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QUASISTATIC CRACK EVOLUTION FOR A COHESIVE ZONE MODEL
WITH DIFFERENT RESPONSE TO LOADING AND UNLOADING:

A YOUNG MEASURES APPROACH
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Abstract. A new approach to irreversible quasistatic fracture growth is given, by means of Young
measures. The study concerns a cohesive zone model with prescribed crack path, when the material
gives different responses to loading and unloading phases. In the particular situation of constant un-
loading response, the result contained in [G. Dal Maso and C. Zanini, Proc. Roy. Soc. Edinburgh
Sect. A 137 (2007) 253–279] is recovered. In this case, the convergence of the discrete time approxi-
mations is improved.
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1. Introduction

In this paper we study the fracture growth in an elastic body, taking into account the contribution of the
cohesive forces acting between the lips of the crack. We consider materials which display different stress-
strain relations in loading and unloading. To focus on this aspect, we keep the rest of the model as simple as
possible.

We restrict our analysis to the case of generalized antiplanar shear. More precisely, let Ω be a bounded open
set in RN , with Lipschitz boundary. We assume that the reference configuration is the infinite cylinder Ω×R, and
that the displacement U : Ω×R → RN+1 has the special form U(x1, . . . , xN , xN+1) = (0, . . . , 0, u(x1, . . . , xN )),
with u : Ω → R. We assume also that the crack path in the reference configuration is contained in (Γ∩Ω)×R,
where Γ ⊂ RN is a Lipschitz closed set such that 0 < HN−1(Γ ∩ Ω) < +∞ and Ω \ Γ = Ω+ ∪ Ω−, with Ω±

disjoint open connected sets with Lipschitz boundary. When speaking about bulk and surface energy, we will
refer to a finite portion of the cylinder, obtained by intersection with two horizontal hyperplanes separated by a
unit distance. Although the case of a planar set Ω is the most interesting from the point of view of applications,
no further relevant technicalities arise in considering an arbitrary N ≥ 2.

Let us fix a time interval [0, T ], with T > 0. In the situation we consider, the evolution is driven by a time
dependent displacement w : [0, T ] → H1(Ω) imposed on a fixed portion ∂DΩ of the boundary ∂Ω. We assume
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that ∂DΩ is well-separated from Γ and that its intersections with ∂Ω+ and ∂Ω− have positive (N−1)-dimensional
measure.

Let us now introduce the energy functional. We suppose that the unbroken part of Ω can be described in the
context of linearized elasticity, so that the stored elastic energy associated to a displacement u ∈ H1(Ω \ Γ) is:

1
2

∫
Ω\Γ

|∇u|2dx.

In order to express the work spent to create a fracture, we need some preliminary notations. Let u± denote
the trace on Γ of the restriction of u to Ω±, and let [u] denote the jump u+ − u− of u across Γ. The crack is
represented by the set

Ju := {x ∈ Γ : [u](x) 
= 0}·

Its contribution to the energy, according to Barenblatt’s cohesive zone model (see [1]), can be written as

∫
Γ

g(|[u]|) dHN−1,

where g : [0,+∞) → [0,+∞) is a C1, nondecreasing, bounded, concave function with g(0) = 0 and σ :=
g′(0+) ∈ (0,+∞). Here g(|[u]|) is the energy per unit area spent to create a crack with opening |[u]|. Moreover,
g′(|[u]|) gives the force per unit area acting between the lips of the crack whose displacements are u+ and u−,
respectively. Typically, this force decreases with the distance and hence g is concave. Since in practice the
cohesive interactions have finite range, we assume g to be bounded. Therefore, the total energy associated to a
displacement u ∈ H1(Ω \ Γ) is given by

E(u) :=
1
2

∫
Ω\Γ

|∇u|2dx+
∫

Γ

g(|[u]|) dHN−1. (1.1)

Up to now, we did not take into account the dissipation due to the fracturing process. Indeed, it may happen
that the imposed boundary data depend on time in such a way that the crack opening first increases (loading
phase) and then decreases (unloading phase). In many situations, the energy spent during the loading phase
might not be totally recovered during the unloading phase.

In order to describe this phenomenon, we introduce an internal variable γ : [0, T ] → L∞(Γ). For every x ∈ Γ
and t ∈ [0, T ], γ(t)(x) represents the maximum value reached by the opening of the fracture |[u](x)| at x in
the time interval [0, t]. Let now x ∈ Γ and t ∈ [0, T ] be fixed. We consider a family of nondecreasing convex
functions {ϕ(·, z)}z>0, each of them defined in [0, z], with the properties: ϕ(·, z) ≥ g(·), ϕ(z, z) = g(z), and ϕ
is nondecreasing in the second variable. We assume that at time t the energy per unit area of the fracture at
the point x is given by ϕ(|[u](x)|, γ(t)(x)). This means that when |[u](x)| is smaller than the maximal opening
reached up to time t the energy density follows a curve that is above g. Otherwise, the energy density we
consider is still given by the function g (see Fig. 1).

These considerations lead us to describe the state of the system by a pair (u, γ) with |[u]| ≤ γ, where
u ∈ H1(Ω \ Γ) represents the displacement and γ ∈ L∞(Γ) is the aforementioned internal variable. Thus, we
can correct expression (1.1), and the total energy associated to an admissible pair (u, γ) is

E(u, γ) :=
1
2

∫
Ω\Γ

|∇u|2dx+
∫

Γ

ϕ(|[u]|, γ) dHN−1.

In order to impose the irreversibility condition, we assume that the variable γ is increasing.
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Figure 1. Fracture energy per unit surface.

We are now in a position to state the notion of evolution we are interested in. An irreversible quasistatic
evolution is a function t �→ (u(t), γ(t)) from [0, T ] to H1(Ω \ Γ) × L∞(Γ) such that u(t) = w(t) on ∂DΩ,
|[u(t)]| ≤ γ(t) HN−1-a.e. on Γ for every t ∈ [0, T ], and the following conditions are satisfied:

(a) (unilateral) global stability: for every t ∈ [0, T ]

E(u(t), γ(t)) ≤ E(v, τ)

for every pair (v, τ) ∈ H1(Ω \ Γ) × L∞(Γ) such that v = w(t) on ∂DΩ and τ ≥ γ(t);
(b) irreversibility: t �→ γ(t) is nondecreasing;
(c) energy balance: the function t �→

∫
Ω\Γ ∇u(t) · ∇ẇ(t) dx belongs to L1([0, T ]) and

E(u(t), γ(t)) = E(u(0), γ(0)) +
∫ t

0

∫
Ω\Γ

∇u(s) · ∇ẇ(s) dxds

for every t ∈ [0, T ].
This definition fits into the framework of Mielke’s approach to a variational theory of rate independent processes
(see [8] and the references therein). Indeed, let us define the stored energy as

Ẽ(t, (u, γ)) := E(u, γ) −
∫

Γ

ϕ(0, γ) dHN−1

if u = w(t) on ∂DΩ with |[u]| ≤ γ HN−1-a.e. on Γ, and the dissipation distance between two admissible pairs
(u, γ) and (v, τ) as

D((u, γ), (v, τ)) :=
∫

Γ

(
ϕ(0, τ) − ϕ(0, γ)

)
dHN−1

if τ ≥ γ HN−1-a.e. on Γ and D((u, γ), (v, τ)) := +∞ otherwise. Then,

∂tẼ(t, (u, γ)) =
∫

Ω\Γ
∇u · ∇ẇ(t) dx
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and conditions (a)–(c) can be written as
(a) (unilateral) global stability: for every t ∈ [0, T ]

Ẽ(t, (u(t), γ(t))) ≤ Ẽ(t, (v, τ)) + D((u(t), γ(t)), (v, τ))

for every pair (v, τ) ∈ H1(Ω \ Γ) × L∞(Γ) such that v = w(t) on ∂DΩ and τ ≥ γ(t);
(b) irreversibility: t �→ γ(t) is nondecreasing;
(c) energy balance: the function t �→ ∂tẼ(t, (u(t), γ(t))) belongs to L1([0, T ]) and

Ẽ(t, (u(t), γ(t))) + DissD((u, γ); [0, t]) = Ẽ(0, (u(0), γ(0))) +
∫ t

0

∂sẼ(s, (u(s), γ(s))) ds

for every t ∈ [0, T ],
where the dissipation DissD((u, γ); [0, t]) along the curve s �→ (u(s), γ(s)) between 0 and t is defined as the total
variation with respect to the “metric” D, so that DissD((u, γ); [0, t]) =

∫
Γ

(
ϕ(0, γ(t)) − ϕ(0, γ(0))

)
dHN−1.

Following [4,7], in order to prove an existence result for the irreversible quasistatic evolution, we perform a
time discretization procedure. We define discrete-time evolutions (uk(t), γk(t)) by solving incremental minimum
problems, and we let the time step go to 0.

The main difficulty in passing to the continuous-time limit is the lack of compactness of the internal vari-
ables γk. In the particular case of a constant unloading response (i.e., ϕ does not depend on [u]) this problem
was overcome in [5] by defining a suitable notion of convergence, inspired by the σ-convergence introduced
in [6]. We choose here a different approach based on the use of Young measures. We are thus lead to consider
in Section 3 a weaker formulation of the problem in which the internal variable is a Young measure ν. The total
energy associated to an admissible configuration (u, ν) becomes

E(u, ν) :=
1
2

∫
Ω\Γ

|∇u|2dx+
∫

Γ

∫
R

ϕ(|[u]|, ξ) dνx(ξ) dHN−1.

To deal with irreversibility and unilateral global stability, we introduce an order relation “
” between Young
measures (see Def. 3.10) and prove an extension of Helly’s selection principle to this framework (see Thm. 3.20).

Thus, a Young measure solution to the irreversible quasistatic evolution problem is a function t �→ (u(t), νt)
such that for every t ∈ [0, T ] the internal variable νt is a Young measure and

(a′) (unilateral) global stability: for every t ∈ [0, T ]

E(u(t), νt) ≤ E(v, μ)

for every pair (v, μ) with v ∈ H1(Ω \ Γ), v = w(t) on ∂DΩ and νt 
 μ;
(b′) irreversibility: t �→ νt is nondecreasing with respect to 
;
(c′) energy balance: the function t �→

∫
Ω\Γ ∇u(t) · ∇ẇ(t) dx belongs to L1([0, T ]) and

E(u(t), νt) = E(u(0), ν0) +
∫ t

0

∫
Ω\Γ

∇u(s) · ∇ẇ(s) dxds

for every t ∈ [0, T ].
The theoretical tools we develop allow us to prove in Theorem 3.30 the existence of such a solution. In particular,
to pass to the limit from the discrete-time problems to the continuous-time evolution we use a compactness
result which gives the convergence in the sense of Young measures (Thm. 3.5).

