

0

aε(uε, v) dt =
∫ T

0

	ε(v) dt ∀v ∈ X, (13.3)

with the bilinear form aε and the linear functional 	ε defined by (2.3) and (2.4). We write (13.3) in the general
form (1.1) by setting

Aε(u, v) =
∫ T

0

(〈
ρε

∂2u

∂t2
, v

〉
H−1(Ω),H1

0 (Ω)

+ aε(u, v)

)
dt,

Lε(v) =
∫ T

0

	ε(v) dt.

We consider a cost functional of the form (2.5) satisfying (2.6), (2.7), (2.8) and such that

‖DJ0(u0) − DJε(u0)‖W 1,1(0,T ;H−1(Ω)) = o(εd/2). (13.4)

The adjoint state vε ∈ X defined by (1.4) solves:∫ T

0

〈
ρε

∂2ϕ

∂t2
, vε

〉
H−1(Ω),H1

0 (Ω)

dt +
∫ T

0

aε(ϕ, vε) dt = −
∫ T

0

DJε(u0)ϕdt ∀ϕ ∈ X0. (13.5)

The associated strong formulation reads:⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρε

∂2vε

∂t2
− div (αεA∇vε) = −DJε(u0) in Ω × (0, T ),

vε = 0 on ∂Ω × (0, T ),

vε(·, T ) =
∂vε

∂t
(·, T ) = 0 in Ω.

(13.6)

14. Regularity assumptions

For notational simplicity, we define the differential operator

Λ : u �→ div (α0A∇u). (14.1)
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The needed regularity on the direct and adjoint solutions can be obtained from different sets of assumptions.
The following one is chosen merely as an example:

F0 ∈ C6([0, T ]; L2(Ω)) ∩
4⋂

j=0

Cj([0, T ]; H5−j(Ω)), (14.2)

F0, ΛF0 and Λ2F0 vanish on ∂Ω, (14.3)
F1 ∈ L2(0, T ; W 1,∞(B(x0, R))), R > 0, (14.4)

DJ0(u0) ∈ C6([0, T ]; L2(Ω)) ∩
4⋂

j=0

Cj([0, T ]; H5−j(Ω)), (14.5)

DJ0(u0), ΛDJ0(u0) and Λ2DJ0(u0) vanish on ∂Ω. (14.6)

The conditions (14.2)–(14.4) are assumed throughout all this part of the paper, whereas the conditions (14.5)
and (14.6) will be checked later for some examples of cost functional. The following result is proved in Section 17.

Proposition 14.1. Assume that u0 and v0 solve (13.1) and (13.6), respectively, for ε = 0, and that the
regularity assumptions (14.2)–(14.6) hold. Then

u0 ∈ Cj([0, T ]; H7−j(Ω)) ∀j = 0, ..., 7, (14.7)

u0, Λu0 and Λ2u0 vanish on ∂Ω, (14.8)

v0 ∈ Cj([0, T ]; H7−j(Ω)) ∀j = 0, ..., 7, (14.9)

v0, Λv0 and Λ2v0 vanish on ∂Ω. (14.10)

15. Main result

The following lemmas are proved in Section 17. The polarization matrix Pω,
α1
α0

involved in Lemma 15.1 is
identical to that defined in the first part (see Sect. 4).

Lemma 15.1. Assume that the bilinear form aε is defined by (2.3), that u0 and vε solve (13.1) and (13.6),
respectively, that we have the regularity assumptions (14.2)–(14.6) and that (13.4) holds true.

Then we have ∫ T

0

(aε − a0)(u0, vε) dt = εd δa + o(εd), (15.1)

with

δa = α0

∫ T

0

∇u0(x0, t) · Pω,
α1
α0

∇v0(x0, t) dt.

Lemma 15.2. Assume that u0 and vε solve (13.1) and (13.6), respectively, that we have the regularity assump-
tions (14.2)–(14.6) and that (13.4) holds true.

Then, we have ∫ T

0

〈
(ρε − ρ0)

∂2u0

∂t2
, vε

〉
H−1(Ω),H1

0 (Ω)

dt = εd δρ + o(εd), (15.2)

with

δρ = −(ρ1 − ρ0)|ω|
∫ T

0

∂u0

∂t
(x0, t)

∂v0

∂t
(x0, t) dt.
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Lemma 15.3. Assume that the linear functional 	ε is defined by (2.4), that u0 and vε solve (13.1) and (13.6),
respectively, that we have the regularity assumptions (14.2)–(14.6) and that (13.4) holds true.