In the case of a constant unloading response we prove (see Thm. 5.1) that the solution given by Theorem 3.30
is a concentrated Young measure, thus recovering the result in [5]. As a consequence, we are able to show
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that the internal variables γk actually converge in measure to the continuous-time internal variable γ (see
Rem. 5.2), which improves the σ-convergence obtained in [5].

For a general unloading response, it is still an open question whether or not (a′)–(c′) admits a concentrated
Young measure solution. Nevertheless, we show that the a priori bounds available for the discrete-time evo-
lutions are not enough to guarantee that the limit measure is concentrated (Prop. 6.1). Hence, to give a full
answer to this question one should probably exploit the minimality properties of the discrete-time evolutions.

At the end of the paper we give the Euler-Lagrange conditions for the unilateral global stability in two
equivalent formulations (Props. 7.1 and 7.2).

The paper is organized as follows. In Section 2 we fix the notations and the details of the problem. Section 3
contains the results needed to give a formulation in the setting of Young measures. The existence result for
irreversible quasistatic evolutions in the sense of Young measures is proved in Section 4. The case of constant
unloading response is the subject of Section 5. In Section 6 we show with an example that the a priori estimates
on the discrete-time variables are not sufficient to guarantee that the limit measure is localized. Finally, Section 7
is devoted to the necessary conditions for the unilateral global stability.

2. Setting of the problem

In this section we give some basic definitions and we introduce the problem. We will use the following
notations:

– T := {(y, z) ∈ R2 : y > 0, z > 0, z > y};
– Lk is the Lebesgue measure in Rk, k ∈ N;
– HN−1 is the (N − 1)-dimensional Hausdorff measure in RN .

For every set A ⊂ RN :
– 1A is the characteristic function of A;
– Ac is the complement of A in RN ;
– D′(A) is the space of distributions on A;
– B(A) is the σ-algebra of Borel sets in A;
– M+

b (A) is the set of the nonnegative bounded Radon measures on A.
Let Ω be a bounded open set in RN , N ≥ 2, with Lipschitz boundary, and let Γ ⊂ RN be a Lipschitz closed set
such that 0 < HN−1(Γ ∩ Ω) < +∞ and Ω \ Γ = Ω+ ∪ Ω−, with Ω± disjoint open connected sets with Lipschitz
boundary. We will prescribe time dependent boundary displacements on ∂DΩ ⊂ ∂Ω, where

∂DΩ = Λ+
D ∪ Λ−

D,

with Λ+
D and Λ−

D non empty relatively open, connected, Lipschitz sets. We also assume that Λ±
D ⊂⊂ (∂Ω± \Γ),

from which it follows that ∂DΩ is well-separated from Γ. With n we denote the inner unit normal vector to ∂Ω,
defined HN−1-a.e. in ∂Ω. We will also write n for the inner unit normal vector to ∂Ω+.

Let us fix a time interval [0, T ], with T > 0, and let w ∈ H1((0, T );H1(Ω)) be the boundary
displacement. Thus, the time derivative ẇ of w belongs to the space L2((0, T );H1(Ω)). We will assume that
supt∈[0,T ] ‖w(t)‖L∞(Ω) =: M < +∞.

Let B ⊂ RN be an open bounded set and let S ⊂ ∂B be relatively open and Lipschitz. We set

H1
0 (B,S) := {ψ ∈ H1(B) : ψ = 0 on S}·

The symbol ‖ · ‖ stands for the standard norm in L2(Ω) or L2(Ω \Γ; RN ), depending on the context. Moreover,
the brackets 〈·, ·〉 denote the dual pairing between H− 1

2 (Γ) and H
1
2 (Γ). For every function v ∈ H1(Ω \ Γ), we

will use the notation [v] := v+ − v−, where v± is the trace on Γ of the restriction of v to Ω±. Let

L∞(Γ)+ := {τ ∈ L∞(Γ) : τ ≥ 0 HN−1-a.e. on Γ}·
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For t ∈ [0, T ], the class A(t, w) of admissible displacements at time t is defined as

A(t, w) := {(v, τ) ∈ H1(Ω \ Γ) × L∞(Γ)+ : v = w(t) on ∂DΩ, |[v]| ≤ τ HN−1-a.e. on Γ}·

Recalling the considerations made in the introduction, the total energy associated at time t to a pair (v, τ) ∈
A(t, w) is

E(v, τ) :=
1
2

∫
Ω\Γ

|∇v|2dx+
∫

Γ

ϕ(|[v]|, τ) dHN−1. (2.1)

We will assume that ϕ ∈ C1(T \ {0}) ∩ C0(T ) and:
– ϕ(z, z) = g(z) for every z ∈ [0,+∞),
– ϕ(·, z) is nondecreasing and convex for every z ∈ (0,+∞),
– ϕ(y, ·) is nondecreasing for every y ∈ [0,+∞),

where g : [0,+∞) → [0,+∞) is a C1, nondecreasing, bounded, concave function with g(0) = 0. We will denote
by σ := g′(0+) ∈ (0,+∞) the slope of the function g at 0.

We can give now the definition of (unilateral) global stability.

Definition 2.1. A pair (u, γ) is globally stable at time t ∈ [0, T ] if
– (u, γ) ∈ A(t, w);
– E(u, γ) ≤ E(v, τ) for every (v, τ) ∈ A(t, w) with τ ≥ γ.

Remark 2.2. One can see (see also Rem. 3.22) that the two conditions of Definition 2.1 are equivalent to the
following:

– (u, γ) ∈ A(t, w);
– E(u, γ) ≤ E(v, γ ∨ |[v]|) for every v ∈ H1(Ω \ Γ) such that v = w(t) on ∂DΩ.

Thanks to Remark 2.2, for every fixed t ∈ [0, T ] the existence of a globally stable pair (u, γ) at time t follows
by the direct method of the Calculus of Variations.

Remark 2.3. Suppose that a pair (u(t), γ(t)) is globally stable at time t for every t ∈ [0, T ]. Choosing
(w(t), γ(t)) as test pair, we have that there exists a constant C > 0 such that

1
2

∫
Ω\Γ

|∇u(t)|2dx+
∫

Γ

ϕ(|[u(t)]|, γ(t)) dHN−1 ≤ 1
2

∫
Ω\Γ

|∇w(t)|2dx+
∫

Γ

ϕ(0, γ(t)) dHN−1 ≤ C,

since w ∈ H1((0, T );H1(Ω)) and ϕ is bounded. In particular, ‖∇u(t)‖ ≤ C for t ∈ [0, T ] and, by Poincaré
inequality,

‖u(t)‖H1(Ω\Γ) ≤ C, (2.2)
where C denotes different constants independent of t ∈ [0, T ]. By a truncation argument, from the fact that
supt∈[0,T ] ‖w(t)‖L∞(Ω) ≤ M it follows that ‖u(t)‖L∞(Ω) ≤ M and, in turn, ‖[u(t)]‖L∞(Γ) ≤ 2M for every
t ∈ [0, T ]. Since for every y ∈ [0,+∞) the function ϕ(y, ·) is nondecreasing, defining γ̃(t) := γ(t) ∧ 2M one has

E(u(t), γ̃(t)) ≤ E(u(t), γ(t)),

so that the pair (u(t), γ̃(t)) is still globally stable at time t.

In the sequel, thanks to the previous remark, we will always assume γ ∈ [0, 2M ]. Finally, we give the
definition of irreversible quasistatic evolution.

Definition 2.4. An irreversible quasistatic evolution is a function t �→ (u(t), γ(t)) from [0, T ] to H1(Ω \ Γ) ×
L∞(Γ)+ such that the following conditions are satisfied:

(a) (unilateral) global stability: (u(t), γ(t)) is globally stable at time t for every t ∈ [0, T ];
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(b) irreversibility: t �→ γ(t) is nondecreasing;
(c) energy balance: the function t �→

∫
Ω\Γ ∇u(t) · ∇ẇ(t) dx belongs to L1([0, T ]) and for every t ∈ [0, T ]

E(u(t), γ(t)) = E(u(0), γ(0)) +
∫ t

0

∫
Ω\Γ

∇u(s) · ∇ẇ(s) dxds.

Unfortunately, we are not able to provide an existence result for such evolutions in the general case. This will
be proved only when the unloading response is constant (see Sect. 5). For this reason, we extend the definition
of irreversible quasistatic evolution to the setting of Young measures.

3. Irreversible quasistatic evolution in the setting of Young measures

We give here a weak formulation of irreversible quasistatic evolution, in the framework of Young measures.
In the whole section we will assume that c and d are fixed real numbers such that −∞ < c < d < +∞.

3.1. Young measures

We recall now some definitions and properties of Young measures that will be useful in the sequel. For the
results contained in this subsection, see [10]. We set:

P([c, d]) := {probability measures on [c, d]} = {ν ∈ M+
b ([c, d]) : ν([c, d]) = 1}·

We recall the following useful characterization of probability measures in [c, d] (see [3], Prop. 1.3.8, where a
slightly different version of the proposition is stated).

Proposition 3.1. For each nonincreasing, left continuous function F : [c, d] → [0, 1] that satisfies F (c) = 1,
there is a unique measure ν ∈ P([c, d]) such that the equality F (a) = ν([a, d]) holds at each a ∈ [c, d].

We now give the definition of measurable family in P([c, d]).

Definition 3.2. We say that a family (νx)x∈Γ in P([c, d]) is measurable if for every A ∈ B([c, d]) the scalar
function x �→ νx(A) is measurable with respect to the σ-algebra B(Γ). The set of all such families is denoted
with P(Γ, [c, d]).

Definition 3.3. We define the collection of Young measures on Γ× [c, d] with respect to the measure HN−1 as
the set

Y(Γ,HN−1, [c, d]) := {λ ∈ M+
b (Γ × [c, d]) : λ(A× [c, d]) = HN−1(A) ∀A ∈ B(Γ)}·

We introduce now a topology in Y(Γ,HN−1, [c, d]).

Definition 3.4. Let (λj) be a sequence in Y(Γ,HN−1, [c, d]). We say that (λj) w∗-converges to λ ∈ Y(Γ,HN−1,
[c, d]) if ∫

Γ×[c,d]

fdλj →
∫

Γ×[c,d]

fdλ

for every f ∈ C0(Γ × [c, d]). We will also write λj
Y−→ λ.

The following compactness result holds.

Theorem 3.5 (compactness theorem). Y(Γ,HN−1, [c, d]) endowed with the w∗-topology is sequentially compact.