Then, we have ∫ T

0

(	ε − 	0) (vε) dt = εd δ	 + o(εd), (15.3)

with

δ	 = |ω|
∫ T

0

(F1(x0, t) − F0(x0, t)) v0(x0, t) dt.

As a consequence of Proposition 1.1 and the above lemmas, we obtain the following theorem.

Theorem 15.1. Assume that the cost functional Jε satisfies (2.5)–(2.8) and (13.4). Suppose moreover that u0

and v0 solve (13.1) and (13.6), respectively, for ε = 0, and that the regularity assumptions (14.2)–(14.6) hold.
Then we have the following asymptotic expansion:

j(ε) − j(0) = εd

[
− (ρ1 − ρ0)|ω|

∫ T

0

∂u0

∂t
(x0, t)

∂v0

∂t
(x0, t) dt + α0

∫ T

0

∇u0(x0, t) · Pω,
α1
α0

∇v0(x0, t) dt

− |ω|
∫ T

0

(F1(x0, t) − F0(x0, t)) v0(x0, t) dt + δJ1 + δJ2

]
+ o(εd). (15.4)

16. Examples of cost functional

We consider the same examples as in the first part. The proofs, which are similar, are omitted.

Theorem 16.1. Theorem 5.1 is valid with the current notations, i.e. X being defined by (13.2).

Corollary 16.1. The asymptotic expansion (15.4) holds true for the following cost functionals.
(1) For the functional

Jε(u) =
∫

Ω

|u − ud|2 dx (16.1)

with
ud ∈ H5(Ω) and ud, Λud, Λ2ud vanishing on ∂Ω,

the operator Λ being defined by (14.1), we have δJ1 = 0 and δJ2 = 0. We recall that this functional
cannot be considered in the case of a hole.

(2) For the functional

Jε(u) =
∫

Ω

αε|u − ud|2 dx (16.2)

with
ud ∈ H5(Ω) and ud, Λud, Λ2ud vanishing on ∂Ω,

we have δJ1 = 0 and

δJ2 = (α1 − α0)|ω|
∫ T

0

|u0(x0, t) − ud(x0)| dt.

Proposition 16.1. The asymptotic expansion (15.4) holds true for the following cost functionals.
(1) For the functional

Jε(u) =
∫

Ω

η(x)A∇(u − ud).∇(u − ud) dx (16.3)
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where u0, ud ∈ C6([0, T ]; H2(Ω)) ∩⋂4
j=0 Cj([0, T ]; H7−j(Ω)),

Λj(u0 − ud) vanishes on ∂Ω for j = 1, 2, 3, (16.4)

and η is a smooth (C∞) function whose support does not contain x0, we have δJ1 = 0 and δJ2 = 0.
(2) If we replace in (13.1) the Dirichlet boundary condition on ∂Ω by the Neumann boundary condition

(for instance), then we can consider the functional

Jε(u) =
∫ T

0

η(t)
∫

∂Ω

|u − ud|2 ds dt (16.5)

where u0|∂Ω, ud ∈ C8([0, T ]; H−1/2(∂Ω))∩⋂4
j=2 Cj([0, T ]; H11/2−j(∂Ω)) and η is a smooth function whose

support is contained in [0, T ). Then we have δJ1 = 0 and δJ2 = 0.

Remark 16.1. By virtue of Lemma 17.3, a sufficient condition for (16.4) to be fulfilled is

F0 ∈ C8([0, T ]; L2(Ω)) ∩⋂6
j=0 Cj([0, T ]; H7−j(Ω)), (16.6)

ΛjF0 vanishes on ∂Ω for j = 0, ..., 3, (16.7)
Λjud vanishes on ∂Ω for j = 0, ..., 3.

Remark 16.2. In the second case, due to the different nature of the boundary condition, one has slightly
different regularity properties. Actually, Lemma 17.2 still holds true when an homogeneous Neumann boundary
condition is applied on ∂Ω, which straightforwardly leads to an analogon to Lemma 17.3. Therefore, the
required regularity on u0 is guaranteed for instance if the conditions (16.6) and (16.7) are fulfilled. Concerning
the regularity of the adjoint state, i.e. to prove that (14.9) is satisfied with the assumptions made, one has
to deal with a nonhomogeneous Neumann boundary condition. This is done with the help of an adaptation
of Lemma 17.3 relying on a lifting of the boundary condition and a weakening of the compatibility conditions.
These latter ones can be written in a form involving values of the right hand side of the PDE together with its
space and time derivatives at the initial time only (the final time T for the adjoint equation). They are satisfied
by construction thanks to the cut-off function η.