Next theorem gives the connection between Young measures and measurable families in P([c, d]).
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Theorem 3.6 (disintegration theorem). The map Φ : P(Γ, [c, d]) → Y(Γ,HN−1, [c, d]) which associates to
(νx)x∈Γ the Young measure λ given by

λ(G) :=
∫

Γ

∫
[c,d]

1G(x, ξ) dνx(ξ) dHN−1(x) G ∈ B(Γ× [c, d])

induces a bijection between P(Γ, [c, d])/∼ and Y(Γ,HN−1, [c, d]), where ∼ is the equivalence relation defined by

ν1 ∼ ν2 ⇐⇒ (ν1)x = (ν2)x for HN−1-a.e. x ∈ Γ.

Definition 3.7. Let u : Γ → [c, d] be a measurable function. We denote by δu the element of P(Γ, [c, d])
defined by

(δu)x = δu(x) for HN−1-a.e. x ∈ Γ.
Identifying P(Γ, [c, d])/∼ and Y(Γ,HN−1, [c, d]) in the sense of Theorem 3.6, we will refer to δu as the concen-
trated Young measure associated to u.

The following theorem (see [10], Thm. 17) will be useful in the proof of the main result of the paper.

Theorem 3.8. Let (uk)k∈N be a sequence of measurable functions from Γ to [c, d]. Suppose that δuk

Y−→ ν for
some ν ∈ Y(Γ,HN−1, [c, d]). Let φ : Γ × [c, d] → R be a Carathéodory function, that is, φ is measurable and
φ(x, ·) is continuous for HN−1-a.e. x ∈ Γ. In addition, assume that x �→ φ(x, uk(x)) is uniformly integrable.
Then φ(x, ·) is νx-integrable for HN−1-a.e. x ∈ Γ and

lim
k→+∞

∫
Γ

φ(x, uk(x)) dHN−1(x) =
∫

Γ

∫
[c,d]

φ(x, ξ) dνx(ξ) dHN−1(x).

We conclude the subsection with a proposition that will be used in Remark 5.2.

Proposition 3.9. Let u, uk : Γ → [c, d] be measurable functions. Then

uk → u in measure ⇐⇒ δuk

Y−→ δu.

3.2. Partial ordering for Young measures

Let us consider the following order relation in Y(Γ,HN−1, [c, d]).

Definition 3.10. Let ν1, ν2 ∈ Y(Γ,HN−1, [c, d]). We say that ν1 
 ν2 if for every A ∈ B(Γ) and for every
a ∈ [c, d] there holds ∫

A

(ν1)x( [a, d] ) dHN−1(x) ≤
∫
A

(ν2)x( [a, d] ) dHN−1(x).

Proposition 3.11. Let ν1, ν2 ∈ Y(Γ,HN−1, [c, d]). The following conditions are equivalent:
(i) ν1 
 ν2;
(ii) (ν1)x( [a, d] ) ≤ (ν2)x( [a, d] ) for every a ∈ [c, d], for HN−1-a.e. x ∈ Γ;
(iii) for every f ∈ C0(Γ × [c, d]) nondecreasing with respect to the second variable∫

Γ

∫
[c,d]

f(x, ξ) d(ν1)x dHN−1(x) ≤
∫

Γ

∫
[c,d]

f(x, ξ) d(ν2)x dHN−1(x).

The proof follows from standard approximation and localization techniques.

Remark 3.12. In particular, if ν1 = δf1 and ν2 = δf2 , with f1, f2 : Γ → [c, d] measurable functions, then
ν1 
 ν2 is equivalent to

f1 ≤ f2 HN−1-a.e. on Γ.
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Remark 3.13. For every ν ∈ P(Γ, [c, d]) and a ∈ [c, d] let zνa be the measurable function zνa : Γ → [0, 1] defined
by zνa(x) := νx( [a, d] ) for HN−1-a.e. x ∈ Γ. Using this notation, ν1 
 ν2 is equivalent to

zν1a ≤ zν2a HN−1-a.e. on Γ, for every a ∈ [c, d].

Remark 3.14. From condition (iii) of Proposition 3.11 it follows that the inequality between Young measures
is preserved under the limit operation. More precisely, let (νn) and (μn) be two sequences of Young measures
such that νn

Y−→ ν∗, μn
Y−→ μ∗ and νn 
 μn for every n ∈ N. Then ν∗ 
 μ∗.

Definition 3.15. Let D ⊂ [0, T ] and let ν : D → Y(Γ,HN−1, [c, d]) be a function that associates to every
s ∈ D a Young measure νs. We say that ν ∈ Y(Γ,HN−1, [c, d]) is the supremum over s ∈ D of the family of
measures {νs : s ∈ D} if the following two conditions hold:

(i) νs 
 ν for every s ∈ D;
(ii) if μ ∈ Y(Γ,HN−1, [c, d]) and νs 
 μ for every s ∈ D, then ν 
 μ.

We will also write
ν = sup

s∈D
νs.

In the same way one can define the infimum of a family of Young measures.

Proposition 3.16. Let F = {νs : s ∈ D} ⊂ Y(Γ,HN−1, [c, d]) be a family of Young measures on Γ × [c, d].
Then, the supremum (infimum) of F exists and is unique.

Proof. For every a ∈ [c, d], we set
f(a, ·) := ess sup

s∈D
zν

s

a ,

where the functions zν
s

a are defined in Remark 3.13. We recall that the essential supremum (see [9],
Prop. VI-1-1)

z = ess sup
i∈I

zi

of an arbitrary family (zi)i∈I in L∞(Γ)+ is defined as the unique (up to HN−1-equivalence) function in L∞(Γ)+

such that
– z ≥ zi HN−1-a.e. on Γ for every i ∈ I;
– if q ∈ L∞(Γ)+ and q ≥ zi HN−1-a.e. on Γ for every i ∈ I, then q ≥ z HN−1-a.e. on Γ.

By definition of essential supremum, it follows that f(c, ·) = 1 HN−1-a.e. on Γ. Moreover, for every a, b ∈
{c} ∪ ((c, d] ∩ Q) with a ≤ b there exists a set Ja,b ⊂ Γ with HN−1(Ja,b) = 0 such that

f(a, x) ≥ f(b, x) for every x ∈ Γ \ Ja,b.

Let us define the set J ⊂ Γ as
J :=

⋃
a,b

Ja,b,

where the union is taken among all a, b ∈ {c} ∪ ((c, d] ∩ Q) with a ≤ b. Then, HN−1(J) = 0 and for every
a, b ∈ {c} ∪ ((c, d] ∩ Q) with a ≤ b there holds

f(a, x) ≥ f(b, x) for every x ∈ Γ \ J.

Let x ∈ Γ \ J be chosen arbitrarily. Since f(·, x) is nonincreasing in {c} ∪ ((c, d] ∩ Q) we can modify it in such
a way that it is left-continuous. We define f̂(c, x) = 1 and for every a ∈ (c, d] we set

f̂(a, x) := lim
b→a−

b∈(c,d]∩Q

f(b, x).
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By construction, the function x �→ f̂(a, x) is measurable for every a ∈ [c, d]. Moreover, for HN−1-a.e. x ∈ Γ
the function a �→ f̂(a, x) is nonincreasing and left-continuous, and f̂(c, x) = 1. Thus, by Proposition 3.1 for
HN−1-a.e. x ∈ Γ there exists a probability measure νx ∈ P([c, d]) such that f̂(a, x) = νx([a, d]) for every
a ∈ [c, d]. Let us set

G := {A ∈ B([c, d]) : x �→ νx(A) is measurable}·
We want to show that G = B([c, d]). First of all, observe that by the continuity properties of measures along
monotone sequences of sets it follows that G is a monotone class. Moreover, one can easily check that G contains
the algebra generated by all the intervals [a, d] with a ∈ [c, d]. From the Monotone Class theorem (see e.g. [3]) we
get G = B([c, d]). At this point, by Theorem 3.6 we conclude that ν ∈ Y(Γ,HN−1, [c, d]). Using the properties
of the essential supremum one can check that, by construction, ν satisfies properties (i) and (ii). Uniqueness
follows immediately by property (ii). �
Remark 3.17. For every s ∈ D, let fs : Γ → [c, d] be a measurable function and set νs = δfs . Then

sup
s∈D

νs = sup
s∈D

δfs = δess sups∈D fs .

Remark 3.18. When dealing with a finite number m ∈ N of Young measures, we will simply use the notation
supi=1,...,m νi =: ν1 ∨ . . .∨ νm. In the case m = 2, when ν1 = δf with f : Γ → [c, d] a measurable function, there
holds

(δf ∨ ν2)x = ν2([c, f(x)]) δf(x) + (ν2)x |(f(x),d] for HN−1-a.e. x ∈ Γ,
where (ν2)x |(f(x),d] denotes the restriction of the measure (ν2)x to the interval (f(x), d]. The previous inequality
can be easily proved evaluating the two measures in the sets [a, d] for every a ∈ [c, d].

We state now a preliminary lemma and a useful version of the Helly’s selection principle. For similar results
in the context of nondecreasing set functions, see [4], Lemma 6.2 and Theorem 6.3.

Lemma 3.19. Let ν1, ν2 : [0, T ] → Y(Γ,HN−1, [c, d]) be two nondecreasing functions such that

νs1 
 νt2 and νs2 
 νt1 (3.1)

for every s, t ∈ [0, T ] with s < t. Let D be the set of points t ∈ [0, T ] such that νt1 = νt2. Then, [0, T ] \D is at
most countable.

Proof. Let us fix A ⊂ Γ relatively open. For i = 1, 2, consider the functions fi : [c, d] × [0, T ] → R defined by

fi(a, t) :=
∫
A

(νti )x( [a, d] ) dHN−1.