17. Proofs

17.1. Preliminary lemmas

We first recall two classical results. Proofs can be found in [12].

Lemma 17.1. For 0 ≤ ε < ε0 (ε0 sufficiently small), let Qε ∈ W 1,1(0, T ; H−1(Ω)) and zε be the solution of⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρε

∂2zε

∂t2
− div (αεA∇zε) = Qε in Ω × (0, T ),

zε = 0 on ∂Ω × (0, T ),

zε(·, 0) =
∂zε

∂t
(·, 0) = 0 in Ω.

(17.1)

There exists a constant C > 0 such that, for all ε ∈ [0, ε0),

‖zε‖L∞(0,T ;H1(Ω)) +
∥∥∥∥∂zε

∂t

∥∥∥∥
L∞(0,T ;L2(Ω))

≤ C‖Qε‖W 1,1(0,T ;H−1(Ω)).
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Lemma 17.2. Let Q ∈ C1([0, T ]; L2(Ω)), z0 ∈ H2(Ω) ∩ H1
0 (Ω), z1 ∈ H1

0 (Ω), and z be the solution of⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ρ0

∂2z

∂t2
− Λz = Q in Ω × (0, T ),

z = 0 on ∂Ω × (0, T ),
z(·, 0) = z0 in Ω,

∂z

∂t
(·, 0) = z1 in Ω.

(17.2)

Then
z ∈ C([0, T ]; H2(Ω)) ∩ C1([0, T ]; H1

0 (Ω)) ∩ C2([0, T ]; L2(Ω)).

This latter result can be generalized as follows.

Lemma 17.3. Let p be a nonnegative integer and Q ∈ C2p+2([0, T ]; L2(Ω)) ∩⋂2p
j=0 Cj([0, T ]; H2p+1−j(Ω)) with

ΛjQ vanishing on ∂Ω for j = 0, ..., p.

Let z be the solution of ⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ0

∂2z

∂t2
− Λz = Q in Ω × (0, T ),

z = 0 on ∂Ω × (0, T ),

z(·, 0) =
∂z

∂t
(·, 0) = 0 in Ω.

(17.3)

Then
z ∈ Cj([0, T ]; H2p+3−j(Ω)) ∀j = 0, ..., 2p + 3,

Λjz vanishes on ∂Ω for j = 0, ..., p.

Proof. We introduce the family of auxiliary functions

wj =
∂jz

∂tj
, j = 0, ..., 2p + 1. (17.4)

Using (17.3) and (17.4), it can be checked that wj solves:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ρ0

∂2wj

∂t2
− Λwj =

∂jQ

∂tj
in Ω × (0, T ),

wj = 0 on ∂Ω × (0, T ),
wj(·, 0) = Bj in Ω,

∂wj

∂t
(·, 0) = Bj+1 in Ω,

(17.5)

with

B2i =
i−1∑
k=0

ρk−i
0 Λi−k−1 ∂2kQ

∂t2k
(0), i = 0, ..., p,

B2i+1 =
i−1∑
k=0

ρk−i
0 Λi−k−1 ∂2k+1Q

∂t2k+1
(0), i = 0, ..., p.

Lemma 17.2 yields
w2p+1 ∈ C([0, T ]; H2(Ω)) ∩ C1([0, T ]; H1

0(Ω)) ∩ C2([0, T ]; L2(Ω)),
which implies by integration

w2p ∈ C1([0, T ]; H2(Ω)) ∩ C2([0, T ]; H1
0 (Ω)) ∩ C3([0, T ]; L2(Ω)).
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Furthermore, we have

−Λw2p =
∂2pQ

∂t2p
− ρ0

∂2w2p

∂t2
∈ C([0, T ]; H1

0(Ω)),

from which it follows that
w2p ∈ C([0, T ]; H3(Ω)).

We then obtain by bootstrapping that

w0 = z ∈ Cj([0, T ]; H2p+3−j(Ω)) ∀j = 0, ..., 2p + 3.