By the continuity properties of measures along decreasing sequences of sets, it follows that fi(·, t) (i = 1, 2) is
left-continuous for every t ∈ [0, T ]. Moreover, fi(a, ·) (i = 1, 2) is nondecreasing for every a ∈ [c, d]. Then, for
every a ∈ {c} ∪ ((c, d] ∩Q) there exists an at most countable set JAa ⊂ [0, T ] such that both f1(a, ·) and f2(a, ·)
are continuous at every point of [0, T ] \ JAa . Let JA be the (at most countable) set defined by JA :=

⋃
a J

A
a ,

where the union is taken among all a ∈ {c}∪ ((c, d]∩Q). Then, using (3.1) we get that for every t ∈ [0, T ] \ JA
there holds f1(a, t) = f2(a, t) for every a ∈ {c}∪ ((c, d]∩Q) and, by the left-continuity, for every a ∈ [c, d]. That
is, for every t ∈ [0, T ] \ JA and for every a ∈ [c, d]∫

A

(νt1)x([a, d]) dHN−1 =
∫
A

(νt2)x([a, d]) dHN−1. (3.2)

Let us consider a countable π-system (An)n∈N on Γ that generates the σ-algebra B(Γ). We recall that a π-system
on Γ is a family of subsets of Γ which is closed under the formation of finite intersections and contains Γ.
Analogously to what we have done when A ∈ B(Γ) was fixed, for every n ∈ N we can define an at most
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countable set JAn ⊂ [0, T ] such that relation (3.2) holds with A replaced by An for every t ∈ [0, T ] \ JAn .
Defining J :=

⋃
n∈N J

An we get that for every t ∈ [0, T ] \ J there holds

∫
An

(νt1)x([a, d]) dHN−1 =
∫
An

(νt2)x([a, d]) dHN−1

for every a ∈ [c, d] and n ∈ N. By [3], Corollary 1.6.2, we obtain that νt1 = νt2 for every t ∈ [0, T ] \ J , hence the
thesis with D = [0, T ] \ J . �

Theorem 3.20 (Helly’s selection principle for Young measures). Let (νn) be a sequence of nondecreasing
functions from [0, T ] into Y(Γ,HN−1, [c, d]). Then there exists a subsequence, still denoted by (νn), and a
nondecreasing function ν : [0, T ] → Y(Γ,HN−1, [c, d]), such that νtn

Y−→ νt for every t ∈ [0, T ].

Proof. Let D1 be a countable dense set of (0, T ). Using the compactness Theorem 3.5, Remark 3.14 and a
diagonal argument, we find a subsequence, still denoted by (νn), and a nondecreasing function ν : D1 →
Y(Γ,HN−1, [c, d]) such that νtn

Y−→ νt for every t ∈ D1. Let ν− : (0, T ] → Y(Γ,HN−1, [c, d]) and ν+ : [0, T ) →
Y(Γ,HN−1, [c, d]) be the nondecreasing functions defined by

νt− := sup
s∈D1
s<t

νs for t ∈ (0, T ] and νt+ := inf
s∈D1
s>t

νs for t ∈ [0, T ).

Let D be the set of points t ∈ [0, T ] such that νt− = νt+. As νt− and νt+ satisfy (3.1), by Lemma 3.19 the set
[0, T ]\D is at most countable. Since νt− 
 νt 
 νt+ for every t ∈ D1, we have νt = νt− = νt+ for every t ∈ D∩D1.
For every t ∈ D \D1 we define νt := νt− = νt+. Let us show that this is a good choice. Suppose t ∈ D \D1 is
fixed. By the compactness Theorem 3.5 we may assume that νtn converges, up to subsequences, to a measure
ν∗ ∈ Y(Γ,HN−1, [c, d]). For every s1, s2 ∈ D1 with s1 < t < s2, by Remark 3.14 we have νs1 
 ν∗ 
 νs2 .
Hence, it follows that νt− 
 ν∗ 
 νt+ and, by the definition of D, νt− = ν∗ = νt = νt+. Therefore νtn

Y−→ νt

for every t ∈ D ∪ D1. Since [0, T ] \ (D ∪D1) is at most countable, by a diagonal argument we find a further
subsequence, which we still denote by (νn), and a function ν : [0, T ] \ (D ∪D1) → Y(Γ,HN−1, [c, d]) such that
νtn

Y−→ νt for every t ∈ [0, T ] \ (D ∪D1). Therefore νtn
Y−→ νt for every t ∈ [0, T ], and this implies that ν is

nondecreasing in [0, T ]. �

3.3. Global stability for Young measures

In view of Remark 2.3, all the Young measures we will consider belong to Y(Γ,HN−1, [0, 2M ]). For t ∈ [0, T ]
the class a(t, w) of admissible configurations at time t is defined as

a(t, w) := {(v, μ) ∈ H1(Ω \ Γ) × Y(Γ,HN−1, [0, 2M ]) : v = w(t) on ∂DΩ, δ|[v]| 
 μ}·

The total energy associated at time t to a pair (v, μ) ∈ a(t, w) is

E(v, μ) :=
1
2

∫
Ω\Γ

|∇v|2dx+
∫

Γ

∫
[0,2M ]

ϕ(|[v]|, ξ) dμx(ξ) dHN−1. (3.3)

In this setting, we can give the definition of (unilateral) global stability.

Definition 3.21. A pair (u, ν) is said to be globally stable in the sense of Young measures at time t ∈ [0, T ] if
(u, ν) ∈ a(t, w) and

E(u, ν) ≤ E(v, μ) (3.4)

for every (v, μ) ∈ a(t, w) with ν 
 μ.
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Remark 3.22. It turns out that the previous condition is equivalent to (u, ν) ∈ a(t, w) and

E(u, ν) ≤ E(v, ν ∨ δ|[v]|) (3.5)

for every v ∈ H1(Ω\Γ) such that v = w(t) on ∂DΩ. Indeed, let us assume that (3.4) holds and let v ∈ H1(Ω\Γ)
be such that v = w(t) on ∂DΩ. Then, we have that (v, ν ∨ δ|[v]|) ∈ a(t, w). Hence, condition (3.4) with the test
pair (v, ν ∨ δ|[v]|) becomes just (3.5).

Let now (3.5) hold and let (v, μ) ∈ a(t, w) with ν 
 μ. By definition of the set a(t, w) we have also δ|[v]| 
 μ.
By (3.5), and since E is increasing with respect to the second variable we get

E(u, ν) ≤ E(v, ν ∨ δ|[v]|) ≤ E(v, μ ∨ δ|[v]|) = E(v, μ).

We also notice that, thanks to Remark 3.18, condition (3.5) can be written as

1
2

∫
Ω\Γ

|∇u|2dx+
∫

Γ

∫
[0,2M ]

ϕ(|[u]|, ξ) dνx(ξ) dHN−1 ≤ 1
2

∫
Ω\Γ

|∇v|2dx+
∫

Γ

∫
[0,2M ]

ϕ(|[v]|, |[v]|∨ξ) dνx(ξ) dHN−1

for every v ∈ H1(Ω \ Γ) such that v = w(t) on ∂DΩ.

3.4. Main result

In this subsection we first give the definition of irreversible quasistatic evolution in the setting of Young
measures, and then we state the main result of the paper.

Definition 3.23. An irreversible quasistatic evolution in the sense of Young measures is a function t �→ (u(t), νt)
from [0, T ] to H1(Ω \ Γ) × Y(Γ,HN−1, [0, 2M ]) such that the following three conditions are satisfied:

(a′) (unilateral) global stability: (u(t), νt) is globally stable in the sense of Young measures at time t for
every t ∈ [0, T ];

(b′) irreversibility: t �→ νt is nondecreasing with respect to 
;
(c′) energy balance: the function t �→

∫
Ω\Γ ∇u(t) · ∇ẇ(t) dx belongs to L1([0, T ]) and for every t ∈ [0, T ]

E(u(t), νt) = E(u(0), ν0) +
∫ t

0

∫
Ω\Γ

∇u(s) · ∇ẇ(s) dxds.

Remark 3.24. Condition (c′) is equivalent to the following:

(c′′) the function t �→ E(u(t), νt) is absolutely continuous in [0, T ] and

d
dt
E(u(t), νt) =

∫
Ω\Γ

∇u(t) · ∇ẇ(t) dx for a.e. t ∈ [0, T ].

Hence, we do not exclude the possibility that the configuration (u(t), νt) varies in such a way that, for
example, t �→ ‖∇u(t)‖ has some jump points. Anyway, the total energy is always an absolutely continuous
function of time. Next theorem shows that one inequality in the energy balance is a direct consequence of
conditions (a′) and (b′).

Remark 3.25. Let us suppose that for every t ∈ [0, T ] the pair (u(t), νt) is globally stable at time t. Then, by
repeating the arguments of Remark 2.3 we have that (2.2) still holds.

Theorem 3.26. Let t �→ (u(t), νt) be a function from [0, T ] into H1(Ω \Γ)×Y(Γ,HN−1, [0, 2M ]) that satisfies
the global stability condition (a′) and the irreversibility condition (b′) of Definition 3.23. Assume, in addition,
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that t �→
∫
Ω\Γ ∇u(t) · ∇ẇ(t) dx is measurable. Then

E(u(t), νt) ≥ E(u0, ν
0) +

∫ t

0

∫
Ω\Γ

∇u(s) · ∇ẇ(s) dxds

for every t ∈ [0, T ].

Proof. Note that, thanks to Remark 3.25, t �→
∫
Ω\Γ ∇u(t) · ∇ẇ(t) dx ∈ L1([0, T ]). Let now k ∈ N be fixed.

Consider a subdivision (tik)0≤i≤n(k) of the interval [0, t] such that 0 = t0k ≤ t1k ≤ . . . ≤ t
n(k)−1
k ≤ t

n(k)
k = t and

lim
k→+∞

max
1≤i≤n(k)

(tik − ti−1
k ) = 0. (3.6)

Let 1 ≤ j < n(k) be fixed. Thanks to the minimality of the pair (u(tjk), ν
tjk), considering (u(tj+1

k ) − w(tj+1
k ) +

w(tjk), ν
tj+1
k ) as a test pair we get

1
2

∫
Ω\Γ

|∇u(tjk)|2dx+
∫

Γ

∫
[0,2M ]

ϕ(|[u(tjk)]|, ξ) dνt
j
k
x (ξ) dHN−1(x) ≤ 1

2

∫
Ω\Γ

|∇
(
u(tj+1

k ) − w(tj+1
k ) + w(tjk)

)
|2dx

+
∫

Γ

∫
[0,2M ]

ϕ(|[u(tj+1
k )]|, ξ) dνt

j+1
k
x (ξ) dHN−1(x)

=
1
2

∫
Ω\Γ

|∇u(tj+1
k )|2dx+

∫
Γ

∫
[0,2M ]

ϕ(|[u(tj+1
k )]|, ξ) dνt

j+1
k
x (ξ) dHN−1(x)

+
∫

Ω\Γ

[(
−∇u(tj+1

k ) +
1
2

∫ tj+1
k

tjk

∇ẇ(s) ds
)
·
∫ tj+1

k

tjk

∇ẇ(s) ds

]
dx

=
1
2

∫
Ω\Γ

|∇u(tj+1
k )|2dx+

∫
Γ

∫
[0,2M ]

ϕ(|[u(tj+1
k )]|, ξ) dνt

j+1
k
x (ξ) dHN−1(x)

+
∫ tj+1

k

tjk

∫
Ω\Γ

(
−∇uk(s) +Xk(s)

)
· ∇ẇ(s) dxds,

where we defined

uk(s) := u(tj+1
k ) and Xk(s) :=

1
2

∫ tj+1
k

tjk

∇ẇ(τ) dτ

for every s ∈ (tjk, t
j+1
k ]. Notice that since w ∈ H1((0, T );H1(Ω)),

‖Xk(s)‖ → 0 uniformly with respect to s ∈ [0, t]. (3.7)

Iterating the previous inequality with j = n(k) − 1, . . . , 0 we obtain

E(u(t), νt) ≥ E(u(0), ν0) +
∫ t

0

∫
Ω\Γ

(
∇uk(s) −Xk(s)

)
· ∇ẇ(s) dxds. (3.8)

Thanks to (3.7) we have that for a.e. s ∈ [0, t]

∫
Ω\Γ

Xk(s) · ∇ẇ(s) dx k→∞−→ 0.
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Taking into account last relation and applying Lebesgue dominated convergence theorem

∫ t

0

∫
Ω\Γ

(
∇uk(s) −Xk(s)

)
· ∇ẇ(s) dxds−

∫ t

0

∫
Ω\Γ

∇uk(s) · ∇ẇ(s) dxds k→∞−→ 0,

so that

E(u(t), νt) − E(u(0), ν0) ≥ lim sup
k→+∞

∫ t

0

∫
Ω\Γ

∇uk(s) · ∇ẇ(s) dxds. (3.9)

In order to conclude the proof, let us recall a general result in measure theory (see [6], Lem. 4.12).

Lemma 3.27. Let X be a Banach space and f ∈ L1((0, t);X). Then, there exists a sequence of subdivisions
0 = t0k ≤ t1k ≤ . . . ≤ t

n(k)−1
k ≤ t

n(k)
k = t, satisfying (3.6), such that

lim
k→+∞

n(k)∑
i=1

∫ tik

ti−1
k

‖f(tik) − f(s)‖X ds = 0.

In particular, we have

lim
k→+∞

n(k)∑
i=1

∥∥∥∥∥ (tik − ti−1
k )f(tik) −

∫ tik

ti−1
k

f(s) ds

∥∥∥∥∥
X

= 0,

and
n(k)∑
i=1

(tik − ti−1
k )f(tik) −→

∫ t

0

f(s) ds strongly in X.

We apply the previous lemma to the function

f : s �→
(∫

Ω\Γ
∇u(s) · ∇ẇ(s) dx,∇ẇ(s)

)

with X = R × L2(Ω; RN ).
Hence, there exists a sequence of subdivisions 0 = t0k ≤ t1k ≤ . . . ≤ t

n(k)−1
k ≤ t

n(k)
k = t such that

∫ t

0

∫
Ω\Γ

∇uk(s) ·W k(s) dxds −→
∫ t

0

∫
Ω\Γ

∇u(s) · ∇ẇ(s) dxds, (3.10)

and ∫ t

0

∫
Ω\Γ

∇uk(s) ·
(
∇ẇ(s) −W k(s)

)
dxds → 0, (3.11)

where
W k(s) := ∇ẇ(tik), ti−1

k < s ≤ tik.

From (3.9), using (3.10) and (3.11), we get the thesis. �

The next proposition gives a property of irreversible quasistatic evolutions whose internal variable is localized
for t = 0.

Proposition 3.28. Let t �→ (u(t), νt) be an irreversible quasistatic evolution and let ν0 = δγ0 , with γ0 : Γ →
[0, 2M ] a measurable function. Let us define for every t ∈ [0, T ]

γ(t) := γ0 ∨ ess sup
0≤s≤t

|[u(s)]|. (3.12)
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Then, there holds
δγ(t) 
 νt for every t ∈ [0, T ].

Proof. Let t ∈ [0, T ] be fixed. As (u(s), νs) ∈ a(s, w) for every s ∈ [0, t], in particular we have that

δ|[u(s)]| 
 νs for every s ∈ [0, t].

Since s �→ νs is increasing and thanks to Remark 3.17, from the previous inequality we get that

δess sup0≤s≤t |[u(s)]| 
 νt.

Recalling that δγ0 = ν0 
 νt the thesis follows. �

Remark 3.29. From the previous proposition it follows that for HN−1-a.e. x ∈ Γ there holds

(νt)x([0, γ(t)(x))) = 0,

i.e. that supp(νt)x ⊂ [γ(t)(x), 2M ].

Finally, we state the main result of the paper.

Theorem 3.30. Let w ∈ H1((0, T );H1(Ω)) with supt∈[0,T ] ‖w(t)‖L∞(Ω) = M < +∞, and let (u0, δγ0) be
globally stable at time t = 0, where γ0 : Γ → [0, 2M ] is a measurable function. Then there exists an irreversible
quasistatic evolution in the sense of Young measures t �→ (u(t), νt) such that (u(0), ν0) = (u0, δγ0).

4. Proof of Theorem 3.30

In this section we prove the existence of an irreversible quasistatic evolution in the sense of Young measures,
by means of a time discretization procedure. For every k ∈ N, let us fix a collection of times (tik)0≤i≤k in [0, T ]
such that 0 = t0k < t1k < . . . < tk−1

k < tkk = T and

lim
k→+∞

max
1≤i≤k

(tik − ti−1
k ) = 0.

We set wik := w(tik) for k ∈ N and i = 0, . . . , k. For k ∈ N fixed and i = 0, . . . , k, we define the pair (uik, γ
i
k) in

the following way. First, we set (u0
k, γ

0
k) := (u0, γ0). Now, let us assume that the pair (ui−1

k , γi−1
k ) is given. By

induction, we define uik as a solution of the problem

min
{
E(v, |[v]| ∨ γi−1

k ) : v ∈ H1(Ω \ Γ), v = wik on ∂DΩ
}
· (4.1)

Then, we set γik := γi−1
k ∨ |[uik]|. The existence of a solution of (4.1) can be proved by using the direct method

of the Calculus of Variations.

Remark 4.1. Consider the minimum problem

min
{
E(v, τ) : (v, τ) ∈ A(tik, w), τ ≥ γi−1

k

}
· (4.2)

Arguing as in Remark 3.22, one can see that the following facts are equivalent:

– the pair (uik, γ
i
k) is a solution to (4.2);

– uik is a solution to (4.1) and γik = γi−1
k ∨ |[uik]|.
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We define now
uk(t) := uik, γk(t) := γik, wk(t) := w(tik) for tik ≤ t < ti+1

k . (4.3)

Notice that t �→ γk(t) is nondecreasing, since γi−1
k ≤ γik. By definition of (uik, γ

i
k) and from the fact that

ϕ(|[v]|, ·) is nondecreasing, we get that for tik ≤ t < ti+1
k

1
2

∫
Ω\Γ

|∇uk(t)|2dx+
∫

Γ

ϕ(|[uk(t)]|, γik) dx ≤ 1
2

∫
Ω\Γ

|∇v|2dx+
∫

Γ

ϕ(|[v]|, |[v]| ∨ γik) dx (4.4)

for every v ∈ H1(Ω \ Γ) with v = w(tik) on ∂DΩ. By Remark 2.3, we can assume

‖γk(t)‖L∞(Γ) ≤ 2M. (4.5)

By Theorem 3.20, there exists a nondecreasing function ν : [0, T ] → Y(Γ,HN−1, [0, 2M ]) and a subsequence
kj → +∞ such that for every t ∈ [0, T ]

δγkj
(t)

Y−→ νt. (4.6)

Let now Θ ⊂ [0, T ] be such that L1(Θ) = 0 and ẇ(t) is well defined for every t ∈ [0, T ] \ Θ. We set

θkj (t) :=

⎧⎨
⎩
∫

Ω\Γ
∇ukj (t) · ∇ẇ(t) dx for t ∈ [0, T ] \ Θ,

0 for t ∈ Θ.

By Remark 2.3 it follows that there exists a constant C, independent of t and j, such that

‖ukj(t)‖H1(Ω\Γ) ≤ C. (4.7)

For every t ∈ [0, T ], we set
θ(t) := lim sup

j→+∞
θkj (t).

Notice that θ is measurable, since it is the pointwise limsup of a countable family of measurable functions.
Moreover, ∫ T

0

θ(s) ds ≤
∫ T

0

lim sup
j→+∞

‖∇ukj (s)‖ ‖∇ẇ(s)‖ ds ≤ C, (4.8)

so that θ ∈ L1(0, T ). By definition of θ, for every t ∈ [0, T ] we can still extract a subsequence, possibly depending
on t and denoted by (kj(t))j∈N, such that

θ(t) = lim
j→+∞

θkj(t)(t).

From (4.7) it follows that we can extract a further subsequence (not relabeled) such that for every t ∈ [0, T ]

ukj(t)(t) ⇀ u(t) weakly in H1(Ω \ Γ) (4.9)

and
[ukj(t)(t)] → [u(t)] HN−1-a.e. on Γ (4.10)

for some u(t) ∈ H1(Ω \ Γ).
Finally, we observe that, thanks to (4.9), for every t ∈ [0, T ] \ Θ

θ(t) = lim
j→+∞

∫
Ω\Γ

∇ukj(t)(t) · ∇ẇ(t) dx =
∫

Ω\Γ
∇u(t) · ∇ẇ(t) dx. (4.11)
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We prove now that the function t �→ (u(t), νt) from [0, T ] to H1(Ω \ Γ)× Y(Γ,HN−1, [0, 2M ]) is an irreversible
quasistatic evolution. We begin by showing the global stability property (a′).

Lemma 4.2. For every t ∈ [0, T ] we have that (u(t), νt) ∈ a(t, w) and

1
2

∫
Ω\Γ

|∇u(t)|2dx+
∫

Γ

∫
[0,2M ]

ϕ(|[u(t)]|, ξ) dνtx(ξ) dHN−1 ≤ 1
2

∫
Ω\Γ

|∇v|2dx

+
∫

Γ

∫
[0,2M ]

ϕ(|[v]|, |[v]| ∨ ξ) dνtx(ξ) dHN−1 (4.12)

for every v ∈ H1(Ω \ Γ) with v = w(t) on ∂DΩ.

Proof. Fix t ∈ [0, T ]. By (4.9) and from the fact that wkj(t)(t) → w(t) strongly in H1(Ω) it follows that
u(t) ∈ H1(Ω \ Γ) and u(t) = w(t) on ∂DΩ. Moreover, by definition of γk, we have that

δ|[ukj(t)(t)]| 
 δγkj (t)(t).