By exploiting the first equation of (17.5), one can prove that

Λjz = ρj
0w2j −

j−1∑
k=0

ρk
0

∂2k

∂t2k
Λj−k−1Q, j = 0, ..., p.

Due to the hypotheses, the above function vanishes on ∂Ω. This completes the proof. �

Proof of Proposition 14.1. It is an application of Lemma 17.3 with p = 2. �

17.2. Main estimate

Let us consider the function eε such that

vε = v0 + ĥε + eε, (17.6)

with ĥε defined by (8.2).

Lemma 17.4. There holds
‖eε‖L∞(0,T ;H1(Ω)) = o(εd/2).

Proof. We easily check that eε solves⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ1
∂2eε

∂t2
− α1 div (A∇eε) = Q1 + Q2 + Q3 + Q4 in ωε × (0, T ),

ρ0
∂2eε

∂t2
− α0 div (A∇eε) = Q1 + Q4 in (Ω \ ωε) × (0, T ),

e+
ε = e−ε on ∂ωε × (0, T ),

α1 (A∇eε · n)+ − α0 (A∇eε · n)− = Q5 on ∂ωε × (0, T ),
eε = −ĥε on ∂Ω × (0, T ),

eε(·, T ) =
∂eε

∂t
(·, T ) = 0 in Ω,

(17.7)

where

Q1 = DJ0(u0) − DJε(u0), Q2 = −(ρ1 − ρ0)
∂2v0

∂t2
,

Q3 = (α1 − α0) div (A∇v0), Q4 = −ρε
∂2ĥε

∂t2
,

and for all (x, t) ∈ ∂ωε × (0, T ),

Q5(x, t) = −(α1 − α0) (A [∇v0(x, t) −∇v0(x0, t)] · n) .

Again we split
eε = e1,ε + e2,ε
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with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ1
∂2e1,ε

∂t2
− α1 div (A∇e1,ε) = Q1 + Q2 + Q3 + Q4 in ωε × (0, T ),

ρ0
∂2e1,ε

∂t2
− α0 div (A∇e1,ε) = Q1 + Q4 in (Ω \ ωε) × (0, T ),

e+
1,ε = e−1,ε on ∂ωε × (0, T ),

α0 (A∇e1,ε · n)+ − α1 (A∇e1,ε · n)− = Q5 on ∂ωε × (0, T ),
e1,ε = 0 on ∂Ω × (0, T ),

e1,ε(·, T ) =
∂e1,ε

∂t
(·, T ) = 0 in Ω,

(17.8)

and ⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρε

∂2e2,ε

∂t2
− div (αεA∇e2,ε) = 0 in Ω × (0, T ),

e2,ε = −ĥε on ∂Ω × (0, T ),

e2,ε(·, T ) =
∂e2,ε

∂t
(·, T ) = 0 in Ω.

(17.9)

We first estimate e1,ε. Lemma 17.1 provides

‖e1,ε‖L∞(0,T ;H1(Ω)) +
∥∥∥∥∂e1,ε

∂t

∥∥∥∥
L∞(0,T ;L2(Ω))

≤ C‖Qε‖W 1,1(0,T ;H−1(Ω)), (17.10)

with
Qε := Q1 + Q4 + (Q2 + Q3)χωε + Q̂5, (17.11)

and for almost all t ∈ [0, T ] and all ϕ ∈ H1
0 (Ω),

〈Q̂5(., t), ϕ〉H−1(Ω),H1
0 (Ω) :=

∫
∂ωε

Q5(x, t)ϕdx.

Using (13.4), (14.9) and the estimate (7.10) on hε, we obtain that

‖Q1 + Q4‖W 1,1(0,T ;H−1(Ω)) = o(εd/2). (17.12)

Furthermore, it results from (14.9) together with the inequality

‖χωε‖H−1(Ω) ≤ C‖χωε‖L6/5(Ω) ≤ Cε5d/6

that
‖(Q2 + Q3)χωε‖W 1,1(0,T ;H−1(Ω)) = O(ε5d/6). (17.13)

Finally, we find by similar arguments to the parabolic case that, for almost every t ∈ [0, T ],

‖Q̂5(., t)‖H−1(Ω) ≤ Cε5d/6‖v0(., t)‖W 2,∞(Ω),∥∥∥∥∥∂Q̂5

∂t
(., t)

∥∥∥∥∥
H−1(Ω)

≤ Cε5d/6

∥∥∥∥∂v0

∂t
(., t)

∥∥∥∥
W 2,∞(Ω)

.

It follows that
‖Q̂5‖W 1,1(0,T ;H−1(Ω)) ≤ Cε5d/6‖v0‖W 1,1(0,T ;W 2,∞(Ω)). (17.14)

Gathering (17.10)–(17.14) yields
‖e1,ε‖L∞(0,T ;H1(Ω)) = o(εd/2).
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We now estimate e2,ε. Let us consider again a smooth function θ : Ω → R such that θ = 0 in B(x0, R) and
θ = 1 on ∂Ω, and set

h̃ε(x, t) = ĥε(x, t)θ(x) and ẽ2,ε(x, t) = e2,ε(x, t) + h̃ε(x, t).

The function ẽ2,ε solves⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρε

∂2ẽ2,ε

∂t2
− div (αεA∇ẽ2,ε) = ρε

∂2h̃ε

∂t2
− div (αεA∇h̃ε) in Ω × (0, T ),

ẽ2,ε = 0 on ∂Ω × (0, T ),

ẽ2,ε(·, T ) =
∂ẽ2,ε

∂t
(·, T ) = 0 in Ω.

(17.15)

Lemma 17.1 provides

‖ẽ2,ε‖L∞(0,T ;H1(Ω)) ≤ C

⎛⎝∥∥∥∥∥∂2h̃ε

∂t2

∥∥∥∥∥
W 1,1(0,T ;H−1(Ω))

+
∥∥∥h̃ε

∥∥∥
W 1,1(0,T ;H1(Ω))

⎞⎠ .

Then, straightforward calculations lead to

‖ẽ2,ε‖L∞(0,T ;H1(Ω)) ≤ C ‖∇v0(x0, ·)‖W 3,1(0,T ) ‖hε‖H1(Ω\B(x0,R)) = o(εd/2).

Next,

‖e2,ε‖L∞(0,T ;H1(Ω)) ≤ ‖ẽ2,ε‖L∞(0,T ;H1(Ω)) + C‖ĥε‖L∞(0,T ;H1(Ω\B(x0,R)))

≤ o(εd/2) + C ‖∇v0(x0, ·)‖L∞(0,T ) ‖hε‖H1(Ω\B(x0,R))

≤ o(εd/2).

This latter inequality stems from the imbedding H3(0, T ) ⊂ L∞(0, T ) together with Lemma 7.2. This completes
the proof. �

17.3. Estimates on the direct and adjoint state

As a consequence of Lemma 17.4, the estimates provided in Lemmas 8.2 and 8.3 remain valid in this context.

17.4. Proof of Theorem 15.1

We shall prove Lemmas 15.1, 15.2 and 15.3, which lead straightforwardly to the theorem. On the basis of
Lemma 17.4, Lemmas 15.1 and 15.3 can be proved following the same reasoning as in the first part. Therefore
we only present the proof of Lemma 15.2. We make the splitting:∫ T

0

〈
(ρε − ρ0)

∂2u0

∂t2
, vε

〉
H−1(Ω),H1

0 (Ω)

dt = εd(ρ1 − ρ0)|ω|
∫ T

0

∂2u0

∂t2
(x0, t) v0(x0, t) dt + S1 + S2, (17.16)

with

S1 =
∫ T

0

∫
ωε

(ρ1 − ρ0)
∂2u0

∂t2
( vε − v0) dxdt,

S2 =
∫ T

0

∫
ωε

(ρ1 − ρ0)
[
∂2u0

∂t2
(x, t)v0(x, t) − ∂2u0

∂t2
(x0, t)v0(x0, t)

]
dxdt.
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From the regularity assumptions on u0 and v0, it comes

|S2| ≤ Cεd+1‖u0‖H2(0,T ;W 1,∞(Ω))‖v0‖L2(0,T ;W 1,∞(Ω)). (17.17)

Moreover, applying the Cauchy-Schwarz inequality in time and the Hölder inequality in space together with the
imbedding H1(Ω) ⊂ L6(Ω) yields

|S1| ≤ Cε5d/6‖u0‖H2(0,T ;L∞(Ω))‖vε − v0‖L2(0,T ;H1(Ω)).

In view of (8.6), we get that

|S1| = O(ε4d/3). (17.18)

The proof of Lemma 15.2 is completed by gathering (17.16)–(17.18) as well as integrating by parts.
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