Passing to the limit as j → +∞, thanks to (4.6), (4.10) and Remark 3.14, we get

δ|[u(t)]| 
 νt,

and hence (u(t), νt) ∈ a(t, w).
To prove (4.12), let v ∈ H1(Ω \ Γ) with v = w(t) on ∂DΩ and set vkj(t) := v − w(t) + wkj(t)(t). By (4.4) we

get

1
2

∫
Ω\Γ

|∇ukj(t)(t)|2dx+
∫

Γ

ϕ(|[ukj(t)(t)]|, γkj(t)(t)) dHN−1 ≤ 1
2

∫
Ω\Γ

|∇vkj(t)|2dx

+
∫

Γ

ϕ(|[v]|, |[v]| ∨ γkj(t)(t)) dHN−1. (4.13)

Since vkj(t) → v strongly in H1(Ω \ Γ), using Theorem 3.8 and the fact that ϕ is bounded we can pass to the
limit as j → +∞ in the right-hand side of (4.13), obtaining the right-hand side of (4.12). Thanks to (4.9), to
prove (4.12) it remains to show that∫

Γ

ϕ(|[ukj(t)(t)]|, γkj(t)(t)) dHN−1 →
∫

Γ

∫
[0,2M ]

ϕ(|[u(t)]|, ξ) dνtx(ξ) dHN−1. (4.14)

To this purpose, it will be useful to consider the following extension of ϕ:

ϕ̃(y, z) :=

{
ϕ(y, z) for 0 ≤ y ≤ z;
g(z) for 0 ≤ z < y.

Then, using again Theorem 3.8∫
Γ

ϕ̃(|[u](t)|, γkj(t)(t)) dHN−1 →
∫

Γ

∫
[0,2M ]

ϕ̃(|[u](t)|, ξ) dνtx(ξ) dHN−1 =
∫

Γ

∫
[0,2M ]

ϕ(|[u](t)|, ξ) dνtx(ξ) dHN−1.

(4.15)
Thus, it remains to prove that

Ij :=
∫

Γ

(
ϕ̃(|[u(t)]|, γkj(t)(t)) − ϕ(|[ukj(t)(t)]|, γkj(t)(t))

)
dHN−1 −→ 0.
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We have

|Ij | ≤
∫

Γ∩{γkj(t)(t)≥|[u(t)]|}

∣∣∣ϕ(|[u(t)]|, γkj(t)(t)) − ϕ(|[ukj(t)(t)]|, γkj(t)(t))
∣∣∣dHN−1

+
∫

Γ∩{γkj (t)(t)<|[u(t)]|}

∣∣∣ϕ(γkj(t)(t), γkj(t)(t)) − ϕ(|[ukj(t)(t)]|, γkj(t)(t))
∣∣∣dHN−1.

Since ϕ(·, z) is Lipschitz in [0, z], with Lipschitz constant L independent of z,

|Ij | ≤ L

∫
Γ∩{γkj(t)(t)≥|[u(t)]|}

∣∣|[u(t)]| − |[ukj(t)(t)]|
∣∣ dHN−1

+ L

∫
Γ∩{γkj(t)(t)<|[u(t)]|}

(
γkj(t)(t) − |[ukj(t)(t)]|

)
dHN−1

≤ L

∫
Γ∩{γkj(t)(t)≥|[u(t)]|}

∣∣|[u(t)]| − |[ukj(t)(t)]|
∣∣ dHN−1

+ L

∫
Γ∩{γkj(t)(t)<|[u(t)]|}

(
|[u(t)]| − |[ukj(t)(t)]|

)
dHN−1

= L

∫
Γ

∣∣|[u(t)]| − |[ukj(t)(t)]|
∣∣ dHN−1.

Passing to the limit as j → +∞ by (4.10) the proof is concluded. �
The irreversibility condition (b′) follows by construction, as a consequence of Helly’s selection principle

(Thm. 3.20). In order to prove the energy equality, we first give an energy estimate for the discrete time
evolutions in terms of θk.

Lemma 4.3. There exists a numerical sequence Rk → 0 such that

E(uik, γ
i
k) ≤ E(u0, γ0) +

∫ tik

0

θk(s) ds+Rk,

for any k ∈ N and for any i = 1, . . . , k.

Proof. Fix k ∈ N and i ∈ {1, . . . , k}. Let j ∈ N be such that 1 ≤ j ≤ i. By the minimality of (ujk, γ
j
k), choosing

(uj−1
k − wj−1

k + wjk , γ
j−1
k ) as test pair we have

1
2

∫
Ω\Γ

|∇ujk|2dx+
∫

Γ

ϕ(|[ujk]|, γ
j
k)dHN−1 ≤ 1

2

∫
Ω\Γ

|∇uj−1
k |2dx+

∫
Γ

ϕ(|[uj−1
k ]|, γj−1

k )dHN−1

+
∫ tjk

tj−1
k

∫
Ω\Γ

∇uk(s) · ∇ẇ(s) dxds+
1
2

(∫ tjk

tj−1
k

‖∇ẇ(s)‖ds
)2

≤ 1
2

∫
Ω\Γ

|∇uj−1
k |2dx+

∫
Γ

ϕ(|[uj−1
k ]|, γj−1

k ) dx

+
∫ tjk

tj−1
k

∫
Ω\Γ

∇uk(s) · ∇ẇ(s) dxds

+
1
2

max
r=1,...,k

(∫ trk

tr−1
k

‖∇ẇ(s)‖ds
)∫ tjk

tj−1
k

‖∇ẇ(s)‖ds.
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Iterating the previous inequality for j = i, . . . , 1, we get the thesis with

Rk =
1
2

max
r=1,...,k

(∫ trk

tr−1
k

‖∇ẇ(s)‖ds
)∫ T

0

‖∇ẇ(s)‖ds,

that goes to 0 as k → +∞ because of the absolute continuity of the integral. �

Using the previous lemma, we prove the energy balance condition (c) for the continuous-time evolution.

Lemma 4.4. For every t ∈ [0, T ] we have

E(u(t), νt) = E(u0, γ0) +
∫ t

0

θ(s) ds.

Proof. By (4.8), we already know that θ ∈ L1([0, T ]). Let t ∈ [0, T ] be fixed, and let i be such that tikj(t)
≤ t <

ti+1
kj(t)

. Applying the previous lemma, we have

E(ukj(t)(t), γkj(t)(t)) ≤ E(u0, γ0) +
∫ tikj(t)

0

θkj(t)(s) ds+Rkj(t).

Recalling that kj(t) is a subsequence of kj , and that kj does not depend on t, we get

E(u(t), νt) ≤ lim inf
j→+∞

E(ukj(t)(t), γkj(t)(t)) ≤ E(u0, γ0) + lim sup
j→+∞

∫ tikj (t)

0

θkj(t)(s) ds

≤ E(u0, γ0) +
∫ t

0

lim sup
j→+∞

θkj (s) ds = E(u0, γ0) +
∫ t

0

θ(s) ds,

where we used (4.9), (4.14) and Fatou’s lemma. The proof is concluded, observing that the opposite energy
inequality comes from Theorem 3.26. �

5. The case of constant unloading response

In this section we show that in the particular situation in which the function ϕ does not depend on the
jump (i.e. ϕ is constant with respect to the first variable), the irreversible quasistatic evolution t �→ (u(t), νt)
provided by Theorem 3.30 is such that νt = δγ(t) for every t ∈ [0, T ], where γ(t) is defined in (3.12). In this
way, we recover the result that Dal Maso and Zanini proved by means of a suitable notion of convergence in [5].
In addition, we show that the discrete-time internal variables γk defined in (4.3) actually converge in measure
to γ(t). This improves the σ-convergence result stated in [5].

Theorem 5.1. Let the hypotheses of Theorem 3.30 be satisfied. Assume in addition that ϕ(·, z) is constant for
every z ∈ [0,+∞) and that ϕ(y, ·) is strictly increasing for every y ∈ [0,+∞). Then, the function t �→ (u(t), νt)
provided by Theorem 3.30 is such that:

– νt = δγ(t) for every t ∈ [0, T ], where γ(t) is defined in (3.12);
– t �→ (u(t), γ(t)) is an irreversible quasistatic evolution.

Remark 5.2. It follows from Theorem 5.1 and Proposition 3.9 that when ϕ(·, z) is constant for every z ∈
[0,+∞) and ϕ(y, ·) is strictly increasing for every y ∈ [0,+∞)

γkj(t)(t) −→ γ(t) in measure on Γ.
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Remark 5.3. If one removes the assumption that ϕ(y, ·) is strictly increasing, in general the equality νt = δγ(t)

does not hold. Nevertheless, we have that the function t �→ (u(t), γ(t)) is an irreversible quasistatic evolution
with the property E(u(t), νt) = E(u(t), δγ(t)) for every t ∈ [0, T ].

Proof. By Theorem 3.30, there exists an irreversible quasistatic evolution in the sense of Young measures
t �→ (u(t), νt) such that (u(0), ν0) = (u0, δγ0). Let us show that νt = δγ(t) for every t ∈ (0, T ]. Let us fix
t ∈ (0, T ]. Since (u(t), νt) is globally stable, for every v ∈ H1(Ω \ Γ) with v = w(t) on ∂DΩ we have

1
2

∫
Ω\Γ

|∇u(t)|2dx ≤ 1
2

∫
Ω\Γ

|∇v|2dx+
∫

Γ

∫
[0,2M ]

ϕ(|[v]|, |[v]| ∨ ξ) dνtx(ξ) dHN−1

−
∫

Γ

∫
[0,2M ]

ϕ(|[u(t)]|, ξ) dνtx(ξ) dHN−1. (5.1)

Using the fact that ϕ(·, z) is constant for every z ∈ [0,+∞), we can write

∫
Γ

∫
[0,2M ]

(
ϕ(|[v]|, |[v]| ∨ ξ) − ϕ(|[u(t)]|, ξ)

)
dνtx(ξ) dHN−1

=
∫

Γ

∫
{ξ<|[v]|}

(
ϕ(|[v]|, |[v]|) − ϕ(|[u(t)]|, ξ)

)
dνtx(ξ) dHN−1. (5.2)

Since, by Remark 3.29, γ(t) ≤ ξ for every ξ ∈ supp(νtx), and ϕ(y, ·) is increasing for every y ∈ [0,+∞), we have∫
Γ

∫
{ξ<|[v]|}

(
ϕ(|[v]|, |[v]|) − ϕ(|[u(t)]|, ξ)

)
dνtx(ξ) dHN−1

≤
∫

Γ

∫
{ξ<|[v]|}

(
ϕ(|[v]|, |[v]|) − ϕ(|[u(t)]|, γ(t))

)
dνtx(ξ) dHN−1

=
∫

Γ

∫
{ξ<|[v]|}

(
ϕ(|[v]|, |[v]| ∨ γ(t)) − ϕ(|[u(t)]|, γ(t))

)
dνtx(ξ) dHN−1

≤
∫

Γ

(
ϕ(|[v]|, |[v]| ∨ γ(t)) − ϕ(|[u(t)]|, γ(t))

)
dHN−1, (5.3)

where in the last inequality we used the fact that νtx is a probability measure. Relations (5.1), (5.2) and (5.3)
imply that

1
2

∫
Ω\Γ

|∇u(t)|2dx+
∫

Γ

ϕ(|[u(t)]|, γ(t)) dHN−1 ≤ 1
2

∫
Ω\Γ

|∇v|2dx+
∫

Γ

ϕ(|[v]|, |[v]| ∨ γ(t)) dHN−1,

that is, by Remark 3.22, the pair (u(t), δγ(t)) is globally stable in the sense of Young measures at time t.
Moreover, t �→ γ(t) is nondecreasing. Hence, both conditions (a′) and (b′) of Definition 3.23 are fulfilled. We
can then apply Theorem 3.26 to the function t �→ (u(t), δγ(t)). We get that for every t ∈ [0, T ]

E(u(t), γ(t)) ≥ E(u0, γ0) +
∫ t

0

∫
Ω\Γ

∇u(s) · ∇ẇ(s) dxds.

Since t �→ (u(t), νt) is an irreversible quasistatic evolution in the sense of Young measures, from the last
inequality it follows that E(u(t), γ(t)) ≥ E(u(t), νt) for every t ∈ [0, T ]. Hence, we have∫

Γ

∫
[0,2M ]

ϕ(|[u(t)]|, γ(t)) dνtx(ξ) dHN−1 ≥
∫

Γ

∫
[0,2M ]

ϕ(|[u(t)]|, ξ) dνtx(ξ) dHN−1
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for every t ∈ [0, T ]. By Remark 3.29 and from the fact that ϕ(|[u(t)]|, ·) is strictly increasing we get

νt = δγ(t) for every t ∈ [0, T ]. �

6. Concentration of the Measure νt

In Section 4 we provided an existence theorem for an irreversible quasistatic evolution t �→ (u(t), νt) in the
sense of Young measures. To this aim, for every k ∈ N and for every i = 0, 1, . . . , k we defined by induction the
pairs (uik, γ

i
k) with the property that

(i) uik is a solution to (4.1) and γik = |[uik]| ∨ γi−1
k .

Then, the piecewise constant functions uk : [0, T ] → H1(Ω \ Γ) and γk : [0, T ] → L∞(Γ)+ were defined in (4.3),
and we proved that

(ii) ‖[uk(t)]‖
H

1
2 (Γ)

≤ C for every k ∈ N, t ∈ [0, T ];

(iii) γkj (t)
Y−→ νt.

Moreover, we showed that in the particular case in which the unloading response ϕ(·, z) is constant, the limit
measure νt has the special form νt = δγ(t), where γ(t) ∈ L∞(Γ)+ for every t ∈ [0, T ] (Thm. 5.1).

In this section we investigate whether the same conclusion holds when ϕ satisfies the hypotheses listed in
Section 2, without further restrictions. In particular, we want to know if properties (i), (ii) and (iii) imply that
νt is an atomic measure for every t ∈ [0, T ].

At the moment, we are not able to give a complete answer to this question. Nevertheless, we show with the
following proposition that conditions (ii) and (iii) are not sufficient.

Proposition 6.1. There exists a sequence of nonnegative piecewise constant functions

pk : [0, 1] → H
1
2 ([0, 2π]) k ∈ N,

and a function
ν : [0, 1] → Y([0, 2π],HN−1, [0, 1])

such that νt is non atomic for t ∈ (0, 1] and the following two conditions are satisfied:
(1) there exists a positive constant C such that

‖pk(t)‖
H

1
2 ([0,2π])

≤ C,

for every t ∈ [0, 1] and k ∈ N;
(2) setting γk(t) := sup0≤s≤t pk(s) there holds

γk(t)
Y−→ νt for every t ∈ [0, 1].

Proof. Let k ∈ N be fixed. We set pk(t) := 0 for 0 ≤ t < 1
2k+1

. When 2k

2k+1
≤ t ≤ 1, we define

pk(t) :=

{(
sin(2kx)

)+
for x ∈

[
2π(2k−1)

2k , 2π
]
,

0 otherwise in [0, 2π].

Let now t ∈ (0, 1) and let i ∈ {1, . . . , 2k − 1} be such that i
2k+1 ≤ t < i+1

2k+1 . We assign pk(t) as

pk(t) :=

{(
sin(2kx)

)+
for x ∈

[
2π(i−1)

2k , 2πi
2k

]
,

0 otherwise in [0, 2π].
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Notice that pk(t) → 0 strongly in L2([0, 2π]) for every t ∈ [0, 1]. Indeed,

‖pk(t)‖2
L2([0,2π]) =

∫ 2π

0

|pk(t)|2dx ≤ π

2k
→ 0.

A standard computation shows that
‖pk(t)‖2

H
1
2 ([0,2π])

< π(π + 5).

Let us write the expression of the functions γk(t). It turns out that γk(t) = 0 for 0 ≤ t < 1
2k+1

, and

γk(t) =
(
sin(2kx)

)+ when 2k

2k+1 ≤ t ≤ 1. Fix t ∈ [ 1
2k+1 ,

2k

2k+1 ) and i ∈ {1, . . . , 2k−1} such that i
2k+1 ≤ t < i+1

2k+1 .
Then

γk(t) =

{(
sin(2kx)

)+ for x ∈
[
0, 2πi

2k

]
,

0 otherwise in [0, 2π].

We will prove that for every t ∈ [0, 1] we have γk(t)
Y−→ νt, where ν0 = δ0 and for t ∈ (0, 1]

νtx(ξ) := 1[0,2πt](x)

(
π√

1 − ξ2
dξ +

1
2
δ0(ξ)

)
+ 1(2πt,2π](x)δ0(ξ)

for HN−1-a.e. x ∈ [0, 2π]. To this purpose, it will be enough to show that

∫ 2π

0

a(x)f(pk(t)(x)) dx −→
∫ 2π

0

∫ 1

0

a(x)f(ξ) dxdνtx(ξ)

for every a ∈ C0([0, 2π]) and f ∈ C0([0, 1]). For t = 0 the claim follows immediately. Let us fix t ∈ (0, 1),
the proof for the case t = 1 being analogous. For every k ∈ N, we have that ik

2k+1
≤ t < ik+1

2k+1
, for some ik ∈

{0, 1, . . . , 2k}. Let us fix ε > 0 arbitrarily small. There exist two integers j and rj such that 0 ≤ 2πt− 2πrj

2j < ε.
We have ∫ 2π

0

a(x)f(pk(t)(x)) dx = I1
k + I2

k , (6.1)

where

I1
k :=

∫ 2πik
2k

0

a(x)f
((

sin(2kx)
)+)

dx and I2
k :=

∫ 2π

2πik
2k

a(x)f(0) dx.

We observe that

I2
k −→

∫ 2π

2πt

a(x)f(0) dx =
∫ 2π

0

∫ 1

0

a(x)f(ξ) 1(2πt,2π](x) δ0(ξ) dx. (6.2)

It remains to compute the limit of I1
k as k → ∞. We write

I1
k =

∫ 2πrj

2j

0

a(x)f
((

sin(2kx)
)+)

dx+Rj,k, (6.3)

where

Rj,k :=
∫ 2πik

2k

2πrj

2j

a(x)f
((

sin(2kx)
)+)

dx ≤ ‖f‖C0([0,2π])

∫ 2πik
2k

2πrj

2j

|a(x)| dx.

From the last inequality it follows that for ε fixed

−‖f‖C0([0,2π])

∫ 2πt

2πrj

2j

|a(x)| dx ≤ lim inf
k→+∞

Rj,k ≤ lim sup
k→+∞

Rj,k ≤ ‖f‖C0([0,2π])

∫ 2πt

2πrj

2j

|a(x)| dx.
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Letting ε tend to 0 all the terms in the last relation converge to 0. Thus, we conclude that

lim
k→+∞

I1
k = lim

j→+∞
lim

k→+∞

∫ 2πrj

2j

0

a(x)f
((

sin(2kx)
)+)

dx. (6.4)

Let us compute the limit (6.4). For every k > j, we have that f
((

sin(2kx)
)+) is periodic in [0, 2πrj

2j ]. Hence,
using the Riemann-Lebesgue lemma we have that when k → +∞

f
((

sin(2kx)
)+)

⇀
2j

2πrj

∫ 2πrj

2j

0

f
((

sin(2jx)
)+)

dx weakly* in L∞
(
0,

2πrj
2j
)
·

Since

2j

2πrj

∫ 2πrj

2j

0

f
((

sin(2jx)
)+)

dx =
2j

2π

(∫ π

2j

0

f(sin(2jx)) dx +
π

2j
f(0)

)

=
1
2π

∫ π

0

f(sinx) dx +
1
2
f(0) =

∫ 1

0

f(ξ)
1

π
√

1 − ξ2
dξ +

1
2
f(0),

we have

lim
k→+∞

∫ 2πrj

2j

0

a(x)f
((

sin(2kx)
)+)

dx =
∫ 2πrj

2j

0

∫ 1

0

a(x)f(ξ)
1

π
√

1 − ξ2
dξ dx+

∫ 2πrj

2j

0

1
2
a(x)f(0) dx. (6.5)

Collecting (6.1), (6.2), (6.4) and (6.5) we conclude the proof. �

7. Euler-Lagrange conditions

In this section we study in detail the Euler-Lagrange conditions satisfied by a pair (u, ν) which is globally
stable in the sense of Young measures at a fixed time t ∈ [0, T ].

Proposition 7.1. Let t ∈ [0, T ] be fixed and let (u, ν) be globally stable in the sense of Young measures at
time t. For x ∈ Γ define α(x) := inf{z : z ∈ supp νx}. Then

∫
Ω\Γ

∇u · ∇ψ dx+
∫

Γ

|[ψ]| 1{0=|[u]|=α}

(
σ νx({0}) +

∫
(0,2M ]

∂ϕ

∂y
(0+, ξ) dνx(ξ)

)
dHN−1

+
∫

Γ

|[ψ]| 1{0=|[u]|<α}

∫
[0,2M ]

∂ϕ

∂y
(0+, ξ) dνx(ξ) dHN−1

+
∫

Γ

[ψ] sgn[u] 1{0<|[u]|<α}

∫
[0,2M ]

∂ϕ

∂y
(|[u]|, ξ) dνx(ξ) dHN−1

+
∫

Γ

|[ψ]| 1{0<[u][ψ]=α|[ψ]|}

(
g′(α) νx({α}) +

∫
(α,2M ]

∂ϕ

∂y
(α, ξ) dνx(ξ)

)
dHN−1

−
∫

Γ

|[ψ]| 1{0>[u][ψ]=−α|[ψ]|}

∫
[0,2M ]

∂ϕ

∂y
(α, ξ) dνx(ξ)dHN−1 ≥ 0 (7.1)

for every ψ ∈ H1
0 (Ω \ Γ, ∂DΩ).
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Proof. Since (u, ν) is globally stable, thanks to Remark 3.22 we have that E(u, ν) ≤ E(v, ν ∨ δ|[v]|) for every
v ∈ H1(Ω \ Γ) such that v = w(t) on ∂DΩ. Thus, for every ψ ∈ H1

0 (Ω \ Γ, ∂DΩ) there holds

lim inf
η→0+

E(u + ηψ, ν ∨ δ|[u]+η[ψ]|) − E(u, ν)
η

≥ 0. (7.2)

Let us show that the liminf in (7.2) is actually a limit and that it coincides with the left-hand side of (7.1).
First, for the volume part of the energy, it is clear that

lim
η→0+

1
2

∫
Ω\Γ

|∇u+ η∇ψ|2 − |∇u|2
η

dx =
∫

Ω\Γ
∇u · ∇ψ dx.

It remains to evaluate the limit:

lim
η→0+

∫
Γ

∫
[0,2M ]

ϕ(|[u] + η[ψ]|, ξ ∨ (|[u] + η[ψ]|)) − ϕ(|[u]|, ξ)
η

dνx(ξ) dHN−1. (7.3)

To this aim, we notice that for HN−1-a.e. x ∈ Γ

α(x) = max{a ∈ [0, 2M ] : νx([a, 2M ]) = 1},

from which one can check that α is measurable and bounded. Hence, we can divide Γ in the following four
measurable subsets.

Step 1. x ∈ {0 = |[u]| = α}
Let x ∈ {0 = |[u]| = α} be fixed. In this case, we have under the integral on Γ the expression

∫
[0,2M ]

ϕ(η|[ψ](x)|, ξ ∨ η|[ψ](x)|) − ϕ(0, ξ)
η

dνx(ξ)

= νx({0})
g(η|[ψ](x)|)

η
+
∫

(0,2M ]

ϕ(η|[ψ](x)|, ξ ∨ η|[ψ](x)|) − ϕ(0, ξ)
η

dνx(ξ).

For η sufficiently small and ξ ∈ (0, 2M ] fixed we can write

ϕ(η|[ψ](x)|, ξ ∨ η|[ψ](x)|) − ϕ(0, ξ)
η

=
ϕ(η|[ψ](x)|, ξ) − ϕ(0, ξ)

η
= |[ψ](x)|∂ϕ

∂y
(β, ξ),

where β ∈ (0, η|[ψ](x)|). Thus, applying Lebesgue dominated convergence theorem we get that

lim
η→0+

∫
[0,2M ]

ϕ(η|[ψ](x)|, ξ ∨ η|[ψ](x)|) − ϕ(0, ξ)
η

dνx(ξ) = |[ψ](x)|
(
σ νx({0}) +

∫
(0,2M ]

∂ϕ

∂y
(0+, ξ) dνx(ξ)

)
.

Applying once again Lebesgue dominated convergence theorem we get the second term of the first line of (7.1).
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Step 2. x ∈ {0 = |[u]| < α}
For x fixed and η > 0 sufficiently small we have

∫
[0,2M ]

ϕ(η|[ψ](x)|, ξ ∨ η|[ψ](x)|) − ϕ(0, ξ)
η

dνx(ξ) =
∫

[0,2M ]

ϕ(η|[ψ](x)|, ξ) − ϕ(0, ξ)
η

dνx(ξ)

=
∫

[0,2M ]

|[ψ](x)|∂ϕ
∂y

(β, ξ) dνx(ξ),

with β ∈ (0, η|[ψ](x)|). Applying twice Lebesgue dominated convergence theorem, first for the measure νx, and
then for HN−1, we obtain the second line of (7.1).

Step 3. x ∈ {0 < |[u]| < α}
For x fixed and η > 0 sufficiently small the integrand is given by

∫
[0,2M ]

ϕ(|[u](x) + η[ψ](x)|, ξ) − ϕ(|[u](x)|, ξ)
η

dνx(ξ).

Passing to the limit as η → 0+ one gets

∫
[0,2M ]

[ψ](x) sgn([u](x))
∂ϕ

∂y
(|[u](x)|, ξ)) dνx(ξ).

This gives the third line of (7.1).

Step 4. x ∈ {0 < |[u]| = α}
Let us assume that [u](x) [ψ](x) > 0. In this case we have |[u](x) + η[ψ](x)| > |[u](x)| = α(x). Hence,

∫
[0,2M ]

ϕ(|[u](x) + η[ψ](x)|, ξ ∨ (|[u](x) + η[ψ](x)|)) − ϕ(α(x), ξ)
η

dνx(ξ) (7.4)

= νx({α(x)})g(|[u](x) + η[ψ](x)|) − g(α(x))
η

+
∫

(α(x),2M ]

ϕ(|[u](x) + η[ψ](x)|, ξ ∨ (|[u](x) + η[ψ](x)|)) − ϕ(α(x), ξ)
η

dνx(ξ).

For ξ ∈ (α(x), 2M ] fixed and η > 0 sufficiently small the ratio under the integral sign is given by

ϕ(|[u](x) + η[ψ](x)|, ξ ∨ (|[u](x) + η[ψ](x)|)) − ϕ(α(x), ξ)
η

=
ϕ(|[u](x) + η[ψ](x)|, ξ) − ϕ(α(x), ξ)

η
·

When η → 0+, the last expression becomes

[ψ](x) sgn([u](x))
∂ϕ

∂y
(α(x), ξ) = |[ψ](x)|∂ϕ

∂y
(α(x), ξ).

Hence, when η → 0+, thanks to Lebesgue dominated convergence theorem the expression in (7.4) tends to

|[ψ](x)|
(
νx({α(x)})g′(α(x)) +

∫
(α(x),2M ]

∂ϕ

∂y
(α(x), ξ) dνx(ξ)

)
. (7.5)
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In case [u](x) [ψ](x) < 0, since |[u](x) + η[ψ](x)| < |[u](x)| = α(x) we have

∫
[0,2M ]

ϕ(|[u](x) + η[ψ](x)|, ξ ∨ (|[u](x) + η[ψ](x)|)) − ϕ(α(x), ξ)
η

dνx(ξ)

=
∫

[0,2M ]

ϕ(|[u](x) + η[ψ](x)|, ξ) − ϕ(α(x), ξ)
η

dνx(ξ).

When η → 0+, using once again Lebesgue dominated convergence theorem, we get that the last expression
converges to

[ψ](x) sgn([u](x))
∫

[0,2M ]

∂ϕ

∂y
(α(x), ξ) dνx(ξ) = −|[ψ](x)|

∫
[0,2M ]

∂ϕ

∂y
(α(x), ξ) dνx(ξ). (7.6)

Collecting (7.5) and (7.6) and applying Lebesgue dominated convergence theorem we get the last two lines of
relation (7.1). �

In the next proposition we give an equivalent formulation for the Euler-Lagrange conditions.

Proposition 7.2. Let t ∈ [0, T ] be fixed and let (u, ν) ∈ a(t, w). Then (7.1) holds if and only if the following
two conditions are fulfilled:

(a) u satisfies ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Δu = 0 in D′(Ω \ Γ),
u = w(t) on H

1
2 (∂DΩ),

∂nu = 0 on H− 1
2 (∂Ω \ ∂DΩ),

∂nu
+ = ∂nu

− on H− 1
2 (Γ);

(7.7)

(b) there exists h ∈ L∞(Γ) such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈∂nu, [ψ]〉 =
∫

Γ

h[ψ] dHN−1 ∀ψ ∈ H1
0 (Ω \ Γ, ∂DΩ),

|h| ≤ σ νx({0}) +
∫

(0,2M ]

∂ϕ

∂y
(0+, ξ) dνx(ξ) HN−1-a.e. in Jcu ∩ {α = 0},

|h| ≤
∫

[0,2M ]

∂ϕ

∂y
(0+, ξ) dνx(ξ) HN−1-a.e. in Jcu ∩ {α > 0},

h sgn[u] =
∫

[0,2M ]

∂ϕ

∂y
(|[u]|, ξ) dνx(ξ) HN−1-a.e. in {0 < |[u]| < α},

h sgn[u] ∈ Σ HN−1-a.e. in {0 < |[u]| = α},

(7.8)

where Σ is the segment

Σ :=

{∫
[0,2M ]

∂ϕ

∂y
(α, ξ) dνx(ξ) + r νx({α})

(
g′(α) − ∂ϕ

∂y
(α, α)

)
: r ∈ [0, 1]

}
·

Proof. Let us prove the two implications.

Step 1. Show that (7.1) ⇒ (a) and (b)
Specifying (7.1) for an arbitrary ψ ∈ H1

0 (Ω, ∂DΩ) we obtain relations (7.7)1–(7.7)4. At this point, integrating
by parts we have ∫

Ω\Γ
∇u · ∇ψ dx = −〈∂nu, [ψ]〉 (7.9)
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for every ψ ∈ H1
0 (Ω\Γ, ∂DΩ). Arguing in the same way as in [2], we obtain the existence of a function h ∈ L∞(Γ)

such that (7.8)1 holds. From (7.1), using (7.9) and (7.8)1 and since H
1
2 (Γ) is dense in L1(Γ) we get that

−
∫

Γ

h z dHN−1 +
∫

Γ

|z| 1{0=|[u]|=α}

(
σ νx({0}) +

∫
(0,2M ]

∂ϕ

∂y
(0+, ξ) dνx(ξ)

)
dHN−1

+
∫

Γ

|z| 1{0=|[u]|<α}

∫
[0,2M ]

∂ϕ

∂y
(0+, ξ) dνx(ξ) dHN−1

+
∫

Γ

z sgn[u] 1{0<|[u]|<α}

∫
[0,2M ]

∂ϕ

∂y
(|[u]|, ξ) dνx(ξ) dHN−1

+
∫

Γ

|z| 1{0<[u]z=α|z|}

(
g′(α) νx({α}) +

∫
(α,2M ]

∂ϕ

∂y
(α, ξ) dνx(ξ)

)
dHN−1

−
∫

Γ

|z| 1{0>[u]z=−α|z|}

∫
[0,2M ]

∂ϕ

∂y
(α, ξ) dνx(ξ)dHN−1 ≥ 0

for every z ∈ L1(Γ). Evaluating the last relation first for functions z ≥ 0 and then for functions z ≤ 0 arbitrary,
by a localization argument we obtain (7.8).

Step 2. Show that (a) and (b)⇒ (7.1)
Conversely, applying (7.7)1 to an arbitrary ψ ∈ H1

0 (Ω\Γ, ∂DΩ), integrating by parts and using conditions (a)
and (b) we get (7.1). �
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